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Abstract

We consider the problem of detecting a cycle in a directed graph that grows by arc
insertions, and the related problems of maintaining a topological order and the strong
components of such a graph. For these problems we give two algorithms, one suited
to sparse graphs, the other to dense graphs. The former takes O(min{m1/2, n2/3}m)
time to insert m arcs into an n-vertex graph; the latter takes O(n2 log n) time. Our
sparse algorithm is substantially simpler than a previous O(m3/2)-time algorithm; it
is also faster on graphs of sufficient density. The time bound of our dense algorithm
beats the previously best time bound of O(n5/2) for dense graphs. Our algorithms rely
for their efficiency on vertex numberings weakly consistent with topological order: we
allow ties. Bounds on the size of the numbers give bounds on running time.

1 Introduction

Perhaps the most basic algorithmic problem on directed graphs is cycle detection. We
consider an incremental version of this problem: given an initially empty graph that grows
by on-line arc insertions, report the first insertion that creates a cycle. We also consider
two related problems, that of maintaining a topological order of an acyclic graph as arcs are
inserted, and maintaining the strong components of such a graph.

We use the following terminology. We denote a list by square brackets around its ele-
ments; “[ ]” denotes the empty list. We denote list catenation by “&”. In a directed graph,
we denote an arc from v to w by (v, w). We disallow multiple arcs and loops (arcs of the
form (v, v)). We assume that the set of vertices is fixed and known in advance, although
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our results extend to handle on-line vertex insertions. We denote by n and m the number of
vertices and arcs, respectively. We assume that m is known in advance; our results extend to
handle the alternative. To simplify expressions for bounds we assume n > 1 and m = Ω(n);
both are true if there are no isolated vertices. If (v, w) is an arc, v is a predecessor of
w, and w is a successor of v. The size size(w) of a vertex w is the number of vertices v
such that there is a path from v to w. Two vertices, two arcs, or a vertex and an arc are
related if they are on a common path, mutually related if they are on a common cycle
(not necessarily simple), and unrelated if they are not on a common path. Relatedness
is a symmetric relation. The strong components of a directed graph are the subgraphs
induced by the maximal subsets of mutually related vertices.

A DAG is a directed acyclic graph. A topological order of a DAG is a total order
< on the vertices such that if (v, w) is an arc, v < w. A topological numbering of a
DAG is a numbering of the vertices from 1 through n such that increasing numeric order
is a topological order. A weak topological numbering of a DAG is a numbering of the
vertices such that if (v, w) is an arc, v is numbered less than w. A pseudo topological

numbering of a DAG is a numbering of the vertices such that if (v, w) is an arc, v is
numbered no greater than w. In either a weak or pseudo topological numbering, the vertex
numbers can be arbitrary, and several vertices can have the same number. A topological
numbering is a weak topological numbering; a weak topological numbering is a pseudo
topological numbering.

There has been much recent work on incremental cycle detection, topological ordering,
and strong component maintenance [1, 2, 3, 4, 8, 12, 13, 16, 17, 21, 22, 18, 8, 9]. For a
thorough discussion of this work see [9]; here we discuss the heretofore best results and
others related to our work. A classic result of graph theory is that a directed graph is
acyclic if and only if it has a topological order [25]; a more recent generalization is that
the strong components of a directed graph can be ordered topologically (so that every arc
lies within a component or leads from a smaller component to a larger one) [10]. For static
graphs, there are two O(m)-time algorithms to find a cycle or a topological order: repeated
deletion of vertices with no predecessors [11, 14, 15] and depth-first search [26]: the reverse
postorder [27] defined by such a search is a topological order if the graph is acyclic. Depth-
first search extends to find the strong components and a topological order of them in O(m)
time [26]

For incremental cycle detection, topological ordering, and strong component mainte-
nance, there are two known fastest algorithms, one suited to sparse graphs, the other suited
to dense graphs. Both are due to Haeupler et al. [8, 9]. Henceforth we denote the coauthors
of these papers by HKMST. The HKMST sparse algorithm takes O(m3/2) time for m arc
additions; the HKMST dense algorithm takes O(n5/2) time. Both of these algorithms use
two-way search; each is a faster version of an older algorithm. These algorithms, and the
older ones on which they are based, bound the total running time by counting the number
of arc pairs or vertex pairs that become related as a result of arc insertions. The HKMST
sparse algorithm uses a complicated dynamic list data structure [7, 5] to represent a topolog-
ical order, and it uses either linear-time selection or random sampling to guide the searches.
There are examples on which the algorithm takes Ω(nm1/2) time, so its time bound is tight
for sparse graphs. The time bound of the HKMST dense algorithm is not known to be tight,
but there are examples on which it takes Ω(n22

√
2 lgn) time [9].

