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Theoretical and Experimental Analysis of Heuristics
for the “Freeze-Tag” Robot Awakening Problem

Marcelo O. Sztainberg, Esther M. Arkin, Michael A. Bender, and Joseph S. B. Mitchell

Abstract—In the “freeze-tag” problem, we are given a swarm of
sleeping (frozen or inactive) robots and a single awake (active)

robot. The goal is to awaken all robots in the shortest possible
time. A robot is awakened when an active robot “touches” it. The
goal is to compute an optimal awakening schedule such that all
robots are awake by time , for the smallest possible value of .
We devise and test a variety of heuristic strategies on geometric
and network datasets. Our experiments show that all of the strate-
gies perform acceptably well, with the simple greedy strategy
performing particularly well. A theoretical analysis of the greedy
strategy gives a tight approximation bound of �( log ) for
points in the plane. We show more generally a tight performance
bound of �((log )1 1 ) in dimensions. The geometric case
contrasts with the case of general metric spaces, where greedy is
known to have a �(log ) approximation factor, and no method
is known to achieve an approximation factor of (log ).

Index Terms—Approximation algorithms, computational ge-
ometry, emergent behavior, multiple robots, optimization, swarm
robotics.

I. INTRODUCTION

WE CONSIDER a problem that arises in the study of
swarm robotics. Consider a set of robots, modeled

as points in some metric space. There is one “awake” source
robot; all other robots are “asleep” (inactive). In order to
awaken a sleeping robot, an active robot travels to the sleeping
robot and touches it; then, the newly awake robot joins the set
of active robots in awakening other sleeping robots. Our goal is
to activate (wake up) all of the robots as quickly as possible,
i.e., we want to minimize the makespan, the time when the last
robot is awakened.

This problem has been coined the “freeze-tag” problem (FTP)
[4] because of its similarity to the children’s game of freeze tag.
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In the game, the person who is “it” tags a player, who becomes
“frozen” until another player (who is not “it” and not “frozen”)
tags him to unfreeze him. The FTP arises when there are a large
number of players that are frozen and one (not “it”) unfrozen
player, whose goal it is to unfreeze the rest of the players as
quickly as possible. Once a player gets unfrozen, s/he is avail-
able to assist in unfreezing other frozen players, who can then
assist. Other applications of the FTP arise in the context of dis-
tributing data (or some other commodity), where physical prox-
imity is required for distribution. This proximity may be neces-
sary because wireless communication has too high a bandwidth
cost or security risk. How does one propagate the data to the en-
tire set of participants in the most efficient manner? Prior work
on the dissemination of data in a graph includes the minimum
broadcast time problem, the multicast problem, and the related
minimum gossip-time problem; see [11] for a survey and [6] and
[13] for recent approximation results.

The FTP is expressed as a combinatorial optimization
problem, as follows. Given a set of points in a metric space,
find an arboresence (awakening tree) of minimum height where
every node has an out-degree of at most two.

What makes the FTP particularly intriguing is that any
reasonable (“nonlazy”) strategy yields an -approxi-
mation [4, Prop. 1.1], whereas no strategy is known for general
metric spaces that yields a -approximation.1 (Some
recent improvements for special cases are reported in [5].)
We say that a strategy is nonlazy if each awake robot claims
and goes to a sleeping unclaimed robot, if one exists, at the
moment that he awakes; if no sleeping unclaimed robot exists,
then a newly awakened robot does not move. Arkin et al. [4]
show that even simple versions of the problem (e.g., on star
metrics) are NP-complete. They give an efficient polynomial
time-approximation scheme (PTAS) for geometric instances on
a set of points in any constant dimension . They also give a
variety of results on star metrics, where an -approximation
is possible, and an -approximation for the special case
of ultrametrics, in which the underlying metric is defined by a
rooted tree, all robots are initially at the leaves, the length of
each root to leaf path is the same, and robots must travel along
edges of the tree.

Our Results: We provide both theoretical and experimental
results.

1) We prove that the natural greedy heuristic applied to
geometric instances gives an -approx-
imation in dimensions. Thus, in one dimension, the
greedy heuristic yields an -approximation, and in

1Please see note on new development, after the Conclusion.
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the plane, the greedy heuristic yields an -ap-
proximation. We prove that this analysis is tight by
exhibiting matching lower bounds.

While better approximations are known for the geo-
metric instances (indeed, there is an efficient PTAS for
any constant dimensions [4]), the greedy strategy is al-
gorithmically simple and “myopic,” in that each robot de-
cides which robot to awaken next without needing to plan
ahead.

2) We perform an experimental investigation of heuristic
strategies for the FTP, comparing different design choices
for greedy strategies and comparing them with other
heuristics. We present experimental results on classes
of randomly generated data, as well as on datasets from
the TSPLIB, a repository of instances for the Traveling
Salesperson Problem.

Other Related Work: In addition to the original work on the
FTP and the minimum broadcast-time problem already men-
tioned, there is a vast array of literature on algorithms for robot
swarms. Among the most studied problems in this field are en-
vironment exploration [2], [3], [8], [10], [12], [21], [23], robot
formation [14]–[17], searching [22], and recruitment [20], [23].
There has also been considerable research in the area of algo-
rithms for multiagent problems directly inspired by ant behav-
iors, such as searching and covering [20]–[23].

