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Abstract. We presentcache-oblivious data structures based uponexponential
structures. These data structures perform well on a hierarchical memory but do
not depend on any parameters of the hierarchy, including the block sizes and
number of blocks at each level. The problems we consider are searching, partial
persistence and planar point location. On a hierarchical memory where data is
transferred in blocks of sizeB, some of the results we achieve are:

– We give a linear-space data structure for dynamic searching that supports
searches and updates in optimalO(logB N) worst-case I/Os, eliminating
amortization from the result of Bender, Demaine, and Farach-Colton (FOCS
’00). We also consider finger searches and updates and batched searches.

– We support partially-persistent operations on an ordered set, namely, we allow
searches in any previous version of the set and updates to the latest version
of the set (an update creates a new version of the set). All operations take an
optimalO(logB(m+N)) amortized I/Os, whereN is the size of the version
being searched/updated, andm is the number of versions.

– We solve the planar point location problem in linear space, taking optimal
O(logB N) I/Os for point location queries, whereN is the number of line
segments specifying the partition of the plane. The pre-processing requires
O((N/B) logM/B N) I/Os, whereM is the size of the ‘inner’ memory.

1 Introduction

A modern computer has a hierarchical memory consisting of a sequence of levels –
machine registers, several levels of on-chip cache, main memory, and disk – where the
farther the level is from the CPU, the larger the capacity and the longer the access time.
On present-day machines, the cache is 2 orders of magnitude faster than main memory,
and 6 - 7orders of magnitude faster than disk. In order to amortize the cost of a memory
access, data is transferred between levels inblocks of contiguous locations; we refer to
each such transfer as an I/O. Due to the cost of an I/O, it is important to minimise I/Os.
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Unfortunately, a multilevel memory hierarchy is complex, and it can be unwieldy
or impossible to write programs tuned to the parameters of each level of the memory
hierarchy. Also, this parameterization leads to inflexible algorithms that are only tuned
for one memory platform. The traditional alternative is to assume a two-level memory
rather than a multilevel memory. The best-known two-level memory model was defined
by Aggarwal and Vitter [1] (see [24] for others). In this model the memory hierarchy
is composed of an arbitrarily large disk divided into blocks, and an internal memory.
There are three parameters: the problem sizeN , the block sizeB, and the main memory
sizeM . An I/O transfers one block between main memory and disk. The goal is to
minimize the number of I/Os, expressed as a function ofN , M , andB. In recent years
many algorithms have been designed for the Aggarwal-Vitter and related models, many
of which are reviewed in some recent surveys [24,5].

One limitation of the Aggarwal-Vitter model is that it only applies to two-level
memory hierarchies. In contrast, it is becoming increasingly important to achieve data
locality onall levels of the hierarchy. For example,Ailamaki et al. [2] report that in many
standard database applications, the bottleneck is main-memory computation, caused by
poor cache performance. Even in main memory, simultaneous locality at cache and
disk block levels improves performance by reducing address translation misses [19,20].
Furthermore, the memory hierarchy is rapidly growing steeper because in recent years,
processing speeds have been increasing at a faster rate than memory speeds (60% per
year versus 10% per year). This trend is entrenched and appears unlikely to change in
the next few years if not longer.

Frigo et al. [16,18] proposed the elegantcache-oblivious model, which allows one
to reason about a two-level memory hierarchy, but prove results about an unknown mul-
tilevel memory hierarchy. Cache-oblivious algorithms assume a standard (flat) memory
as in the RAM model, and are unaware of the structure of the memory hierarchy, includ-
ing the capacities, block sizes, or access times of the levels. I/Os occur transparently to
the algorithm, and I/O performance is analyzed in the Aggarwal-Vitter model [1] with
arbitrary block and main memory sizes. The model assumes anideal cache, where I/Os
are performed by an omnisicent off-line algorithm (Frigo et al. note that any reasonable
block-replacement strategy approximates the omniscient strategy to within a constant
factor). The key observation is that if the algorithms perform few I/Os in this scenario,
then they perform well for all block and main memory sizes on all levels of the memory
hierarchy simultaneously, for any memory hierarchy. By way of contrast, henceforth we
refer to the Aggarwal-Vitter model as thecache-aware model.