Our approach to incremental cycle detection and the related problems is different. We
maintain a pseudo or weak topological numbering and use it to facilitate cycle detection.
Our algorithms pay for cycle-detecting searches by increasing the numbers of appropriate
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vertices; a bound on the numbers gives a bound on the running time. One insight is that
the size function is a weak topological numbering. Unfortunately, maintaining this function
as arcs are inserted seems to be expensive. But we are able to maintain in O(n2 log n) time
a weak topological numbering that is a lower bound on size. This gives an incremental cycle
detection algorithm with the same running time, substantially improving the time bound
of the HKMST dense algorithm. Our algorithm uses one-way rather than two-way search.
For sparse graphs, we use a pseudo topological numbering. This idea yields a very simple
algorithm with a running time of O(min{m1/2, n2/3}m). Our algorithm is substantially
simpler than the HKMST sparse algorithm and asymptotically faster on sufficiently dense
graphs. The O(n2 log n) algorithm appeared previously in [6], but the other algorithm is
new to this paper.

The remainder of our paper consists of four sections. Section 2 describes our cycle-
detection algorithm for sparse graphs. Section 3 describes our cycle-detection algorithm for
dense graphs. Section 4 describes several simple extensions of the algorithms. Section 5
extends the algorithms to maintain the strong components of the graph as arcs are inserted
instead of stopping as soon as a cycle exists. The extensions in Sections 4 and 5 preserve
the asymptotic time bounds of the algorithms. Section 6 contains concluding remarks.

2 A Two-Way-Search Algorithm for Sparse Graphs

Our algorithm for sparse graphs uses two-way search to look for cycles. Unlike the entirely
symmetric forward and backward searches in the HKMST sparse algorithm, the two searches
in our algorithm have different functions. Also unlike the HKMST sparse algorithm, our
algorithm avoids the use of a dynamic list data structure, and it does not use selection or
random sampling: all of its data structures are very simple, as is the algorithm itself.

We maintain a pseudo topological numbering. This numbering partitions the vertices
into levels. Each backward search proceeds entirely within a level. If the search takes too
long, we stop it and increase the level of a vertex. This bounds the backward search time.
Each forward search traverses only arcs that lead to a lower level, and it increases the level
of each vertex visited. An overall bound on such increases gives a bound on the time of all
the forward searches.

Here are the details. Each vertex v has a positive integer level k(v). The levels are
a pseudo topological order. For each vertex v, we maintain the set out(v) of outgoing
arcs (v, w) (to facilitate forward search) and the set in(v) of incoming arcs (u, v) such that
k(u) = k(v) (to facilitate backward search). Initially k(v) = 1 for all vertices, and all
incident arc sets are empty. Let ∆ = min

{

m1/2, n2/3
}

. The algorithm for adding a new arc
(v, w) consists of the following four steps:

Step 1 (test order): If k(v) < k(w), go to Step 4 (the levels remain a pseudo topological
numbering).

Step 2 (search backward): Using the incoming arc sets, search backward from v, visiting
only vertices on the same level, until one of the following occurs: w is visited, at least ∆
arcs are traversed, or no backward arcs remain to be traversed. Let B be the set of visited
vertices. If w is visited, stop and report a cycle. If the search completes without traversing
at least ∆ arcs and k(w) = k(v), go to Step 4 (the levels remain a pseudo topological
ordering). If the search completes without traversing at least ∆ arcs and k(w) < k(v), set
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k(w) = k(v). If the search traverses at least ∆ arcs, set k(w) = k(v) + 1 and B = {v}. In
either of the last two cases (those in which k(w) increases), set in(w) = {} and continue to
Step 3.