Notation: We let denote the swarm, the set of points in a
metric space (often Euclidean -space, denoted ) where the
initially sleeping robots are located. We let denote the
source point where an initially active source robot is placed. We
assume that any active robot in motion travels with unit speed.
We let denote the radius of the swarm with respect to , i.e.,

. We let
denote the diameter of the set of robots. We let denote the
minimum makespan. Note that, trivially since robots
move with unit speed.

II. WAKEUP STRATEGIES FOR THE FTP

We describe and analyze the class of greedy awakening strate-
gies, giving lower and upper bounds on their performance in
geometric datasets. At the end of this section, we give alterna-
tive strategies that we have tested in our experiments.

A. Greedy Strategies

A natural strategy for the FTP is the greedy strategy, in which
an awake robot chooses the nearest sleeping robot to awaken.
The motivation for awakening nearby robots first is that paral-
lelism is generated early on. The first robot awakens its closest
neighbors, these newly awakened robots awaken their closest
sleeping neighbors, and so on.

In fact, the greedy strategy is not a fully defined heuristic.
What remains to be specified is how conflicts among robots are
resolved, since two robots may have the same closest neighbor.
We now describe three methods for resolving these conflicts:
claims; refresh; and delayed target choice.

Claims: When a robot is awakened, it lays a claim on the
sleeping robot that it intends to awaken next. We distinguish
between claims with full communication and claims with local

communication. In the full-communication model, when a robot
awakens and claims a sleeping robot, no other robot is allowed
to claim it (ties are negotiated and broken arbitrarily); this model
assumes that the robots have global communication or some
means of marking a robot as “claimed.” (This is the version im-
plemented in [18].) In the claims with the local-communication
model (implemented and reported here), when a robot is awak-
ened by another robot, only these two robots negotiate in order
to avoid laying claim to the same robot; the sleeping robots that
they “claim” are, in fact, available to others to claim and may
have already been claimed before (but due to their local infor-
mation, they have no way of knowing this).

Refresh: It may be beneficial for newly awakened robots to
“renegotiate” the claims, since the set of awake robots changes.
We refer to the ability to reassign active robots to sleeping robots
as the option to refresh claims.

We first consider the case in which claims are not adjusted.
Thus, once an awake robot claims a sleeping robot ,
awakens before making any other algorithmic decisions. The
algorithm is now well defined, because, without loss of gener-
ality, at most one robot is awakened at a time, and each time a
robot is awakened it claims the nearest sleeping robot.

Consider now the case in which claims are renegotiated,
or refreshed, each time a new robot awakens. For motivation,
consider the following scenario. An awake robot is heading
toward a sleeping robot , which has claimed. Before
reaches , another robot awakens. Now, both and
would like to claim , but since is closer to than to ,
takes over the responsibility of awakening .

In our experiments, we assign claims by finding a matching
between the awake robots and the sleeping robots. We use a (po-
tentially suboptimal) greedy strategy to compute a matching,
rather than applying a more complex optimization algorithm.
We order, by length, the potential matching edges between the
set of currently awake and currently sleeping robots. We itera-
tively add the shortest edge to the matching, and remove from
consideration those edges that are incident to either of ’s end-
points. While the resulting matching need not have minimum
total weight, it has the property of giving priority to the short
matching edges, which is faithful to the greedy heuristic.

Delayed Target Choice: Refresh introduces several anoma-
lies. In particular, an awake robot may repeatedly change direc-
tions and oscillate without awakening any robots. This oscilla-
tion happens when an awake robot chooses a sleeping target,
but before the robot reaches its target, another robot claims the
target. With the delayed target choice option, we avoid these
oscillations by using some amount of look-ahead. Specifically,
we avoid committing to the direction a robot is heading until
that robot has traveled far enough to awaken a target, at which
point the target (and its position) is fully determined.

Thus, the greedy strategy proceeds as follows. For each robot
, we store the last position of the awakening event in which
participated (either as “awakener” or “awakenee”), together

with its accumulated distance (equivalently, the time) of
travel since that event. Then we compute matchings greedily
between the ’s for awake robots and the sleeping robots,
using as the edge weight between and the
location of sleeping robot . After each awakening event, we
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Fig. 1. Lower bound construction in < , for which greedy is at least 4 � �

times optimal.

recompute the matching. Thus, only the minimum-weight edge
of the matching needs to be computed at each event.

Remark: Each of the above options requires certain assump-
tions about the robot model. Claims with full communication
assumes that, if robot wants to claim robot (implying that
robot can sense the presence of ), then any other robot
that wants to claim robot is able to communicate with robot

. Refresh requires greater communication among robots, since
robots must negotiate more frequently. Delayed target choice
requires look-ahead: the robot swarm (or a central command,
which is in communication with the swarm) must plan before
movement begins.

