arXiv:1305.6555v1 [cs.DS] 28 May 2013

Reallocation Problems in Scheduling

Michael A. Bender Martin Farach-Colton Sandor P. Fekete
Computer Science, Computer Science, Computer Science
Stony Brook University Rutgers University TU Braunschweig
and Tokutek, Inc. and Tokutek, Inc.
USA USA Germany

Jeremy T. Fineman
Computer Science
Georgetown University
USA

General Terms
Algorithms, optimization.

Keywords

Scheduling, online problems, reallocation.

ABSTRACT

In traditional on-line problems, such as scheduling, retpiarrive
over time, demanding available resources. As each requass
some resources may have to be irrevocably committed tocservi
ing that request. In many situations, however, it may beiptessr
even necessary teallocatepreviously allocated resources in order
to satisfy a new request. This reallocation has a cost. Tagep
shows how to service the requests while minimizing the oeal
tion cost.

We focus on the classic problem of scheduling jobs on a multi-
processor system. Each unit-size job has a time window ictwhi
it can be executed. Jobs are dynamically added and remowed fr
the system. We provide an algorithm that maintains a valede
ule, as long as a sufficiently feasible schedule exists. Tgmithm
reschedules onl® (min{log™* n,log™ A}) jobs for each job that is
inserted or deleted from the system, wheiie the number of active
jobs andA is the size of the largest window.

1. INTRODUCTION

Imagine you are running a doctor’s office. Every day, pasient
call and try to schedule an appointment, specifying a tintegén
which they are free. You respond by agreeing to a specificiappo
ment time. Sometimes, however, there is no available slohgu
the period of time specified by the patient. What should yo® do
You might simply turn the patient away. Or, you can reschedul
some of your existing patients, making room in the schefiwe-
fortunately, patients do not like being rescheduled. Howydo
minimize the number of patients whose appointments aréegsc
uled?

This research was supported in part by NSF grants IIS 1247726
IS 1247750, CCF 1114930, CCF 1217708, CCF 1114809, CCF
0937822, CCF 1218188, and by Singapore NUS FRC R-252-000-
443-133.

!Before you get too skeptical about the motivation, this iaatly
what M. F-C’s ophthalmologist does.

Seth Gilbert
Computer Science
National University of Singapore
Singapore

While scheduling a doctor’s office may (or may not) seem a
somewhat contrived motivating example, this situatiosesiwith
frequency in real-world applications. Almost any scenahiat
involves creating a schedule also requires the flexibilitylater
change that schedule, and those changes often have rea(roesi-
sured in equipment, computation, or tempers). For examptéae
computational world, scheduling jobs on multiprocess nreh
and scheduling computation on the cloud lead to rescheglulim
the physical world, these problems arise with depressigglaeity
in scheduling airports and train stations. Real schedukealways
changing.

In a tightly packed schedule, it can be difficult to perfornsth
rescheduling efficiently. Each task you reschedule risggering
a cascade of other reschedulings, leading to high costsand
happy patients). It is easy to construct an example wheite jeac
added or removed chang€Xn) other jobs, even with constant-
sized tasks. In this paper, we show that if there is slack & th
schedule, then these rescheduling cascades can be cd|lapset
down toO(log* n) for unit-size jobs.

Reallocation Problems

We introduce a framework for studying the familiar topic afwh
to change resource allocations as problem instances chaithe
a goal of unifying results of this type, e.d.. [16]P6} 29]. Al
problems in this frameworkeallocation problems A reallocation
problem is online in the sense that requests arrive and ttersy
responds. Unlike in the standard online setting where ressu
are irrevocably assigned, in a reallocation problem, atioas may
change. These reallocations, however, have a cost.

Reallocation lies somewhere between traditional notidnsf-o
fline and online resource allocation. If the reallocatiostds 0,
then there is no penalty for producing an optimal allocatfter
each request. In this case, a reallocation problem can besgie
as a sequence of offline problems. If the cost of reallocasiow,
then no finite-cost reallocation is possible and the resudt tradi-
tional online problem. When there is a bounded but non-zesb ¢
for reallocation, then there is a trade-off between theityuaf an
allocation and the cost of reallocation.

Many related questions have been asked in the scheduling com
munity (explored more fully below), including: how can one-d
sign schedules that are robust to uncertain or noisy ingsés, (
e.g., [22[24]); how can one generate schedules that change i
limited way while still remaining close to optimal [28]; whis the
computational cost of finding a new optimal schedule as thetm

http://arxiv.org/abs/1305.6555v1

change (e.g.[11]2]4.10]). Our approach differs in thas ifob-
centered, meaning that we measure the cost of moving jobsrrat
than the cost of computing where jobs should move to.

Reallocation is a natural problem. Many existing algorishm
when looked in the right way, can be viewed as reallocatiatpr
lems, e.g., reconfiguring FPGAS]14], maintaining a spansg/4d,
[17[31.533], or maintaining an on-line topological order{egy., [8,
[I5[21]). We believe that the framework developed in thisgpayill
allow us to achieve new insights into classical schedulimdy@pti-
mization problems and the cost of changing a good solutioenwvh
circumstances change.

Our Problem

We focus on the reallocation version of a classical multpesor
scheduling problen{[18] (described more fully in Secfibn Be

are given a set of unit-length jobs to process@machines. Each
job has an arrival time and a deadline. The job must be agsigne
to a machine and processed at some point within the spedified t

window. Jobs are added and removed from the schedule dynami-

cally. The goal is to maintain a feasible schedule at all §me

In order to process a request, it may be necessary to redehedu
some previously scheduled jobs. There are two ways in which a
may be rescheduled: it may lbeallocatedto another time on the
same machine, or it may beigratedto a different machine. The
migration costis the total number of jobs that are moved to differ-
ent machines when new jobs are added or removed.rddimca-

job windows are either disjoint, or else one is completelytamed
in the other. In Sectiohn] 3, we show that the multi-machingrald
case can be reduced to the single-machine aligned caséicsagr
a constant-factor in the underallocation. In Secfibn 4, stalgish
Theoren], assuming the windows are aligned andthat 1.
Finally, in Sectior{ b, we remove the alignment assumptiomfr
Sectiori 4, again sacrificing a constant-factor in the urlbeation.