Step 3 (search forward): Using the outgoing arc sets, search forward from w, following
outgoing edges only from vertices whose level increases, until a vertex in B is visited or no
forward arcs remain to be traversed. The forward search updates the incoming arc sets as
vertex levels increase. Specifically, when traversing a forward arc (x, y), if y ∈ B, stop and
report a cycle. If k(x) = k(y), add (x, y) to in(y). If k(x) > k(y), set k(y) = k(x), set
in(y) = {(x, y)}, and add all arcs in out(y) to those to be traversed.

Step 4 (insert arc): Add (v, w) to out(v). If k(v) = k(w), add (v, w) to in(w).

Theorem 1 While the graph remains acyclic, the levels are a pseudo topological numbering

and the incident arc sets are correct. The algorithm stops and reports a cycle if and only if

the last arc insertion creates a cycle.

Proof. We prove the theorem by induction on the number of arc insertions. The theorem
holds before any arcs are inserted. Suppose the theorem holds just before the insertion of
arc (v, w). If there is a path from w to v, then all vertices on it, including w, have level at
most k(v), since levels are a pseudo topological numbering. Thus if k(v) < k(w), there is no
path from w to v, the addition of (v, w) does not create a cycle, the levels remain a pseudo
topological numbering after the insertion of (v, w), the algorithm correctly updates the arc
sets in Step 4, and the theorem holds after (v, w) is added.

Suppose on the other hand that k(v) ≥ k(w). If the algorithm visits w during the
backward search, or visits some vertex in B during the forward search, then there is a path
from w to v. This path forms a cycle with arc (v, w). Thus, if the algorithm stops and
reports a cycle, there is one.

Suppose the insertion of (v, w) creates a cycle. Then there is a path P from w to v
before the insertion of (w, v). If k(v) = k(w), then all vertices on the path from w to v have
level k(v). Either the search backward from v visits w and reports a cycle, or the search
stops before visiting w, which it can only do after traversing at least ∆ arcs. In this case, it
increases the level of w to k(v) + 1 and begins a forward search. We claim that the forward
search stops and reports a cycle. Suppose not. Then there must be an untraversed arc on
P . Let (x, y) be the first such arc on P . Then x 6= w, since all arcs out of w are traversed.
When x is first visited, its level is less than k(w), so the visit causes (x, y) to be traversed
eventually. This contradiction establishes the claim.

Suppose on the other hand that k(w) < k(v). If the backward search traverses at least
∆ arcs, then it increases the level of w to k(v)+1, and the forward search stops and reports
a cycle by the argument in the previous paragraph. Suppose the backward search finishes
before traversing at least ∆ arcs. Let B be the set of vertices visited by the backward search.
After the backward search, the level of w increases to k(v). The first part of P is a path
from w through zero or more vertices of level less than k(v) to a vertex in B. An argument
like that in the previous paragraph shows that the forward search will traverse every arc on
this path, visit a vertex in B, and report a cycle, unless it stops and reports another cycle
before this happens. Thus, if the insertion of (v, w) creates a cycle, the algorithm stops and
reports one.

Suppose the insertion of (v, w) does not create a cycle. If the backward search finishes
before traversing at least ∆ arcs and k(v) = k(w), then no vertex increases in level, the levels
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remain a pseudo topological numbering, and the algorithm correctly updates the incident
arc sets in Step 4. If the backward search finishes before traversing at least ∆ arcs but
k(v) > k(w), or if the backward search traverses at least ∆ arcs, then w and possibly other
vertices increase in level, to k(v) in the former case, to k(v) + 1 in the latter. Let F be the
set of vertices whose level increases. If (x, y) is an arc with x ∈ F , then the forward search
traverses (x, y), after which k(x) ≤ k(y). It follows that after the forward search, the levels
are a pseudo topological numbering.