1) Lower Bounds on the Performance of the Greedy
Heuristic: We now present lower bounds on the performance
of the greedy heuristic on sets of points in -dimensional
Euclidean space. We begin with , and then consider
the general case of higher dimensions. Our lower bounds hold
for all variations of the greedy heuristic described above (with
or without claims, refresh, or delayed target choice), since, in
our lower bound examples, all awake robots travel together in
a “pack” so that all awake robots make claims simultaneously.

Theorem 1: For any , there exists an instance of the
FTP for points on a line for which the greedy
heuristic results in a makespan that is at least times optimal.

Proof: We construct a family of instances in which the
application of the greedy heuristic will result in all awake robots
always staying together in a single group.

We place sleeping robots at points
, where

is even. The source robot is placed at the origin, . We
place one sleeping robot at point , two sleeping robots
at point , four sleeping robots at point

, etc. In general, we place sleeping
robots at point for . Note that

and ,
so and .
Finally, we place sleeping robots at point

and we place
sleeping robots at . Refer
to Fig. 1.

The greedy strategy sends the source robot to the right, a dis-
tance of one, to awaken the one robot at , then two robots to the
left, a distance of two, to awaken the two robots at , then four
robots to the right, a distance of four, to awaken the four robots
at , and so on. (Actually, there are “ties” in making these
decisions; however, the instance can be perturbed in order to
make the decisions unique, using an infinitesimally small ,
placing the robots at points
and .) The total dis-
tance traveled by the source robot up to the time it reaches

Fig. 2. Lower bound construction in < .

is, therefore, . Once the
robots at have been awakened, the set of all awake

robots goes to the right, a distance of , to awaken
the robots at , and then finally, all of the robots go to the
left a distance of to . The makespan is
given by the total distance traveled by the source robot, which
is

.
In contrast, an optimal awakening strategy is as follows. The

source robot goes to the right, awakening one robot at ; then,
the source robot continues heading to the right, awakening all
of the robots at points , while
the robot that was awakened at heads to the left to awaken
all other robots . The makespan is

.
The ratio of the makespan of greedy to the optimal makespan

approaches four (from below) as .
Theorem 2: The greedy heuristic is an -approx-

imation to the FTP in the plane. The greedy strategy is an
-approximation in .

Proof: We begin with the proof in the plane . We
arrange disks, each with radius one, along a zigzag path
having rows, each having disks, with disks
touching but not overlapping along the path. Refer to Fig. 2.
The source robot is at the center of the first disk. There
is one sleeping robot at the center of the second disk, then
two at the center of the next, then four, and so on, with the
number of sleeping robots at the center of each disk doubling
as we advance along the path of touching disks. The last
disk has (about) robots. (More precisely, we consider
values of of the form , for integer . Then,
the zigzag has rows, each having disks. The last disk
has robots at its center.) When the greedy strategy is
applied to this example, the awakening happens in sequence
along the zigzag path, with all of the newly awakened robots
at the center of one disk targeting the robots at the center
of the next disk. (There are just enough robots to allow a
perfect matching, because of the doubling.) Thus, the greedy
strategy takes steps, each of size about two. A better
strategy, however, sends the source robot vertically upwards,
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Fig. 3. Root-to-leaf path (p ; p ; p ; . . .) in the greedy awakening tree, with
the covering intervals shaded for each step. Steps p p , p p , p p , and p p

fall in case 1; steps p p and p p fall in case 2.

awakening one cluster of robots at the center of each disk
it passes along the way. These robots are then available to
travel horizontally, awakening the robots along each row. This
strategy yields makespan . Hence, greedy is
an -approximation in the plane.

The proof generalizes to as follows. We arrange unit-ra-
dius disks along a zigzag path in dimensions; the construction
is defined inductively by dimension, with copies
of a -dimensional construction, each within a layer,
concatenated to form a path of touching (but not overlapping)
disks in . The numbers of sleeping robots at the centers of
the disks are 1, 2, 4, 8, , and the one source robot is at the
center of the first disk. As in the two-dimensional (2-D) case,
the greedy strategy awakens robots in order along the path,
taking a total of steps, each of size about two. A much
better strategy, though, is for the source robot to go to the center
of the last disk (i.e., the th disk) along the path, where

robots can be awakened, who can then, in
time, spread out and awaken the other half of the robots. This
strategy takes time , implying that the greedy strategy
is an -approximation to the optimal strategy.

2) Upper Bounds for the Greedy Heuristic: We now present
upper bounds for the greedy heuristic in , for .
We first show that the lower bound of Theorem 1 is essentially
tight for the 1-D case.

Theorem 3: The greedy heuristic for a swarm of
points on a line is a 4-approximation.

Proof: Consider the longest path in the awak-
ening tree. With each step from to of length along
the path, we associate or cover an open interval of equal length

that is “charged” with the step. Roughly speaking, when-
ever a region is covered, we know that it has been cleared of
sleeping robots. More precisely, whenever a region is covered,
it has been cleared of sleeping robots that are awakened on this
path in the awakening tree, but sleeping robots could
still remain in the covered region if they are awakened along
other paths down the awakening tree.

Assume that the step from to is to the right; the anal-
ysis when this step is to the left is symmetric. There are two
cases (refer to Fig. 3).

Case 1) If the previous step to is in the same direction
as the current step to , then we cover the
interval ( , ) of the step itself; there are now
no sleeping robots in this interval that are awakened
along this path.