Frigo et al. [16,18] gave optimal algorithms for sorting, FFT, and matrix transpose.
Optimal cache-oblivious algorithms have also been found for LU decomposition [11,
23]. These algorithms make the (generally reasonable)tall cache assumption thatM =
Ω(B2). Prokop [18] observed how to layout a complete binary tree in linear space
so as to optimize root to leaf traversals in the I/O cost model. We call his layout a
height partitioning layout, and review it later. Bender, Demaine and Farach-Colton [8]
considered the dynamic predecessor searching problem, and obtained a linear space data
structure with amortizedO(logB N) update cost and worst caseO(logB N) search cost.
They also consider the problem of traversing the leaves of the tree. Their result, like most
of our results, does not use the tall cache assumption.
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Our approach. In this paper we present a new general approach for solving irregular
and dynamic problems cache-obliviously:the exponential structure, which is based on
the exponential tree previously developed and used by Andersson and Thorup [3,22,4]
for designing fast data structures in the transdichotomous model [15]. An exponential
tree is a tree ofO(log log N) levels where the degrees of nodes descending from the
root level decrease doubly exponentially, e.g. as in the seriesN1/2, N1/4, N1/8, · · · , 2.

We show that exponential trees, and more generally exponential structures, are sim-
ilarly powerful in a hierarchical memory. We use exponential trees to devise alternative
solutions to the cache-oblivious B-tree, and we provide the first worst-case solution to
this problem. Then we generalize these techniques to devise new cache-oblivious data
structures, such as persistent search trees (which are not trees), search trees that permit
finger searches, search trees for batched searches, and a planar point location structure.
By using exponential structures to solve a variety of problems, we introduce a powerful
tool for designing algorithms that are optimized for hierarchical memories.

Our results are as follows:

Dynamic predecessor searching: The problem here is to store a set ofN totally ordered
items, while supporting predecessor queries, insertions and deletions. We give a series
of data structures, culminating in one that takesO(N) space and supports all operations
in O(logB N) worst-case I/Os, which is optimal. This eliminates amortization from
previous cache-oblivious solutions to this problem [8,12,10].

The main difficulty faced in supporting dynamic search structures cache-obliviously
is the need to maintain data locality (at all levels of granularity) in the face of updates.
Arbitrary updates appear to require data sparsity. However, sparsity reduces locality.
To balance these constraints, Bender et al. [8] developed strongly weight-balanced
trees and thepacked-memory structure. Two other recent solutions with the same amor-
tized complexity also use the packed memory structure or similar techniques [12,10].
In essence, the packed-memory problem is to maintain an ordered list of lengthn in an
array of sizeO(n), preserving the order, under insertions and deletions. Although sim-
ple amortized algorithms to the packed-memory problem in the RAM model yield good
cache-oblivious algorithms, it is far from clear if the same holds for Willard’s complex
worst-case RAM solution [25].

As we will see, exponential structures are particularly effective at addressing the
tension between locality and sparsity. Our solution uses a new worst-case approach
to dynamizing exponential trees. In contrast to an earlier worst-case dynamization by
Andersson and Thorup [4] in the context of dynamic searching in the RAM model, the
main difficulty we face is to balance data sparsity and locality for dynamically changing
“fat” nodes in the exponential tree. As a result, our solutions, unlike Andersson and
Thorup’s, will use superlinear space at the deeper levels of the search structure. One
of our dynamizations seems to be simpler than that of Andersson and Thorup, and we
believe would somewhat simplify their constructions.