The crux of our new approach to scheduling appears in Sec-
tion[. This section gives a simple scheduling policy thablsust
to changes in the scheduling instances. By contrast, massichl
scheduling algorithms are brittle, where small changestihadul-
ing instance can lead to a cascade of job reallocations etem w
the system is highly underallocated. This brittleness rtagdy
inherent to earliest-deadline-first (EDF) and least-iafitst (LLF)
scheduling policies, the classical greedy algorithms ébesluling
with arrival times and deadlines. In fact, we originally exfed
that any greedy approach would necessarily be fragile. W&/ sh
that this is not the case.

Our new scheduler is based upon a simple greedy policy {“ese
vation-based pecking-order scheduling”). Unlike mosusitalgo-
rithms, which explicitly engineer redundancy, the resitig of our
scheduler derives from a basic combinatorial property efuh-
derlying “reservation” system. In this sense, it feelsatiint from
typical mechanisms for achieving robustness in computense
or operations research.

tion costis the total number of jobs that are rescheduled, regardless Related Work

of whether they are migrated or retained on the same macBime.
goal is to minimize both the migration cost and the totalloeal-
tion cost. We bound these costs separately, since we exyc t
reallocation might be more expensive if it also entails aratign.
(Seel[5.7] for other work that considers migrations seghydtom
other scheduling considerations, such as preémptions.)

We call an algorithm that processes such a sequence of dehedu
ing requests aeallocating schedulerWe show in Sectioh]6 that a
reallocating scheduler must allow for some job migratioms gat
there is no efficient reallocating scheduler without sontenfof
resource augmentation; here we consider speed augmer|2io
[25]. We say that an instance 4sunderallocatedif it is feasible
even when all jobs sizes (processing times) are multiplied.dn
other words, the offline schedulerjgimes slower than the online
scheduler.

Results

This paper gives an efficiemt-machine reallocating scheduler for
unit-sized jobs with arrival times and deadlines. Inforiypahe pa-
per shows that as long as there is sufficient slack (indeperafe
m) in the requested schedule, then every request is fulfittesl,
reallocation cost is small, and at most one job migratessaana-
chines on each request. Specifically, this paper establisiesfol-
lowing theorem:

THEOREM 1. There exists a constantas well as a reallocat-
ing scheduler for unit-length jobs such that for amymachine
~v-underallocated sequence of scheduling requests, we\acttie
following performance. Let; denote the number of jobs in the
schedule and\; the largest window size when tlith reallocation
takes place. Then thth reallocation

e has cosO(min {log* n;,log* A,}), and
e requires at most one machine migration.

Here, we flesh out the details of related scheduling and resou
allocation work.

Robust scheduling (or “robust planning”) involves desngni
schedules that can tolerate some level of uncertainty. [S&&4]
for surveys and [11,12.19.23] for applications to train atine
scheduling. The assumption in these papers is that thequmoisl
approximately static, but there is some error or uncesaortthat
the schedule remains near optimal even if the underlyin@san
changes[[28]. By contrast, we focus on an arbitrary, woasec
sequence of requests that may lead to significant changd® in t
overall allocation of resources.

Researchers have also focused on finding a good fall-back pla
(“reoptimization”) when a schedule is forced to change. e@ian
optimal solution for an input, the goal is to compute a ngairoal
solution to a closely related inpUif[1.%.4] 10]. These papgically
focus on the computational complexity of incremental optan
tion. By contrast, we focus on the cost of changing the sdeedu

Shachnai et al[]27] introduced a framework that is mostetios
related to ours. They considered computationally inttaletprob-
lems that admit approximation algorithms. When the probiem
stance changes, they would like to change the solution tés dis
possible in order to reestablish a desired approximatito. r@ne
difference between their framework and ours is that we nreasu
the ratio of reallocation cost to allocation cost, wheré&se is no
notion of initial cost for them. Rather they measure theorafi
the transition cost to the optimal possible transition ¢bat will
result in a good solution. Although their framework is anlana
gous framework for approximation algorithms, the particslend
up being quite different.

Davis et al. [18] propose a resource reallocation problem
where the allocator must assign resources with respect szia u
determined set of constraints. The constraints may chdmgéhe
allocator is only informed when the solution becomes irifdas
The goals is to minimize communication between the allacatad

We prove Theorefl1 in stages. In Sectibhs 3[dnd 4, we assumethe users.

that job windows are all nicely “aligned,” by which we meaathll

Many other papers in the literature work within similar segtof

job reallocations, but with different goals, restrictipns schedul-
ing problems in mind. Unal et al._[29] study a problem wheain
initial feasible schedule consisting of jobs with deadiimeust be
augmented to include a set of newly added jobs, minimizimgeso
objective function on only the new jobs without violatingyatead-
line constraints on the initial schedule. As in the preseamigp they
observe that slackness in the original schedule faciitat@ore ro-
bust schedule, but outside of the hard constraints they toaumt
the reallocation cost. Hall and Potts [16] allow a sequerfagpe
dates and aim to restrict the change in the schedule, butetray
uate the quality of their algorithm incrementally rathearthwith
respect to a full sequence of updates or an offline objective.
More closely related to our setting, Westbrook][30] conside
the total cost of migrating jobs across machines in an oftiad-
balancing problem while also keeping the maximum machiad lo
competitive with the current offline optimum, which is a difént
scheduling problem in a similar framework. Unlike in the st
paper, Westbrook considers only migration costs and doegno
clude the reallocation cost of reordering jobs on machiBesders
et al. [26] consider a similar load-balancing problem witlyration
costs and no reallocation costs; their goal is to study thaetwff
between migration costs and the instantaneous compatitiice

2. REALLOCATION MODEL
Formally, an on-line execution consists of a se-
quence of scheduling requests of the following form:

(INSERTJOB, name arrival, deadling and (DELETEJOB, name.