Case 2) If the previous step to is in a different direc-
tion from the current step to , then we cover
the interval of length that touches but is on the
other side of from , that is, ( , ). By

the greedy property, we know that the interior of this
interval contains no sleeping robots.

We now explain why the intervals that we cover are nonover-
lapping. An important property of the greedy heuristic is that
whenever step to is to the right (left), the point is
farther to the right (left) than points . We next an-
alyze the previous cases in light of this observation.

Case 1) We cover ( , ). The interval ( , ) is new
territory, and therefore could not have been covered
by robots to the right of point ; similarly, the in-
terval could not have been covered by a robot left of

because covered intervals have no sleeping robots
in them, and contained a sleeping robot until the
previous step.

Case 2) We cover ( , ). Since point was the farthest
point left in the previous step, we can show that in-
terval ( , ) was not previously covered by
using similar reasoning as in Case 1.

Finally, we show that the maximum length of all charging is
at most , where is the diameter of the point set. Consider
the last time that the path changes direction. This last segment
has length at most , and therefore can charge at most an extra

on one side of the trodden area. Since the radius is
a lower bound on the optimal makespan, and the length of the
longest path is at most , the claim follows.

We turn now to our analysis of the greedy strategy in two
or more dimensions. Our goal is to prove the following the-
orem, which shows that, in contrast with arbitrary metric spaces
(where greedy gives an -approximation for the FTP),
greedy is an -approximation for Euclidean instances.
Combined with our lower bounds, we get a tight analysis of the
approximation factor for greedy in all dimensions .

Theorem 4: The greedy strategy, with claims, is an
approximation for the FTP on points in

dimensions, for . The approximation bound holds,
regardless of whether or not the strategy uses refresh or delayed
target choice.

We give the proof below. We also show in Theorem 5 that
the greedy strategy can be implemented efficiently. Note the
difference between Theorems 4 and 5. Theorem 4 provides a
bound on the awakening time (the height of the awakening
tree), whereas Theorem 5 provides a bound on the time to
compute the awakening tree; that is, Theorem 4 measures robot
movement, whereas Theorem 5 measures computing time.
Since robots compute quickly but move slowly, the time to
follow the awakening tree dominates the time to compute it.

Theorem 5: For any fixed , one can compute the greedy
awakening tree using claims, refresh, and delayed target choice
for points in the plane in time ; in any higher di-
mension , the time bound is . The same
time bounds hold in the case in which the greedy strategy is ap-
plied with claims but without refresh and without delayed target
choice.

Proof: Consider first the case in which the strategy uses
refresh and delayed target choice. Then, at each event when a
robot is awakened, we determine the next event by computing
the minimum distance between an awake robot (which
resides at one of the original input points , since the target
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choice is delayed) and a sleeping robot at some point ; the
next event, then, will correspond to the awake robot at going
to awaken the sleeping robot at . Thus, the next event is
determined by the bichromatic closest pair between the “red”
points (where awake robots are) and the “blue” points (where
sleeping robots are). The bichromatic closest pair must be
maintained dynamically, with insertions of “red” points and
deletions of “blue” points, since each event results in a color
change of some point. We apply the dynamic bichromatic
closest pair data structure of Eppstein [9], who shows that
the bichromatic closest pair can be maintained efficiently,
with an amortized cost of per insertion and

per deletion, where is the time required
for performing nearest-neighbor queries or insertions/dele-
tions in a nearest-neighbor data structure. Using the dynamic
nearest-neighbor data structure of Agarwal and Matoušek [1],
we obtain the claimed time bounds.

In the case that the greedy strategy is applied with claims but
without refresh and without delayed target choice, we must de-
termine, when a robot is awakened at point , where the two
robots now at point will go next. This amounts to performing
two nearest-neighbor queries. First, we query with the point

within the set of all unclaimed sleeping robots, finding the
closest one, ; then, we delete from the set of unclaimed robots
and query again with the point to determine the target for the
other robot at . The nearest-neighbor query data structure of
[1] implies the claimed result.

Remark: In the or metric, the time bound becomes
for any fixed dimension , since we can

apply orthogonal range-search data structures to perform
nearest-neighbor queries. Also, we can use dynamic -ap-
proximate nearest-neighbor query data structures (see, e.g.,
[7]) to construct an (approximate) greedy awakening tree in
time , using space, for any and any
dimension .

Proof of Theorem 4: We concentrate on proving the ap-
proximation bound for the 2-D case of Theorem 4; the -dimen-
sional case is a fairly direct generalization.

Suppose that we are given a greedy awakening tree for a
swarm of size . We show that all paths in the awakening
tree from the root to a vertex with out-degree at most 1 differ
by at most an additive distance. Thus, if we can provide a
bound on the length of one of these paths, we have a bound on
the longest path.

Claim 6: Consider the shallowest vertex with out-degree at
most 1 and the deepest leaf in the awakening tree. The difference
in depth between these two nodes is at most , the diameter of
the set of robots.

Proof: A node has an out-degree of at most 1 because
all remaining sleeping robots have already been claimed (or,
alternatively, because using this robot does not improve the
makespan). Therefore, all robots that are still sleeping robots
will be awakened at most steps later.