Finger search: This is the variant of dynamic predecessor searching in which successive
accesses are nearby. More precisely, suppose two successive accesses to an ordered set are
separated byd elements. We give a linear size data structure such that the second access
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performsO(log∗ d+ logB d) amortized and worst-case I/Os respectively, depending on
whether it is an update or a search.

By way of comparison, in the standard RAM model there are solutions usingO(log d)
operations [13,17], and this extends in a straightforward way to the cache-aware model
with bounds ofO(logB d). The cache-oblivious data structures of [8,10] do not support
finger searches, and that of [12] has a higher update time.

Partial persistence: Here one seeks to support queries in the past on a changing col-
lection of totally ordered items. Specifically, suppose we start with an ordered set ofN
items at timet0, and then perform a series ofm updates at timest1 < t2 < · · · < tm
(t0 < t1, of course). At any timet′j , tj < t′j < tj+1, one can perform a query of the
form: “what was the largest itemx < y at timeti?”, wherei ≤ j. We support updates
and queries inO(logB(N + m)) I/Os and useO(N + m) space. Note that the structure
here is a dag. A key issue is to give an appropriate definition of the weight of a fat node.

By way of comparison we note that in the standard RAM model there are solutions
usingO(log(N + m)) operations [21], and our I/O bound matches the cache-aware
result of [14].

Planar point location: The input comprisesN arbitrarily-oriented line segments in
the plane which are non-intersecting, except possibly at the endpoints. The task is to
preprocess the line segments so as to rapidly answer queries of the form: which line
segment is directly above query pointp? (The traditional planar point location problem
boils down to solving this problem.)

This can be solved using a structure for partial persistence that supports predecessor
queries on items drawn from a partially ordered universe, but with the requirement that the
items present at any given timeti be totally ordered; however, there is no requirement
that items have a relative ordering outside their time span of existence. Sarnak and
Tarjan [21] gave a linear space solution for this problem supporting queries inO(log N)
time. As our partial persistence data structure does not support partial orders, we are
obliged to take a different approach. We build a search dag similar to that used for our
partial persistence data structure, but build it offline; it has linear size, is built using
O((N/B) logM/B N) I/Os, and supports queries usingO(logB N) I/Os. This is a worst
case result, and depends on the tall cache assumption. This data structure also supports
batched queries efficiently.

By way of comparison, several linear-space data structures are known in the RAM
model that support queries inO(log N) time and can be constructed inO(N log N)
time. In the two-level model, Goodrich et al. [14] give a linear space data structure that
supports queries inO(logB N) I/Os but whose construction takesO(N logB N) I/Os.
Arge et al. [6] consider a batched version of this problem, but their data structure requires
superlinear space.

Batched search: We give a linear-sized structure for performing simultaneous prede-
cessor queries onr query items amongN base items. This is challenging when there is
only a partial order on ther items (so that they cannot necessarily be sorted); however,
theN base items are totally ordered and each query item is fully ordered with respect to
the base items. (An example scenario has as base items non-intersecting lines crossing
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a vertical strip in the plane, and as query items points in the vertical strip.) The I/O
cost for the search isO(r logB(N/r) + (r/B) · logM/B r). This result uses the tall
cache assumption (and hencelogM/B r = O(logM r)). We give an off-line algorithm
for constructing the search structure; it usesO((N/B) logM/B N) I/Os. We believe we
can also maintain the structure dynamically with the same I/O cost as for searches, but
have yet to check all the details.

In the rest of this abstract we outline our solutions to some of the above problems.
Proofs of the results on batched searching and finger searching, persistent search, as well
as details of the strongest version of the planar point location result, are omitted from
this abstract and may be found in [9].

2 Dynamic Searching

We do not discuss deletions, which can essentially be handled by standard lazy ap-
proaches. Our solution uses a known optimal layout [18] for complete binary search
trees as a building block. This layout places anN node tree in a sizeN array as follows.
The tree is partitioned into height1

2 log N subtrees, each of which is laid out recursively
in an array segment of length

√
N . We call this theheight-partitioning layout. It is

straightforward to extend this construction to trees in which all the leaves are at the same
level, where this is the first level in which this number of leaves would fit. The search
time is unchanged and the space is still linear.