A job j has integral arrival time; and deadlinel; > a;, meaning
that it must be scheduled in a timeslot no earlier than timeand
no later than timel;. We call the time intervala;, d;] the job’s
window W. We calld; — a;, denoted by |, thewindow W's
span We usejob j's spanas a shorthand for its window’s span.
Each job takes exactly one unit of time to execute.

At each step, we say that tlaetive jobsare those that have al-
ready been inserted, but have not yet been deleted. Befole ea
scheduling request, the scheduler must output a feasihedate
for all the active jobs. A feasible schedule is one in whichhea
job is properly scheduled on a particular machine for a timghe
the job’s available window, and no two jobs on the same machin
are scheduled for the same time. Notice that we are not coeder
with actuallyrunningthe schedule; rather, we construct a sequence
of schedules subject to an on-line sequence of requests.

We define thamigration costof a request; to be the number of
jobs whose machine changes wherns processed. We define the
reallocation cosiof a request:; to be the number of jobs that must
be rescheduled when is processed.

When the scheduling instances do not have enough “slack” it
may become impossible to achieve low reallocation cost$adn
if there aren jobs currently scheduled, a new request may have re-
allocation cos®(n). Even worse, it may be that most reallocations
require most jobs to be moved, as is shown in Lefama 12: foelarg
enoughs, there exist length-request sequences, in whié¥(s?)
reallocations are necessary. Moreover, for large-enautitere ex-
ist lengths request sequences in whiéh(s) machine migrations
are necessary (see Lemma 11).

Underallocated Schedules and Our Result

To cope with Lemmag_11 andl12, we consider schedules that con-

tain sufficient slack, i.e., that are not fully subscribece Wy that
a set of jobs ign-machine~-underallocated for v > 1, if there
is a feasible schedule for those jobsammachines even when the
job length (processing time) is multiplied by This is equivalent
to giving the offline scheduler a processing speed that tisnes

slower than the online scheduler. Whenis implied by context,
we simply sayy-underallocated

Overloading terminology, we say that a sequence of schagluli
requests isy-underallocatedif after each request the set of active
jobs isy-underallocated.

Aligned-Windows Assumption

The assumption of aligned windows is used in Sectidns 3 and 4,
but it is dropped in Sectiop] 5 to prove the full theorem. We say
that a windowW is alignedif (i) it has span2?, for some integer

i, and (i) it has a starting time that is a multiple 2. If a job’s
window is aligned, we say that the jobagned We say that a set

of windows (or jobs) areecursively alignedf every window (or

job) is aligned.

Notice that recursive alignment implies that two jobs wiwdo
are either equal, disjoint, or one is contained in the other, ¢the
windows are laminar). Dealing with recursively aligned domws
is convenient in part due to the following observation.

LEMMA 2. If arecursively aligned set of jobsia-machiney-
underallocated, then for any aligned winddW there are at most
m |W | /~ jobs with span at mo$i¥’| whose windows overla@’.

PROOF The windowWW comprises|/IW| timeslots on each of
m machines, for a total ofn |[W| timeslots. By definition, a
~v-underallocated instance is feasible even if the jobs’ gssing
times are increased tp. Thus, there may be at most |IWW| /v
jobs restricted to windowV . Since the set of jobs is recursively
aligned, if a job has window?’ that overlapsV and|W’| < |W|,
then W' is fully contained bylW. Hence, there can be at most
m |W| /v such jobs. O

3. REALLOCATING ALIGNED JOBS ON
MULTIPLE MACHINES

This section algorithmically reduces the multiple-maehin
scheduling problem to a single-machine scheduling probkesa
suming recursive alignment. The reduction uses at most ane m
gration per request. We use to denote the number of machines.

The algorithm is as follows. For every windoW’, record the
numberny, of jobs having windowi?’. (This number need only
be recorded for windows that exist in the current instancehere
can be at most relevant windows fom jobs.) The goal is to
maintain the invariant that every machine has betwee /m |
and [nw /m] jobs with windowW, with the extra jobs being as-
signed to the earliest machines. This invariant can be iaed
simply by delegating jobs, for each winddW’, round-robin: if
there areny jobs with window1, a new job with windowiV is
delegated to machin@w + 1) mod m. When a job with window
W is deleted from some machine;, then a job is removed from
machine(n,, mod m) and migrated to machine;. All job move-
ments are performed via delegation to the single-machimecsder
on the specified machine(s).

The remaining question is whether the instances assigrestto
machine are feasible. The following lemma says that they are

LEMMA 3. Consider anyn-machinesy-underallocated recur-
sively aligned set of jobg, wherey is an integer. Consider a sub-
set of jobsJ’ such that if.J containsny jobs of windowiV, then
J' contains at mosfnw /m] jobs of windowW. ThenJ’ is 1-
machiney-underallocated.

PROOF Since.J is underallocated, Lemnid 2 says that there
can be at mostn |W| /(6+) jobs with window W or nested in-
sideW. By definition, no window smaller thaéy contains any

jobs. The worry is that the ceilings add too many jobs to one ma
chine. But there are at mo8{WW| /(6y) windows nested inside

Back to our scheduling problem, by spreading out resematio
carefully, jobs will only interfere if they have drasticaltiffer-

W, and the ceilings add at most 1 job to each of these windows. Soent spans. Our algorithm handles jobs with “long” windowsl an

the total number of jobs i’ with windows insidelV is at most
[W|/(6v) +2|W|/(6v) = |W|/(2v). Even if all jobs are re-
stricted to run at multiples of, a simple inductive argument shows
that this many sizerjobs can be feasibly scheduled]

4. REALLOCATING ALIGNED JOBS ON
ONE MACHINE

We now give a single machine, reallocating scheduler fot- uni
sized jobs. We assume a boundn the number of jobs concur-
rently scheduled in the system, and relax this assumptitireand
of the section.