Because the awakening tree has fewer than leaves, we ob-
tain the following corollary.

Corollary 7: There exists a path from
a root to a vertex with out-degree , where there are

edges of lengths .

We call such a path a maximal path. At the time when the
last vertex is reached, all of the remaining sleeping robots
will be awakened by other branches of the awakening tree. The
makespan, therefore, is at most . We will
show that , implying that the makespan is

, where we recall that is the optimal makespan.
Fixing attention now on one maximal path in the awak-

ening tree, we define the outer circle to be the circle centered
at with radius ; the inner circle is the
circle centered at with radius . The properties of the
greedy heuristic ensure the following claim.

Claim 8: No point lies inside circle .
Proof: If some point , for some , then

the greedy strategy would dictate going next to the closest such
point to , rather than going next to .

The proof of Theorem 4 is based on an area-covering argu-
ment. Specifically, we provide a bound on the area covered by
the circles , showing that

where is the radius of the swarm. The subtlety of the proof is
that neither the outer circles nor the inner circles

are disjoint (for the inner circles, this will hold
whenever two circles differ substantially on radius, as we will
show later on). The proof is based on the following lemma.

Lemma 9: The combined area covered by the (inner or outer)
circles is , that is

area

Before proving Lemma 9, we show how to use this lemma to
conclude the proof of Theorem 4. The length of the path
is simply . By the Cauchy–Schwartz inequality,2

the fact that , and Lemma 9, we obtain

Since this result holds for any maximal path in the awakening
tree, the approximation bound follows. This concludes the proof
of Theorem 4.

Proof of Lemma 9: Each (outer, inner) circle pair, ,
is assigned to a circle class according to its radius. Without loss
of generality, let the smallest outer circle have radius 1. Define
class to be the set of (outer, inner) circle pairs such that the
radius of the outer circle has radius , with .

While pairs of outer circles (and pairs of inner circles) may
overlap, using the property of circle classes, we show the fol-
lowing claim.

Claim 10: Any pair of inner circles belonging to the same
class are disjoint.

2Here, we apply the Cauchy–Schwartz inequality jr � sj � krk � ksk, with
vectors r = (r ; r ; . . . ; r ) and s = (1; 1; . . . ; 1).
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Proof: Let and be two points on path . Suppose
that the circles associated with and belong to the same
circle class. Without loss of generality, assume that occurs
before on . By Claim 8, since is reached after along
the branch of the awakening tree, . Since
and belong to the same circle class, we know that ,
implying that the radius of , , is less than .
Therefore, since , the inner circles and
are disjoint.

Let area be the area covered by inner circles of class . We
claim the following.

Claim 11: In order for the inner circles of class associated
with path to cover area , the corresponding edges of
(associated with circle pairs of class ) must have total length
satisfying

Proof: In order to cover area , we need at least
circles, since each inner circle of class has

radius at most . The length of each edge corresponding
to a class circle pair is at least ; thus, the total length
of these edges is at least . Similarly, we have at
most circles, since the (nonoverlapping) inner
circles of class each have radius at least . The length
of each edge corresponding to a class circle pair is at most ;
thus, the total length of these edges is at most .

Since along path of the awakening tree we have circles of
different classes appearing, not necessarily in order of size, we
may have inner circles overlapping, thus not covering “new”
area. Circles will overlap through the process of building the
path , but we need to distinguish, for the case of inner circles,
those that do not overlap with any other inner circle (which we
will use to claim that we are covering a part of the domain that
has not been covered before) from the ones that do have over-
laps. We need the following claim.

Claim 12: The length of that does not correspond to edges
whose inner circles cover new area is at most a constant fraction
of the length of that corresponds to edges whose inner circles
do cover new area.

Proof: It suffices to consider the worst case. All areas cov-
ered by class- inner circles is covered by class- circles, for

. In class , the average amount that we must walk along
in order to cover one unit of area is between and

. Thus, suppose that a unit of area is covered first in
class , where the average cost is between and .
The cost of covering this area in larger classes is a geometric se-
ries summing to at most

Thus, by Claim 12, the distance traveled along in which
no new area is covered is of the order of the distance traveled
in which new area is covered. Since the total area covered is

, the claim of Lemma 9 follows.

Fig. 4. Example in which greedy is suboptimal. Greedy initially sends the
robot at s to the northwest corner, while a better strategy (maximizing the “bang
for the buck,” defined in the text) sends the robot at s initially to the southeast
corner, where two nearby robots are awakened at essentially the same time,
leading to a better overall wakeup strategy (makespan 3 versus 1 + 2

p
2).

The proof for the -dimensional case of Theorem 4 is similar,
considering a volume-covering argument with -dimensional
balls and a corresponding set of claims and lemmas as above.

B. Other Heuristic Wakeup Strategies

The greedy strategy has the following weakness: it may be
preferable for a robot to travel a longer distance to obtain a better
payoff (see Fig. 4). In this section, we examine alternative strate-
gies in an attempt to overcome this weakness.