Lemma 1. (Prokop). A search on a tree stored in a height-partitioning layout uses
O(logB N) I/Os.

Our dynamic solution uses a similar structure, but in order to handle updates efficiently
we need something more flexible. In our search trees, as with B-trees, all items are at
the leaves and only keys are stored at internal nodes. As suggested in the introduction,
internal nodes may have many children; to emphasize their large size we will call them
fat nodes henceforth. Likewise, we will refer to alayer of fat nodes rather than a level.

We define thevolume of a fat node in an exponential tree to be the number of items
stored in its descendant leaves. We extend the definition to subtrees: the volume of a
subtree is simply the volume of its root. LetT be a layeri fat node. An update that
changesT ’s volume will be called an update inT . Note that an update will be in one fat
node in each layer.

2.1 The Amortized O(logB N + log log N) Solution

We parameterize the fat nodes by layer, the leaves forming layer 0. A layeri fat node,
i ≥ 1, will have a volume in the range[22i − 22i−1

, 2 · 22i

), except for the topmost fat
node, where the range is given by[2 · 22k−1

, 2 · 22k

). The reason for the term “−22i−1
”

will become clear later. Each layer 0 fat node contains a single item. Loosely speaking,
the volumes of the fat nodes square at each successive layer.

Each fat node is implemented as a complete binary tree with all its leaves on the
same level; appropriate keys are stored at the leaves and internal vertices. This binary
tree is then stored in a height partitioning layout. Each leaf of this binary tree, except
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perhaps the rightmost one, will have two pointers, one to each of its two children fat
nodes. We note that a layeri fat node,i ≥ 1, hasO(22i−1

) leaves and internal vertices.

Lemma 2. A search takes O(logB N + log log N) I/Os.

Proof. Going from one layer to another takes one I/O, and there arelog log N such
transfers in all. The searches within layeri consumeO(logB 22i−1

) I/Os. Summed over
all the layers, this comes toO(logB N + log log N). ��

Next we explain when a fat node needs updating and how it is done. If a layeri fat
nodeT acquires volume2 · 22i

it is split as evenly as possible into two subtreesT1 and
T2, each of size roughly22i

. However, we wish to perform this split without changing
T ’s children fat nodes. As the children have volumes up to2 ·22i−1

, we can only achieve
a split with the subtreesT1 andT2 having sizes in the range[22i − 22i−1

, 22i

+ 22i−1
].

Such a split can readily be implemented inO(|T |) = O(22i−1
) time and I/Os.

WhenT splits this adds one to the number of its parent’s children. This is accom-
modated by completely rebuilding the parent, which can be done in time and I/Os linear
in the size of the parent, i.e.O(22i

) time and I/Os. We call this operationrefreshing
the parent. A standard argument shows that the amortized times and I/Os spent by an
insertion on splitting and refreshing the layeri fat nodeT it traverses areO(1/22i−1

)
andO(1) respectively. Thus, we obtain:

Theorem 1. There is a cache oblivious linear size data structure for an ordered set of
N items supporting searches in worst case O(logB N + log log N) I/Os and updates in
amortized O(logB N + log log N) I/Os.

The simplicity and consequent practicality of the above solution has been confirmed
in preliminary experimental work [20].

2.2 The Amortized O(logB N) I/O Solution

The main change here is to keep a leveli layer fat node and all its descendant layer fat
nodes in a contiguous portion of the array. This will increase the splitting time and as
we will see increases the space needed.