Naive Pecking-Order Scheduling is
Logarithmic

We first give the naive solution, which requires a logarithmim-
ber of reallocations per job insert/delete. This solutisesuwhat
we callpecking-order schedulingwhich means that a jobsched-
ules itself without regard for jobs with longer span and vatm-
plete deference to jobs with shorter span. A jolith window W
may get displaced by a jopwith a shorter window (nested inside
W), andk may subsequently displace a jolwvith longer windowd

LEMMA 4. Letn denote the maximum number of jobs in any
schedule and lef\ denote the longest window span. There exists a
greedy reallocating scheduler such that for every feasblguence
of recursively aligned scheduling requests, the reallimeatost of
each insert/delete i© (min {log n, log A}).

PROOF. To insert a jobj with span2’, find any empty slot in
j's window, and place there. Otherwise, select any jébcur-
rently scheduled in’s window that has spai» 2¢7*. If no such
k exists, the instance is not feasible (as every job curresuthed-
uled in j’s window mustbe scheduled in’s window). If such a
k exists, replacé: with j and recursively inserk. This strategy
causes cascading reallocations through increasing wirsg@ms,
reallocating at most one job with each span. Since theret anest
log A distinct window spans in the aligned case, and moreover all
jobs can fit within a window of span, the number of cascading
reallocations i$)(min {logn,log A}). O

Pecking-Order Reallocation via Reservations
CostsO(min{log* n, log* A})

We now give a more efficient reallocating scheduler, whiclcimes
Theoren{]l when the scheduling requests are recursivelyedlig
The algorithm is summarized for job insertions in Figure 4.

The intuition behind reservation scheduling manifestslfits
the process of securing a reservation at a popular restautan
higher-priority diners already have reservations, thenreserva-
tion is waitlisted. Even if our reservation is “confirmed gelebrity
(or the President, for DC residents) may drop in at the lagherd
and steal our slot. If the restaurant is empty, or full of Ipvierity
people like graduate students, then our reservation islédfiThe
trick to booking a reservation at a competitive restauraitd imake
several reservations in parallel. If multiple restauragviant the
reservation, we can select one to eat at. If a late arrivalstaur
slot, no problem, we have another reservation waiting.

2At first glance, Lemmfl4 seems to contradict the underallacat
requirement given in Lemnfall2. That lower bound, however, ap
plies to the general case, whereas this lemma applies tdigned
case.

“short” windows separately, and only a “short” job can dé@ a
long job. The scheduler itself is recursive, so “very sh@hs can
displace “short” jobs which can displace “long” jobs, bug thum-
ber of levels of recursion here will Heg™ A, as opposed ttwg A

in the naive solution.

There are two components to the scheduler. The first compo-
nent uses reservations to guarantee that jobs cannotcigpieany)
other jobs having “similar” span, so the reallocation costlijobs
have similar spans i©(1). These (over-)reservations, however,
consume timeslots and amplify the underallocation requers.
Applying the scheduler recursively at this point is trivialachieve
a good reallocation cost, but the required underallocatvonld
become nonconstant. The second component of the scheslter i
combine levels of granularity so that their effects on uatleca-
tion do not compound.

The remainder of the section is organized as follows. We first
discuss an interval decomposition to separate jobs inferdiit
“levels” according to their spans. Then we present the adeed
with regards to a single job level. Finally we discuss hownimor-
porate multiple levels simultaneously.

Interval Decomposition

Our scheduler operates nearly independently at multipleldeof
granularity. More precisely, we view these levels from bottup
by defining the threshold

25

It is not hard to see thak is always a power of 2, growing as a
tower function of+v/2. It is often convenient to use the equivalent
relationshipL, = 41g(L.+1)—each threshold is roughly thg of
the next.

Our scheduler operates recursively according to thessttblds.
The level4 scheduler handles jobs and windoswith spanL, <
[W1] < Le+1. We call a job (or window) devel£ job (window)if
its span falls in this range.

We partition levelé windows into nonoverlapping, aligned sub-
windows calledlevel£ intervals consisting ofL, = 4lg Lo+
timeslots. The following observation is useful in our arsigy

if ¢ =0
if¢>0"

(# of distinct level¢-window span$ < lg(Ly1) = Le/4 (1)

The reallocation scheduler operates recursively withithea-
terval to handle lower-level jobs. Because this is peckirder
scheduling, the recursive scheduler makes decisions wiitey-
ing attention to the location of the higher-level jobs, gudeeing
only that each lower-level job is assigned a unique slot iwiits
appropriate window. In doing so, it may displace a long jod an
invoke the higher-level scheduler.

Schedule Level-Jobs via Reservations

Consider a level-window W with span2kLg, for some integer
kE > 1 (i.e., W contains2” level- intervals). Letz denote the
number of jobs having exactly windoi¥'.

The windowI¥V maintains a set afeservationdor thesezr jobs,
where each reservation israquest for a slot in a given levél-
interval. A reservation made byl can befulfilled; this means
that one slot from the requested intervalassigned toW, and
the only level¢ jobs that mayoccupythat slot are any of the
jobs with window exactlyiV. Alternatively, a reservation can be

waitlisted this means that all the slots in the requested interval are
already assigned to smaller windows tH&h Which reservations
are fulfilled and which are waitlisted may change over timphs

get allocated and removed.

We now explain how these reservations are made. |Initially, a
level-¢ window W makes one reservation for each enclosed |ével-
interval. It makes two additional reservations for each ljaling
window W. These reservations are spread out round-robin among
the intervals withini¥ (and independently of any jobs with any
different windows). We maintain the following invariant:

INVARIANT 5. If there arex jobs having level window W
with |W| = 2*L,, thenW has exactly2z + 2 reservations in
level< intervals.

e These reservations are assigned in round-robin order to the
intervals inT/.

e Each of the enclosed intervals contains either /2" | + 1
or L2:c/2kj +2 of W’s reservations, where the leftmost inter-
vals have the most reservations and the rightmost intervals
have the least reservations.