We design our alternative strategies while keeping in mind the
actual application that motivated our study: the need to activate a
swarm of small experimental robots, each equipped with certain
sensors. The sensors on the actual robots in our project3 have
the feature that they sense other robots (or obstacles) in each of

sectors, evenly distributed around the (circular) robot. (Our
robots have , implying 45 sectors.) Within each of its
sectors, a robot can detect only the closest other robot. (In fact,
it can sense another robot only within a limited range; we do not
model this constraint here.) Thus, at most options face a robot
once it is activated. Which sector should be selected? Once the
sector is selected, the robot heads for the closest sleeping robot
it has sensed in that sector. A greedy strategy that uses sensor
sectors will select the sector whose closest robot is the closest.

Bang for the Buck: A natural strategy, which we call “bang
for the buck,” is to choose the next target to awaken based on
maximizing the ratio of value (“bang”) to cost (“buck”). There
are a variety of heuristic measures of potential value; a partic-
ularly simple one is to consider the value of a sector to be the
number of currently asleep robots in the sector. (Note that this is
a quantity that our actual robots may not be able to detect, except
approximately, since they can only reliably ascertain the pres-
ence and approximate position of the closest robot in a sector.)
The cost of a sector is naturally chosen to be the distance to the
nearest not-claimed sleeping robot in the sector. In Fig. 4, the
bang for the buck strategy is significantly better than greedy;
Fig. 5 shows an example in which both greedy and bang for the
buck may be suboptimal.

Random Sector Selection: The goal of this strategy is to “mix
up” at random the directions in which robots head to awaken
other robots. When a robot awakens, it selects, at random, a

3Joint with HRL Labs. [Online]. Available: http://www.hrl.com/
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Fig. 5. Example in which both greedy and bang for the buck strategies are
suboptimal. Both strategies use the awake robot at s to awaken the nearby robot
and then send both robots to the left, while an optimal strategy would send one
robot to the left, one to the right (makespan 1 versus 3).

sector and chooses its next target to be the closest sleeping robot
in that sector.

In the case where the closest sleeping robot is already claimed
by another robot, a new sector is randomly selected and the
closest sleeping robot is chosen. If this situation occurs in all

sectors, once a new sector is selected, the robot targets the
second-closest sleeping robot for that sector.

Opposite Cone: In this strategy, the goal is to enforce a cer-
tain amount of “mixing up” of directions that robots head to
awaken new targets, by sending a newly awakened robot in a
nearly opposite direction from that of the robot that awakened
it. In particular, suppose robot heads due east to awaken robot

at point ; then, the next target that robot selects is chosen
to be the closest sleeping robot in a cone centered on a vector to
the west, while the target for robot to awaken next is selected
from a cone centered on a vector to the east. More specifically,
at an awakening event, the robot that does the awakening se-
lects its next target to be the closest sleeping robot from the op-
posite cone, the cone consisting of consecutive sectors cen-
tered on the sector , opposite to its heading (sector 0). The
newly awakened robot selects its next target to be the closest
sleeping robot in the -sector cone centered on ’s heading
(sector 0) at the moment of its awakening. If there are no un-
claimed sleeping robots within a cone, the cone is successively
enlarged by incrementing the cone width .

III. EXPERIMENTS

A. Experimental Setup

Our experiments are based on a Java simulation of our var-
ious strategies. All tests were performed on a PC running Linux
OS. The graphical user interface permits the user to select the
choice of strategy, the parameters, and the input dataset, and it
optionally shows a graphical animation of the simulation.

Datasets: We tested our strategies on both geometric
and nongeometric datasets. We investigated five classes of
geometric datasets.

1) Uniform: The points that represent the sleeping robots
are generated uniformly at random over a large square
(600-by-600) that represents the environment.

2) Cluster: We generate clusters, each of random size
having mean . Each cluster is generated uniformly
over a square of side length , whose upper left corner is
uniformly distributed over the large (600-by-600) square
that represents the environment. In our experiments, we
chose .

3) Grid: The sleeping robots are placed at the points of
a -by- regular (rectangular) grid. For our experiments,
we used the same spacing in as in .

4) Hexagonal grid: The points are placed according to a
regular hexagonal grid.

5) TSPLIB: The points come from symmetric traveling
salesman instances in the TSPLIB4 that have data of type
EUC_2D (68 instances).

Since our nongreedy strategies are specified geometrically, they
were applied only to the geometric data.5

The greedy strategies were applied to nongeometric datasets,
including the following.

1) Star Metrics: sleeping robots are positioned at the
leaves of a star, with the source robot at the root of the star.
Each leaf is at the end of a spoke of random length. For
some experiments, we chose the selection to be uniform
between 1 and , while for others, we picked the uniform
selection on fixed ranges, e.g., in (100, 200). Distances
are measured according to path length in the star. We con-
sider stars having exactly one sleeping robot per leaf (case
“ - ”) and stars having potentially many sleeping robots
per leaf (case “ - ”). In case - , we generate
spokes and randomly assign a number of robots to each
spoke, with chosen uniformly between 1 and .

2) TSPLIB: We selected instances from the TSPLIB, using
the symmetric traveling salesman files, with data of type
MATRIX (14 instances). These metrics are TSP instances
that are derived from nongeometric problems.