Now when splitting layeri fat nodeT into subtreesT1 andT2, besides creatingT1
andT2 we need to copy all ofT ’s descendant fat nodes into either the portion of the
array being used forT1 and its descendants or that being used forT2 and its descendants.
This will take time proportional to the size ofT and its descendants. Thus the cost of
splittingT becomesO(22i

). However, amortized time and I/Os spent by an insertion on
splitting the layeri fat nodeT it traverses is stillO(1). Let us turn to the space needed.

Lemma 3. Layer i fat node T has at most 2 · 22i

/(22i−1 − 22i−2
) subtrees.

We need to leave sufficient space for all ofT ’s possible children and their descendants,
i.e. 2 · (22i−1

+ 22i−2
+ 2) layeri − 1 fat nodes and their descendants. ThusT and its

descendant fat nodes will need spaceO(2i · 22i

), and so the whole exponential tree uses
spaceO(N log N).
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Lemma 4. The search time is O(logB N).

Proof. Consider layeri fat nodes, where
√

B < 2i · 22i ≤ B. Searching such a layer
i fat node and all its descendant fat nodes takesO(1) I/Os, since together they occupy
O(1) pages. Searching the higher portion of the tree, above layeri, takesO(logB N +
log log N − log log B) I/Os, for there areO(log log N − log log B) layers in this portion
of the exponential tree. But this isO(logB N) I/Os in total. ��

To reduce the space, each leaf is replaced by a record that stores betweenlog N and
2 log N items in sorted order. This reduces the number of items in the exponential tree
to O(N/ log N) and hence the overall space used is reduced toO(N).

Theorem 2. There is a cache oblivious linear size data structure for an ordered set of
N items supporting searches in worst case O(logB N) I/Os and updates in amortized
O(logB N) I/Os.

2.3 The Worst Case O(logB N) Solution

The solution is quite similar to the solution with the same amortized complexity bound.
The main changes to a layeri fat node treeT are the following:

– The implementation of the interface between fat nodes is slightly changed.
– The refreshing is performed incrementally overΘ(22i−1

) insertions, and is initiated
everyΘ(22i−1

) insertions inT .
– The splitting is performed incrementally overΘ(22i

) insertions, and is initiated
everyΘ(22i

) insertions inT .

The fat node interface is changed so that when a child fat node ofT splits,T need
not be immediately refreshed. In order to link to the new children generated by such
a split,T is provided with space for an extra level of vertices: each link to a child fat
node may be replaced by a vertex and, emanating from the vertex, links to the two new
children fat nodes. However, only one additional layer of vertices will be allowed: we
will ensure thatT has been refreshed before any of the new child fat nodes splits.

A refreshing proceeds by copying all the leaf vertices in fat nodeT and then building
internal vertices above them. Until a refreshing is complete searches and updates continue
to be performed on the old version ofT . We cross-link the copies of each leaf in the old
and new versions ofT so that any update resulting from a split of a child ofT can be
performed in both versions.

A split task proceeds by first splitting the top layer fat node, and then copying
descendant fat nodes one by one in a depth first ordering. As a fat node is copied it is
refreshed and split if need be. When the copying of a fat node is complete, searches will
proceed through the new version(s) of the fat node(s). Consider the task that is splitting
a layerj treeT , and suppose that it has just completed copying a descendant layeri fat
nodeS. Now suppose that a search goes throughS; it then follows a pointer to a layer
i − 1 fat node in the old version ofT . Following this pointer could result in an I/O, even
if S and its descendants would fit in a single block once their copying is complete. Call
such a pointer aj-long pointer, and note that the span of aj-long pointer is contained
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within a layerj + 1 tree. To guarantee a good search performance, we schedule tasks
in such a way that if a search follows ak-long pointer, it will subsequently only follow
j-long pointers forj < k. From this it follows that searches require onlyO(logB N)
I/Os.