To maintain Invarianf]5, when a new job with winddw/ is al-

Scheduling Across All Levels

Consider inserting a leveljob j. Supposg’s window is contained
in a higher-level interval’. We schedulg at its own level accord-
ing to the pecking-order scheduler, without regard to hidaeel
schedulers. Recall that the first step of the insertion isiptptwo
new reservations. Whenever the reservations cause aneteéf
job j' to move from slots to slots’, the allowance of all higher-
level intervals must be updated to reflect the change in slage.
However, since both € I’ ands’ € I’, andj’ vacates the original
slot s, there is no net change fallowance’)|. Itis thus sufficient
to swaps ands’ for all higher-level intervald’, which may result
in a total of one higher-level job movement.

After updating the reservations, the new jpis placed in one of
its assigned slots. This slot may either be empty, or it may contain
a higher-level jobh—the scheduler chooseswithout regard to
these possibilities. In either case, the slotill be used byy, so it
must be removed frorallowance”) for any ancester intervdl —
meaning the higher-level scheduler cannot use this slahelflot
s was empty, then the jopis assigned to that slot and the insertion
terminates. If the slot was previously occupied by a higher-level
job h, thenh is displaced and a new slot must be found. Unlike

f . ’
located,IW makes two new reservations, and these are sent to thein the case of reservationgllowance’)| decreases here and we

leftmost intervals that have the least numb[@rm(/ij +1)of W's
reservations. When a job having winddW is deleted ¥ removes
one reservation each from the two rightmost intervals thaethe
most reservations.

We now describe the reservation process from the perspetftiv
the interval, which handles reservation requests fromxthg, /4
level-¢ windows that contain the interval (see Equatidn 1). The
interval decides whether to fulfill or waitlist a reservatjopri-
oritizing reservations made by shorter windows. Each vuater
I has anallowanceallowance), specifying which slots it may
use to fulfill reservations. In the absence of lower-levéisjothe
|allowancé)| = L, since the interval has spdn. (When lower-
level jobs are introduced, however, the allowance decsease
the allowance contains all those slots that are omtupied by
lower-level jobs.) Thus, the interval sorts the window reae
tions with respect to span from shortest to longest, andlfutfie
|allowance)| < L, reservations that originate from the shortest
windows. A fulfilled reservation is assigned to a specifia &ho
the interval, while a waitlisted reservation has no slote Triterval
maintains a list of these waitlisted reservations.

The set of fulfilled reservations changes dynamically aserins
tions/deletions occur. When a new reservation is made byawn
W, alonger windowl/’ may lose a reserved slot as one of its ful-
filled reservations is moved to the waitlist; if there is a jolb the
same level) in that slot, it must be moved. When a job with win-
dow WV is deleted V' has two fewer reservations, and so may lose
two fulfilled slots. If there is a job in either of these sldtsen that
job must be moved. (In this case, a longer windd® may gain a
fulfilled slot, but this does not require any job movementgTol-
lowing invariant is needed to establish the algorithm'seciness.

INVARIANT 6. When a job having windoWl” is newly allo-
cated,I” makes two new reservations. Then the job is assigned to
any empty slot for whichV has a fulfilled reservation. There will
always be at least one such slot (proved by Lerima 8).

Interestingly, as a consequence of pecking-order scheguli
combined with round-robin reservations:

OBSERVATION 7. Which reservations in which intervals are
fulfilled and which are waitlisted is history independenteTac-
tual placement of the jobs is not history independent.

do not immediately have a candidate slot into which to place
Instead, we reinsert recursively using the scheduler at its level.
This displacement and reinsertion may cascade to highelslev

Observe that the higher-level scheduler is unaware of gerva-
tion system employed by the lower-level scheduler. It omigks
which slots are in its allowance. These slots are exactlgahbat
are notoccupiedby short-window jobs. The interval does not ob-
serve the reservations occurring within nested intervalsh~ac-
tual job placement matters. When a lower-level job is deletiee
allowance of the containing interval increases to incluue glot
that is no longer occupied.

Reservation Analysis

We now use the following lemma to establish Invaright 6, \whic
claims that there are always enough fulfilled reservatiGmnsce the
reservations fulfilled by each interval are history indegent (see
Observatiofil7), this proof applies at all points during theogition
of the algorithm.

LEMMA 8. Suppose that a sequence of aligned scheduling re-
quests 8-underallocated. If there argobs each having the same
windowW, thenW has at least: + 1 fulfilled reservations.

PROOF Let|W| = 2" L, for level-£ window . Lety be the
number of level¢ jobs with windows nested insidé”. Each of
those windows makes 2 reservations for each job, plus a@a extr
reservation to each of th#¥ intervals. So the total number of reser-
vations inW is at most2(z + y) + 2* Ig W. In addition, letz be
the number of lower-level jobs nested insidé. Since we are 8-
underallocated, we ha®x +y) + 2z < 2(x +y + z) < |W| /4
by Lemmd2. By Equationl1, we halgeW < L./4, and hence
2"lgW < (2%L;)/4 = |W|/4. Summing these up, we have
that at mos{W| /2 slots consumed by lower-level jobs and these
reservations.

In order for a particular interval to waitlist even oneldfs reser-
vation requests, it would need to have strictly more thawof these
reservations or lower-level jobs assigned to it. But theseamnly
|W] /2 slots consumed in total, so strictly less thigf2 the inter-
vals can waitlist even one d#’s reservations. Since windoW’
reserves at |eas{t2:v/2’“j + 1 slots in every one of the* inter-
vals by InvarianE b, it must therefore be granted strictlyrenthan
(|22/2%] 4+ 1)(1/2)(2%) > = fulfilled reservations. O

e Initially, each level¢ window W has one reservation in each levahterval contained in¥.
e Initially, each intervall hasallowancel) = I.
e To insert a new level-job 5 with window WW:

1. Identify the two underloaded intervals and > according to Invariar]5
2. Call RESERVE I, W) and RESERVE I, W)
3. Call RLACE(y)

RESERVEI, W) /I make a reservation infor level-£ window W
1 if thereis a slok € allowance€) that has not been assigned