Adapting our algorithms to nongeometric data, we needed to
address the problem of stopping a robot that is in motion along
an edge of the network toward a chosen target. (This is not an
issue if we are using the delayed target choice option, since then
a robot only moves once it is able to move all the way to its
chosen target.) Since these datasets constitute an abstract metric
space, robots do not have geometric coordinates associated with
their current locations. Thus, when considering a reassessment
of the target for that robot (during a refresh event), we must
be able to compute distances from the robot’s current position,
somewhere along an edge, to each of the possible choices of
target. This is done by considering the robot’s position to be
a point along the edge, interpolated according to the fraction
of the edge length already traversed; then, the distance from
the robot’s current position to a potential target is computed
accordingly.

Performance Measures: We maintain performance statistics,
including: 1) total time of the simulation (i.e., the makespan,
the time until all robots are awake); 2) total distance traveled
by all robots; and 3) average distance traveled by robots that
do any traveling. We found that total distance and average dis-
tance were tightly correlated with the total time of the simula-
tion; thus, here we report results only on the total time.

Parameter Choices: For each of the strategies, we con-
sidered each possible setting of the set of parameter choices
(claims, refresh, or delayed target choice) discussed in Sec-
tion II-A

4[Online] Available: http://www.iwr.uni-heidelberg.de/groups/comopt/soft-
ware/TSPLIB95/

5While our nongreedy strategies might be generalized to nongeometric
datasets, this has not been a part of our experiments.
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Fig. 6. Greedy on uniform distributions. Choices of parameters for claims (c),
refresh (r), and delayed target choice (d). A “+” (“�”) indicates the parameter
is set to true (false). Standard deviations for each case: .49 (+c); .14 (+c+r);
.47 (+c+d); .09 (+c+r+d). Using refresh is seen clearly to be desirable; among
those using refresh, using the delayed target choice is somewhat better.

Claims: Our implementation assumes the claims with
local communication model described earlier. If this parameter
is set to true, when a robot is awakened, it and the robot that
awakened it select distinct sleeping robots as targets; otherwise,
they may select the same sleeping robot as a target.

Refresh: If the refresh parameter is set to true, then,
at each event (time instant when a robot is awakened), the
matching between awake robots and sleeping robots is recom-
puted (using the greedy matching strategy described earlier). If
the parameter is set to false, then once a robot selects a target

, will not change this target selection until reaches , or
until some other robot reaches (at which point selects
a new target).

Delayed Target Choice: This further refinement (which
requires a robot model in which look-ahead is possible) allows a
robot to stay on the same spot when its allowed step distance is
not enough to reach a sleeping robot. The allowed step distance
is determined by the shortest distance between all the pairs of
awakened robots and their selected targets. The robot accumu-
lates units of distance that are used toward its target when the
amount of units accumulated plus the step distance allows it to
reach that target.

B. Experimental Results

The experiments on synthetically generated datasets were
conducted as follows. For each choice of wakeup strategy,
parameters, and dataset, a set of 100 runs was performed, with
10 runs for each value of .

The experiments on datasets from the TSPLIB (EUC_2D or
MATRIX) were done once per dataset; one sleeping robot was
placed initially at each point of the dataset.

We performed runs for the following combinations of strate-
gies and datasets. Greedy was run on all datasets [Uniform,
Cluster, Grid, Hexagonal Grid, Stars - , Stars - , and
TSPLIB (EUC_2D and MATRIX)], while Bang for the Buck,
Random Sector Selection, and Opposite Cone were run on only

Fig. 7. Greedy (gdy), bang for the buck (bfb), random sector selection (rss),
and opposite cone (opc) tested on uniformly distributed swarms. Standard
deviations for each case: 0.09 (gdy), 0.16 (bfb), 0.19 (rss), 0.22 (opc). The
four strategies give a constant approximation to the lower bound with values
between 1 and 1.5. Greedy gives the better approximation.

Fig. 8. Greedy on cluster distributions; different combinations of choices of
parameters for claims (c), refresh (r), and delayed target choice (d). A “+” (“�”)
indicates the parameter is set to true (false). Standard deviations for each case:
0.62 (+c), 0.28 (+c+r), 0.62 (+c+d), 0.15 (+c+r+d). As in the case of uniform
distributions, using refresh is seen clearly to be desirable; among those using
refresh, using the delayed target choice is seen to be somewhat better (and the
improvement is more than was seen in the uniform case).

the geometric instances [Uniform, Cluster, Grid, Hexagonal
Grid, TSPLIB (EUC_2D)].

In our plots, the horizontal axis corresponds to the swarm size
, the vertical axis to the ratio of the makespan to the lower

bound on makespan (the radius , except in some star-metric
cases). Thus, the vertical axis shows an upper bound on the ap-
proximation ratio.

Parameter Choices: We experimented with various param-
eter choices over a common dataset. The claims option is signifi-
cant; without it, the robots travel in groups rather than spreading
out. (In comparing our claims with local communication with
our prior implementation of claims with global communica-
tion, we found little difference in performance; compare with
[18].) There is an advantage in using the refresh option. While
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Fig. 9. Strategy comparison on cluster data. Standard deviations for each case:
0.15 (gdy), 0.16 (bfb), 0.45 (rss), 0.44 (opc). Greedy generally outperforms
the other strategies, with bang for the buck holding a close second. The
approximation factors are essentially constant, with similar values to the
uniform datasets.