We face the difficulty that, unfortunately, tasks could interfere with each other. We
ensure that only one task at any time will be copying a fat node. Consider a split task
T associated with fat nodeT . SupposeT is about to copy a descendant fat nodeS, but
it finds S is already in the process of being copied by another task associated with a
proper descendant ofT ; thenT takes over the task, completes it, and finally does its
own copying. This is readily implemented with a copy ID at the root of each fat node
treeS identifying the name and layer of the task currently copyingS, if any.

Interference also occurs if a layerh treeS is to be split but it is in the process of
being copied by taskT which is splitting a higher layer treeT . Then the taskS for S
will wait until T completes its copying ofS and will then proceed with its own copying
of S, unless taken over by some higher level task.

The handling of space is less obvious now. Each fat node is provided with double
the space it needs; at any time it is stored in one half of the space and refreshing occurs
in the other half. Also, lists of free space are needed within each layer tree to provide
space for its children when they split. When the taskT splitting a layeri tree finishes
copying a layerh < i subtreeS andS’s descendant subtrees,T releases the space for
S, and ifS had been in the process of splitting, the space for the old version ofS.

Lemma 5. A split takes O(22i

) time and I/Os.

Next, we specify the choices of parameters. Now a layeri treeT has volume in the
range[22i

, 4 · 22i

). A split is initiated when its volume reaches3 · 22i

and will complete
following at most22i

insertions toT . The resulting trees have volumes in the range
[1.5 · 22i − 2 · 22i−1

, 2.5 · 22i

+ 2 · 22i−1
]. It is readily checked that fori ≥ 2, the trees

created by the split have volumes in the range[22i

, 3 · 22i

].

Lemma 6. The space used is O(N log2 N).

Proof. A layer i treeT has at most4 · 22i

/22i−1
child subtrees. ��

To achieve spaceO(N) we use buckets of sizeΘ(log2 N), implemented as two
layers of records of size in the range[log N, 2 log N). Thus, we have shown:

Theorem 3. There is a cache oblivious linear size data structure that supports searches
and updates on an ordered set of items using O(logB N) I/Os in the worst case.

3 Planar Point Location

In this part of the extended abstract we only describe two results: both use preprocessing
of O(N logB N) I/Os and support queries usingO(logB N) I/Os; but the first result
usesO(N log log N) space, while the second uses onlyO(N) space. We also briefly
outline our stronger result which achieves linear space,O((N/B) logM/B N) I/Os for
preprocessing andO(logB N) I/Os for queries, but requires the tall cache assumption.
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We use the standardtrapezoidal decomposition: vertical lines are extended up and
down from each segment endpoint, terminating when they reach another segment. This
partitions the plane into a collection of trapezoids, with vertical sides, and at most two
non-vertical edges per trapezoid. A key tool in our preprocessing will be thepartition
procedure: given a parameterm < N , it selectsO(N/m) segments and forms the
trapezoidal decomposition they define; each trapezoid will containΘ(m) segments or
part segments of theN input segments, and for each trapezoid these segments are
identified. Such a trapezoidal decomposition is said to havesize Θ(m).

The basic idea is to do a plane sweep with a vertical line from left to right, maintaining
the collection of segments currently crossing its sweep line in sets of contiguous segments
with sizes at leastm/7 and at mostm. It is helpful to setm′ = m/7. Each pair of adjacent
sets is separated by a segment already added to the set of selected segments. Each set is
associated with a trapezoidT of the partition;T ’s left vertical boundary is known; its top
and bottom boundaries are the selected segments bounding the set; its right boundary
has yet to be specified.

We define thecurrent size of a set to be the number of segments it contains (i.e.
that cross the sweep line), and thefull size to be the number of segments contained in
the associated trapezoid. We ensure that the current and full sizes of a set are always
in the range[m′, 7m′]. We further ensure that on creation, a set’s sizes are in the range
[2m′, 6m′].