2 then fulfill the reservation, assigning sletto window W andreturn
3 letW’ be the longest window with a fulfilled reservationiinand lets be one of its slot
4 if W' < |W|
5 then waitlist the reservation fov//
6 else waitlist the reservation fofV’’ and take slot from W'
7 if there is a levekjob 5 in slot s
8 then MovEe(j")
9 fulfill the reservation, assigning sletto 1/
/I Note that though the reservation is fulfilled, the slot nbayoccupied by a higher-level job
MoVE(j") /'level-(job ;" lost the reservation to a slot it occupigs

10 letW’ be the window ofj’, and lets be the slot it occupies
11 lets’ be afulfilled slot, assigned td//, not containing any leveljob
12 for all ancestor intervalg’ containingiV’
13 do swaps ands’ with regards to reservations and allowancesIfor
/I if a higher-level jobh occupiess’ then schedulé in s instead ofs’

/I exists by Lemmp]8

/I both slots are insidé’

14 schedulg’ in slots’

PLACE(3)

22 if there is a displaced job
23 then PLACE(h)

15 lets be a fulfilled slot, assigned @/, not containing any leveljob
16 schedulg in s, potentially displacing a higher-level jab

17 removes from the allowance of all higher-level intervals

18 for each ancestor interval whose allowance decreases

19 do adjust the reservations to reflect a smaller allowance jlpgssaitlisting one reservation
20 if a newly waitlisted reservation is for a slot containing a job
21 then MovEe(;")

/l'let W be j's window and let be j's level
/I exists by LemmBl8

s is fnly in allowances up ta’s level

Figure 1: Pecking-order scheduling with reservations.

Since each windowWV containingz jobs has at least + 1 ful-
filled reservations at intervals withi#’, there is always an appro-
priate slot to schedule a new belonging to this window. Thiiees
that there each operation leads to o6lyl) reallocations at each
level.

Trimming Windows to n and Deamortization

Ideally, the reallocation cost for a requesthould be a function of
the number of active jobs, in the system when requests made.
To achieve this performance guarantee, we maintain a vélteat

is roughly the number of jobs in the current schedule. When th
number of active jobs exceeds$, we doublen”; when the number
of active jobs shrinks below™ /4, we halven*.

For every job that has a window larger th2smn™, we trim its
window—reducing it arbitrarily to siz&yn*. The adjusted in-
stance remains-underallocated, since there are at mostother
jobs scheduled in the trimmed window of sizen*.

To achieve good amortized performance, it is enough to Iebui
the schedule from scratch each time we change the valug .of
This rebuilding incurs an amortized(1) reallocation cost.

This amortized solution can be deamortized, as long as the
scheduling instance is sufficiently underallocated thatftilow-
ing property holds: if each job is duplicated (i.e., insérteiice
on inserts, deleted twice on delete), the resulting ingtadacy-
underallocated, for appropriate constant This property holds
as long as the initial (unduplicated) scheduling instarsc@qi-
underallocated.

The idea is to rebuild the schedule gradually, performinigtle |
update every time a new reallocation request is serviceds apt
proach is reminiscent to how one deamortizes the rebuildfre
hash table that is too full or too empty. We use the even (o) odd
time slots for the old schedule and the odd (or even) times $tot
the new schedule. Instead of rebuilding the schedule alhe¢,0
every time one job is added or deleted, two jobs are moved from
the old schedule to the new schedule.

Wrapping Up

We conclude with the following lemma, which puts togethes th
various results in this section:

LEMMA 9. There exists a constantand a single-machine re-
allocating scheduler such that for aiymachiney-underallocated
sequence of aligned scheduling requests, we achieve therifod
performance. Lek; denote the number of jobs in the schedule and
A, the largest window size when thitn reallocation takes place.
Then theith reallocation has cosD (min {log* n;,log™ A;}).

PrROOF We consider the performance of the pecking-order
scheduler with reservations, where we maintain an estiniatea
deamortized shrinking and doubling and trim all windowsytg'.

Lemmd8 shows that there is always a slot available to put a job

(Invariant®), and hence we observe that there are at @Qist re-
allocations at each level of the scheduler. Specificallynsartion,
the two reservations may result in two calls taoME for jobs at
the same level as the one being inserted. Eaclvivresults in one
reallocation of the job being moved, plus at most one reatlon
at a higher level. Then the call to.RcE may cascade across all
levels, but it in aggregate it only includes oneoVE per level, each
causing at most two reallocations.

If A; is the largest job size when operatibaccurs, there are no
more tharO(log™ A;) levels. Since:; < 4n, and all windows are
trimmed to lengthyn™, we also know that there are no more than
O(log™(4yn;)) levels. From this the result follows.[]

5. REALLOCATING UNALIGNED JOBS
ON MULTIPLE MACHINE

In this section, we generalize to jobs that are not aligreaov-

ing the alignment assumptions that we made in Secfibns §land 4 .

We show that ifS is a~y-underallocated sequence of scheduling
requests, then we can safétym each of the windows associated
with each of the jobs, creating an aligned instance. Sineerth
tial sequence of scheduling requests is underallocatedegulting
aligned sequence is also underallocated, losing only daoinfsc-
tor.

We first define some terminology. W is an arbitrary window,
we say thanLIGNED(WW) is a largest aligned window that is con-
tained inW. (If there is more than one largest window, choose
arbitrarily.) Notice thajALIGNED(W)| > |W| /4. If J is a set of
jobs, thenaLIGNED(/J) is the set of jobs in which the windoW/’
associated with each job is replaced withGNED ().

LEMMA 10. Consider anym-machine4~-underallocated set
of jobs J, where~ is an integer. ThemLIGNED(J) is m-machine
~v-underallocated.

ProOF Assume for the sake of contradiction thatGNED(.J)
is not~-underallocated. This implies that there must exist a win-
dow W that has> m |W| /v jobs with trimmed windows con-
tained inW (as otherwise we could schedule the sjz@bs via a
simple inductive argument). Let C J be the jobs whose trimmed
windows are contained /.