Fig. 10. Strategy comparison on TSPLIB EUC_2D data.

less substantial, the delayed target choice is also advantageous
(though it requires a robot model in which look-ahead is pos-
sible). Fig. 6 shows the result of running greedy on uniformly
distributed points; other datasets yield similar results, with the
delayed target choice showing a more pronounced advantage in
the case of cluster datasets.

Wakeup Strategy Comparison: The main conclusion we
draw from our experiments is that the greedy strategy is a solid
heuristic, most often outperforming the other strategies in our
comparisons. While other strategies achieve gains during the
initial iterations of a simulation by reaching robots at farthest
distances, once those robots are awaken there are no more gains
for those strategies to achieve, thus making them, from that
point on less efficient than greedy (see Figs. 7–10). As the size
of the swarm increases, the approximation ratios tend to stay
about the same or decrease; we suspect this decrease is because

becomes a better lower bound for larger swarms. The upper
bounds Time on approximation factors in the geometric
instances are between 1.0 and 1.5. For star metrics, the ratio
Time is significantly higher (between 2 and 3), but this is
because is a poor lower bound in the case of stars. In order

Fig. 11. Comparing greedy on five different datasets. Standard deviations for
each case: 0.09 (unf), 0.15 (clu), 1.26 (stars). Note that the approximation factor
stays relatively flat (constant) with swarm size n. While the factor is between
1.0 and 1.3 for the uniform and cluster cases and TSPLIB (EUC_2D), it grows
to 2.5–2.7 for the case of stars with multiple robots at each leaf, and to about
3 for the case of stars 1-1 (one robot per leaf). It is interesting to note that the
TSPLIB results are indistinguishable from the uniform and cluster data results.

Fig. 12. Comparing greedy on star 1-1 datasets, using the improved lower
bound of 2L (dlog(n + 1)e � 1) + L . Each curve corresponds to a
randomly generated dataset having spoke lengths uniformly generated in the
indicated interval. Note that for spoke lengths that are generated in the length
interval (100 200), the approximation factor is essentially 1.

to support this explanation, we computed an alternative lower
bound specifically for star metrics having one robot per leaf.
(The lower bound is , where

( ) is the length of the shortest (longest) spoke of the
star. More complex lower bounds can be similarly derived for
the case of stars with many robots per leaf.) Fig. 11 compares
greedy on different datasets, showing that performance is better
for the uniformly distributed and the cluster cases. Fig. 12
shows the results of greedy on stars - datasets (of various
spoke length distributions) using this lower bound in computing
the approximation ratio; we see that there is a striking improve-
ment over using the lower bound of (which is particularly
poor for star metrics). We also give tables (Figs. 13 and 14)
showing the percentage of wins for each strategy, and, finally,
report in Fig. 15 the results for greedy on the nongeometric
TSPLIB instances.
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Fig. 13. Top: comparing strategies on the 68 TSPLIB (EUC_2D) datasets:
greedy (GDY), bang for the buck (BFB), random sector selection (RSS), and
opposite cone (OPC). Greedy outperforms the other strategies two out of three
runs. Bottom: winning strategies for the TSPLIB (EUC_2D) datasets. For those
runs in which a strategy outperformed the others, we compute the maximum,
minimum, and average approximation factor and percent by which it led over
the second-place strategy.

Fig. 14. Comparing strategies on uniform datasets. Top: comparing strategies
for uniform datasets: greedy (GDY), bang for the buck (BFB), random sector
selection (RSS), and opposite cone (OPC) tested over 100 randomly generated
swarms of robots, uniformly distributed in a square. Greedy outperforms the
other strategies in almost two out of three runs. Bottom: winning strategies for
uniformly distributed robots. For those runs in which a strategy outperformed
the others, we compute the maximum, minimum, and average approximation
factor and percent by which it led over the second-place strategy.

Fig. 15. Results of greedy strategy for TSPLIB MATRIX (nongeometric)
instances. When the number of robots is small, the approximation ratio is
similar to the case of geometric environments, but as the number of robots
starts to increase, some ratios get closer to the values attained for star metrics
(using the relatively poor lower bound of R).

IV. CONCLUSION

We have performed theoretical and experimental analysis of
variants of the greedy strategy and other heuristics for the FTP.
Our theoretical analysis is tight, showing that greedy performs
within a factor of optimal. Our experiments
show, however, that greedy (and other heuristics) perform well
on a broad range of datasets, yielding a small constant-factor ap-
proximation. In continuing and future work, we plan to analyze

hybrid strategies that combine the best features of greedy and
bang for the buck. We also are extending our improved lower
bounds for stars with one robot per leaf ( - case) to the -
case. From a theoretical point of view, our main goal is to obtain
the best possible approximation algorithms for general metric
spaces.

Note Added in Proof: A new -approximation al-
gorithm has just been announced by Konemann et al. [24].
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