As left and right segment endpoints are swept over, the corresponding segments are
respectively inserted into, or deleted from, the appropriate sets. When a setS’s full or
current size reaches an extreme value (due to the processing of an endpointp, say) the
vertical line throughp provides the right boundary of the associated trapezoid. IfS’s
current size lies outside[2m′, 6m′], S is either split or merged with a neighbor set, as
appropriate.A merge with setS′ also results in the trapezoid associated withS′ receiving
the same right boundary. If the current size of the merged set is greater than6m′, the
new set is immediately split. Following the splits and merges due to the processing of
pointp, for each remaining new set, a new trapezoid is instantiated, with left boundary
the vertical line throughp.

The splitting proceeds a little unusually and is explained next. The set of segments to
be split all intersect the sweep line. Consequently they can be sorted along the sweep line.
The middlem′ segments are considered, and among these the one with the rightmost
endpoint is chosen as the separator. The sets resulting from the split will thus have sizes
in the range[2.5m′, 5m′].

It is also possible that a pointp swept over is the right endpoint of a selected segment
σ. In this case, the two trapezoids bounded byσ are completed with right boundaries
throughp, and the corresponding sets are merged. If this new set has size more than
6m′ it is split, and if has size more than11m′ it is partitioned by a three-way split, so as
to obtain sets in the range[3m′, 6m′] (two groups ofm′ segments each are considered,
located in the one third and two thirds positions, rather than the middle).

The sweepline procedure works as follows. First, the segment endpoints are sorted
according to theirx values. Each endpoint is then considered in increasingx order. If it is
a left endpoint, we locate the set containing this endpoint and add the incident segment
to the set. Similarly, a right endpoint results in the deletion of the incident segment.
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The locating is done by means of a search over the selected segments that intersect the
sweep line. These segments are maintained in a dynamic search tree. Thus the search
usesO(logB m) I/Os and maintaining the search tree over the selected segments takes
O(m logB m) I/Os.

Lemma 7. The partition procedure forms at most 11N/m′ trapezoids.

Proof. We count how many right vertical boundaries are created. There are a few ways
for this to occur. First, a set can reach full size7m′; this requires at leastm′ insertions
into the set since its creation. Second, a set can reach current sizem′. This requires at
leastm′ deletions from the set since its creation. Third, a set can be a neighbor of a set
whose size drops tom′. Fourth, a set can be bounded by a selected segment whose right
endpoint is reached.

There are at mostN/m′ sets in each of the first three categories.We show that there are
at most8N/m′ sets in the fourth category by a credit argument. Each segment endpoint
is given two credits. When processed, it gives its credits to the two selected segments
bounding its set. Consider a selected segmentσ whose right endpoint is reached. We
show it has received at leastm′ credits. Consider them′ segments from whichσ was
selected. Letτ �= σ be one of these segments. Suppose that when the sweepline reaches
τ ’s right endpoint,τ is no longer in a set bounded byσ; then there must have been at
leastm′ updates to the set containingτ that was created whenσ was selected (so that
τ could go to a different set). Each of thesem′ updates contributed one credit toσ.
Otherwise, on reachingτ ’s right endpoint, the endpoint gives a credit toσ. Including
the credit fromσ’s right endpoint, we see thatσ always receives at leastm′ credits. ��

Our first result applies the partition procedure withm =
√

N log N . Within each
trapezoid two sets of segments are identified: those fully contained in the trapezoid and
those that touch or cross a vertical boundary (the only boundaries that can be crossed by
segments). Each trapezoid and its fully contained segments are handled recursively. For
each vertical boundary, we create a “side” search structure for the segments that cross
it. Recall that we seek the segment immediately above a query pointp.

The selected segments will be used to define the top layer search structure. Deeper
layers are defined by the recursion on the trapezoids. The goal of the top search structure
is two-fold: first to identify the segment among the selected segments which is directly
above the query point; second, to identify the trapezoid defined by the selected segments
containing the query point, and thereby enable a recursive continuation of the search.
This search structure comprises two levels: the first level is a search tree over thex
values given by the endpoints of the selected segments. For each pair of adjacentx
values, the second level has a search structure on the selected segments spanning that
pair ofx values. Both of these can be implemented using binary search trees, laid out in
a height-partitioned manner. Thus the space used in the top layer isO(N/ log2 N) and
the search time within the top layer isO(logB N).