SinceJ is 4y-underallocated, we now examine an (unaligned)
scheduling of the jobs i’ that satisfies the~y-underallocation
requirement. We observe that all the jobsjihare scheduled in
a region of size at most |[W|. However, since the schedule is
4~-underallocated, there can be at mést|1W|/(4v) jobs in this
region of sizet|W|. Thatis|J'| < m|W|/~, which is a contradic-
tion. [

From this we can conclude with the proof of Theofdm 1:

ProoF oFTHEOREMII. Jobs are scheduled as follows: first, a new
job has its window aligned; second, it is delegated to a nmechi

in round-robin fashion; finally, it is scheduled via singfechine
pecking-order scheduling with reservations. When a jolelstéd,
itis removed by the appropriate single-machine schedahetthen
there is at most one migration to maintain the balance ofgabsss
machines. This is the only time that jobs migrate.

LemmalID shows that the set of aligned jobsnismachine
~/4-underallocated, and Lemnid 3 shows that the jobs asigned
to each machine aré-machine~/24-underallocated. Finally,
Lemma® shows that each single-machine scheduler opetz®n
costO(min {log” n;,log™ A;})—and each job addition or dele-
tion invokesO(1) single-machine scheduler operation$.]

6. WHAT HAPPENS WITHOUT
UNDERALLOCATION?

This section explains what happens without underallonadiud
why migrations are necessary at all.

If migration cost is to be bounded only by reallocation coxl a
since jobs have unit size, it is trivial to transform a pafilhistance
to a single-machine instance my making a single machine:go
times faster. Since migration cost across machines coutddre
expensive than rescheduling a single machine, we are téelén
providing a tighter bound on the migration cost. The questien
is: are migrations necessary?he following lemma shows that
they are. In fact, the per-request migration cost mus2fe in the
worst-case for any deterministic algorithm.

LEMMA 11. There exists a sufficiently large sequence {iib
insertions/deletions om > 1 machines, such that any determinis-
tic scheduling algorithm has a total migration cost(@fs).

PrROOF. Without loss of generality, assunten dividess. Di-
vide thes requests intos/(6m) consecutive subsequencestoi:
requests each. Each subsequence is as follows:

1. Insert2m span-2 jobs with windov0, 2].

2. Delete then jobs scheduled on the first /2 machines.

3. Insertm span-1 jobs with window§), 1].

4. Delete alRm remaining jobs.
After step 1, the only feasible schedule is to put two jobs ache
machine. After step 2, half the machines have two jobs, aed th
other half of the machines have no jobs. The only feasibledch
ule after step 3 is to have on each machine a span-1 job stattin
time 0, and a span-2 job starting at time 1. This means théat hal
of the span-2 jobs must migrate across machines, causjt2gmi-
grations. There are thus /2 migrations for everym requests, or
a total ofs/12 migrations. []

It is also easy to see that for some sequences of scheduling re
quests, if they are not underallocated, it is impossiblectueve
low reallocation costs, even if there exists a feasible dulee

LEMMA 12. There exists a sequencewjob inserts/deletions,
such that any scheduling algorithm has a rescheduling cést o
Q(s?).

PROOF Consider for examplep = s/2 jobs numbered
0,1,...,n — 1, where jobj has window(j, j + 2]. With the inser-
tion of one additional job having windoy@, 1], forcing the job to
be scheduled at time 0, ajlother jobs are forced to schedule during
their later slot. If that job is deleted and another unitrsjmd with
window [n, 7 + 1] is inserted, then all jobs are forced to schedule
during their earlier slot. By toggling between these twdam, all
jobs are forced to move, resulting in cd$tn) to handle each re-
quest. Repeating times gives a total cost &(n?) = Q(s?). O

7. CONCLUSIONS AND OPEN
QUESTIONS

The results in this paper suggest several followup question
First, is it possible to generalize this paper’s reallamascheduler
for the case where jobs are not unit-sized? Observe thatenerar
ited by the computational difficulty of scheduling with aai times
and deadlines when jobs are not unit size; Eee [6] for reesunlits
with resource augmentation. We are also limited by the falg
observation:

OBSERVATION 13. Suppose there exist jobs of sizand jobs
of sizek, for any k > 1. For any reallocation scheduler, there
is a sequence dd(n) scheduling requests that has aggregate re-
allocation costQ(kn), for k& < n, even if the requests are-
underallocated for any constant

PROOF. Consider a schedule of length = 2vk. Assume there

arek unit-sized jobs that are each scheduled with a window begin-

ning at0 and ending atn. In addition, consider a single large job
p that has sizé and a window of span exactly.

Initially, all k& unit-size jobs are scheduled and they remain in the
system throughout. The large jgbis initially scheduled at time
slot 0. It is then deleted from time slot 0 and re-insertedraet
slot k, and then again at time sl@k, 3k,...,m — k. The same
sequence oty insertions and deletions is then repeatetimes.

During a single sequence 2 insertions and deletions, each of
the k unit-sized jobs has to be rescheduled at least once, megulti
in Q(kn) reallocation cost. [J

Does there exist a reallocation scheduler that handlesybbse
sizes are integers less than or equat ®nd matching the bounds
in Observatiofi 113? There could be applications where jobsiair
unit size, but wheré is relatively small.

What happens if other types of reallocations are alloweth si8

if new machines can be added or dropped from the schedulg, or i [15]

machine speeds can change?

In this paper;y is very large, and the paper does not attempt to
optimize this constant, preferring clarity of expositidtiow much
can this constant be improved? Is there a reallocation siéed
wherey =1+ ¢?

Finally, what other scheduling and optimization problemsd
themselves to study in the context of reallocation?

8. REFERENCES

[1] C. Archetti, L. Bertazzi, and M. G. Speranza. Reoptimggi
the Traveling Salesman ProbleMetworks 42(3):154-159,
2003.

[2] C. Archetti, L. Bertazzi, and M. G. Speranza. Reoptimggi
the 0-1 knapsack problerdiscrete Appl. Math.
158(17):1879-1887, Oct. 2010.

[3] G. Ausiello, V. Bonifaci, and B. Escoffier. Complexity @n
approximation in reoptimization. IRroccedings of CiE:
Logic and Computation and Logic in the Real Wor2@07.

[4] G. Ausiello, B. Escoffier, . Monnot, and V. T. Paschos.