The side search structure is simply a priority search tree. This can be implemented
using a complete binary tree, which is then stored using the height-partitioning layout. In
each layer, a query will search two side structures, one for each vertical boundary of the
trapezoid being searched; each search will seek the first edge, if any, in the side structure
on or above the query point. The search in layeri takesO(logB 22i

) I/Os, which summed
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over all layers isO(logB N) I/Os. In order to avoid additive terms ofO(log log N) in
the search time we allocate space for each subproblem recursively. Note that the above
structure uses spaceO(N log log N).

Theorem 4. There is a cache oblivious data structure of size O(N log log N) for planar
point location that can be constructed using O(N logB N) I/Os and supports queries
using O(logB N) I/Os.

Now, we obtain a linear space solution. The basic idea is to create a bottom level
comprising trapezoids holdingO(log N) segments each. These segments can be stored
contiguously, but in no particular order within each trapezoid; such a trapezoid can be
searched withO((log N)/B) I/Os by means of a sequential scan. The bottom level is
created by applying the partition procedure withm = log N . Next, a planar point location
search structure is build on the selectedO(N/ log N) segments, using our first solution.
This structure is used to find the segment, among the selected segments, immediately
above the query point. Finally, we have to connect the selected segment identified by
the query to a particular trapezoid. The difficulty is that a single segment may bound
multiple trapezoids. Thus, we need a third part to the data structure. Each segment is
partitioned at the boundaries of the trapezoids it bounds, and a search tree is constructed
over these boundary points. Having found a segment, the search continues by finding
the segment portion immediately above the query point, and then proceeds to search the
one trapezoid immediately beneath this segment portion.

Theorem 5. There is a cache oblivious linear size data structure for planar point loca-
tion that can be build using O(N logB N) I/Os and supports queries using O(logB N)
I/Os.

In our strongest result, we seek to build a trapezoidal decomposition of sizea log N
for some constanta ≥ 1. In building the sizea log N decomposition we also build
a search structure that inΘ((N/B) logM/B N) I/Os can locateN query points, by
returning the trapezoid containing the query point. More generally it can also locate
r < N query points usingΘ((r/B) logM/B r + r log(N/r)

log B ) I/Os.

The basic approach is to build in turn trapezoidal decompositions of sizesaN3/4,
aN (3/4)2 , . . . , a log N , using each decomposition as a stepping stone to the next one,
a being a suitable constant. However, the most natural approach, which is to build
each decomposition in turn appears to require re-reading of all the line segments to
compute each decomposition, without being able to maintain locality at a sufficiently
large granularity; this has an unacceptable cost ofΩ((N/B) log log N) I/Os. A second
approach, to proceed recursively, i.e. as a trapezoid in one decomposition is found,
to immediately compute its partitioning in the smaller decomposition, appears to lead
to segment duplication (of those segments that cross multiple trapezoids in a given
decomposition, of which there can be many); this appears to entail unacceptable space
(and work)Θ(N · polylog(N)).

Instead, our approach is to seek to identify individual trapezoids containingΘ(log N)
segments as early as possible, and then to remove them from the series of trapezoidal
decompositions, putting them in the final sizea log N decomposition right away. Thus
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our algorithm simultaneously builds the series of decreasing-size trapezoidal decom-
positions and the sizea log N decomposition. Not surprisingly, some care is needed to
choreograph this activity. Details can be found in [9].

Theorem 6. There is a batched search structure for planar point location that uses
space O(N) and can be built with O((N/B) logM/B N) I/Os and supports batched
search of r ≤ N items using O((r/B) logM/B r + rlogB(N/r)) I/Os.
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