Reoptimization of minimum and maximum traveling

salesman’s toursl. Discrete Algorithms7(4):453-463,

20009.

B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev.

Minimizing the flow time without migrationSIAM J.

Comput, 31(5):1370-1382, 2002.

N. Bansal, H.-L. Chan, R. Khandekar, K. Pruhs, C. Stein,

and B. Schieber. Non-preemptive min-sum scheduling with

resource augmentation. Rroc. 48th Annual IEEE

[5]

[6]

Symposium on Foundations of Computer Science (FOCS)

pages 614-624, 2007.

L. Becchetti, S. Leonardi, and S. Muthukrishnan. Averag

stretch without migration). Comput. Syst. S¢68(1):80-95,

2004.

M. A. Bender, J. T. Fineman, and S. Gilbert. A new approach

to incremental topological ordering. Rroc. 20th

ACM-SIAM Symposium on Discrete Algorithms (SODA)

pages 1108-1115, January 2009.

M. A. Bender and H. Hu. An adaptive packed-memory array.

Transactions on Database Systei33(4), 2007.

H.-J. Bdckenhauer, L. Forlizzi, J. Hromkovic, J. Kneis

J. Kupke, G. Proietti, and P. Widmayer. Reusing optimal TSP

solutions for locally modified input instances. Pmoc.

Fourth IFIP International Conference on Theoretical

Computer Science (TC$)ages 251-270, 2006.

A. Caprara, L. Galli, L. Kroon, G. Mar6ti, and P. Toth.

Robust train routing and online re-scheduling. In T. Ertgba

and M. Libbecke, editor®roc. 10th Workshop on

Algorithmic Approaches for Transportation Modelling,

Optimization, and Systemglume 14 ofOpenAccess Series

in Informatics (OASIcs)pages 24—-33, Dagstuhl, Germany,

2010. Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik.

[12] V. Chiraphadhanakul and C. Barnhart. Robust flight
schedules through slack re-allocation. Submitted, 2011.

[13] S. Davis, J. Edmonds, and R. Impagliazzo. Online

algorithms to minimize resource reallocations and network

communication. IAPPROX-RANDOMpages 104-115,

2006.

S. P. Fekete, T. Kamphans, N. Schweer, C. Tessars, J. C.

van der Veen, J. Angermeier, D. Koch, and J. Teich. Dynamic

defragmentation of reconfigurable devicA&M Trans.

Reconfigurable Technol. Sy$(2):8:1-8:20, June 2012.

B. Haeupler, T. Kavitha, R. Mathew, S. Sen, and R. E.

Tarjan. Faster algorithms for incremental topological

ordering. InProc. 35th International Colloquium on

Automata, Languages, and Programming (ICAL#jges

421-433, July 2008.

N. G. Hall and C. N. Potts. Rescheduling for new orders.

Operations Researc¢ls2(3), 2004.

[17] A. ltai, A. G. Konheim, and M. Rodeh. A sparse table

implementation of priority queues. Proc. 8th Internationl

Colloquium on Automata, Languages, and Programming

(ICALP), volume 115 of_ecture Notes in Computer Science

pages 417-431, 1981.

J. Jackson. Scheduling a production line to minimize

maximum tardiness. Technical report, Management Science

Research Project Research Report 43, University of

California, Los Angeles, 1955.

H. Jiang and C. Barnhart. Dynamic airline scheduling.

Transportation Sciencet3(3):336—354, 2009.

[20] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyanceJournal of the ACM47:214-221, 1995.

[21] I. Katriel and H. L. Bodlaender. Online topological erihg.
In Proc. 16th ACM-SIAM Symposium on Discrete Algorithms
(SODA) pages 443-450, Vancouver, British Columbia,
Canada, January 2005.

[22] P. Kouvelis and G. YuRobust Discrete Optimization and Its
Applications Kluwer, 1997.

[23] S.Lan, J.-P. Clarke, and C. Barnhart. Planning for sbbu
airline operations: Optimizing aircraft routings and fligh

(7]

(8]

(9]

[10]

[11]

[14]

[16]

(18]

[19]

departure times to minimize passenger disruptions.
Transportation Sciencel0(1):15-28, 2006.

[24] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios. Robust
optimization of large-scale systen@3perations Research
43(2), 1995.

[25] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal
time-critical scheduling via resource augmentation.
Algorithmica 32(2):163-200, 2002.

[26] P. Sanders, N. Sivadasan, and M. Skutella. Online sdimed
with bounded migrationMath. Oper. Res$34(2):481-498,
20009.

[27] H. Shachnai, G. Tamir, and T. Tamir. A theory and
algorithms for combinatorial reoptimization. Rroc. 10th
Latin American Symposium Theoretical Informatics
(LATIN), pages 618-630, 2012.

[28] C. A. Tovey. Rescheduling to minimize makespan on a
changing number of identical processadgsival Research
Logistics 33:717-724, 1986.

[29] A.T. Unal, R. Uzsoy, and A. S. Kiran. Rescheduling on a
single machine with part-type dependent setup times and
deadlinesAnnals of Operations Researcrn, 1997.

[30] J. Westbrook. Load balancing for response tidwirnal of
Algorithms 35(1):1 — 16, 2000.

[31] D. Willard. Maintaining dense sequential files in a dgme
environment (extended abstract).Rroc. 14th Annual
Symposium on Theory of Computing (STQ&2)es
114-121, 1982.

[32] D. E. Willard. Good worst-case algorithms for insegtiand
deleting records in dense sequential filesPfoc.
International Conference on Management of Data
(SIGMOD) pages 251-260, 1986.

[33] D. E. Willard. A density control algorithm for doing
insertions and deletions in a sequentially ordered file idgo
worst-case timelinformation and Computatign
97(2):150-204, 1992.

	1 Introduction
	2 Reallocation Model
	3 Reallocating Aligned Jobs on Multiple Machines
	4 Reallocating Aligned Jobs on One Machine
	5 Reallocating Unaligned Jobs on Multiple Machine
	6 What Happens Without Underallocation?
	7 Conclusions and Open Questions
	8 References