Step 4 adds (v, w) to out(v), and to in(w) if k(v) = k(w), thus correctly updating the
incident arc sets to reflect the insertion of (v, w). All that remains is to show that the
algorithm correctly updates the incoming arc sets to reflect increases in vertex levels. Let
(x, y) be an arc other than (v, w) such that x or y increases in level. If y increases in level
but x does not, then k(x) < k(y) after the insertion of (v, w), the increase in k(y) deletes
(x, y) from in(y) if it were there, and (x, y) is not traversed by the forward search, so it is
not later added to in(y). If x increases in level, (x, y) is traversed by the forward search. If
y does not increase in level, then (x, y) is not in in(y) before the insertion of (v, w) and is
added to in(y) by the traversal of (x, y) if and only if the new level of x is that of y. If y
increases in level as a result of the traversal of (x, y), then the traversal correctly adds (x, y)
to in(y). If y increases in level as a result of some other event, then the increase deletes
(x, y) from in(y) if it were there; the traversal of (x, y) correctly adds (x, y) to in(y). Thus,
the algorithm correctly maintains the incoming arc sets.

Lemma 2 No vertex level exceeds min
{

m1/2, n2/3
}

+ 2.

Proof. Fix a topological order just before the last arc insertion. Let k > 1 be a level
assigned before the last arc insertion, and let w be the lowest vertex in the fixed topological
order assigned level k. For w to be assigned level k, the insertion of an arc (v, w) must cause
a backward search from v that traverses at least ∆ arcs both ends of which are on level
k − 1. All the ends of these arcs must still be on level k − 1 just before the last insertion.
Thus these sets of arcs are distinct for each k, as are their sets of ends. Since there are
only m arcs, there are most m/∆ distinct values of k. Also, for each k there must be at
least

√
∆ distinct arc ends, since there are no loops or multiple arcs. Since there are only n

vertices, there are at most n/
√
∆ distinct values of k. It follows that no vertex level exceeds

min
{

m/∆, n/
√
∆
}

+ 2, which gives the lemma.

The space required by the algorithm is Θ(m). The next two theorems show that the
worst-case time for m arc insertions is Θ(∆m).

Theorem 3 The algorithm takes O(min
{

m1/2, n2/3
}

m) time for m arc insertions.

Proof. Each backward search takes O(∆) = O(min
{

m1/2, n2/3
}

) time. The time spent
adding and removing arcs from incidence sets is O(1) per arc added or removed. An arc
can be added or removed only when it is inserted into the graph or when the level of one
of its ends increases. By Lemma 2, this can happen at most O(min

{

m1/2, n2/3
}

) times per
arc. The time for a forward search is O(1) plus O(1) per arc (x, y) such that x increases in
level as the result of the arc insertion that triggers the search. By Lemma 2, this happens
O(min

{

m1/2, n2/3
}

) times per arc.

Theorem 4 For any n and m with m ≤ n(n − 1)/2, there exists a sequence of m arc

insertions causing the algorithm to run in Ω(min
{

m1/2, n2/3
}

m) total time.
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Proof. Assume without loss of generality that m ≥ 2n and n is sufficiently large. Let the
vertices be 1 through n, numbered in the initial topological order. We first add arcs (i, j)
with i < j to construct a number of cliques of consecutive vertices. When adding these
arcs, we add them in decreasing order on i, so that each backward search visits no arcs and
causes no vertex to increase in level. An r-clique of vertices k through k + r − 1 is formed
by adding arc (i, j) for i, j such that k ≤ i < j ≤ k+ r−1. An r-clique consists of r vertices
and r(r − 1)/2 arcs.

Let r1 = ⌊√m/2⌋. Construct an r1-clique of the first r1 vertices. This is the main

clique . The main clique contains at most n/2 vertices and at most m/4 arcs. Let r2 =
⌈√

∆+ 1
⌉

. Starting with vertex r1 + 1, construct r2-cliques on disjoint sets of consecutive

vertices, until running out of vertices or until ⌊m/2⌋ arcs have been added, including those
added to make the main clique. Each of the r2-cliques is an anchor clique . The number
of arcs in each anchor clique is O(∆) and at least ∆. Number the anchor cliques from 1
though k. Then k = Θ(∆). So far all vertices have level 1.

Next, for j from 1 through k−1, add arcs from the last vertex of anchor clique j to each
vertex of anchor clique j + 1. Add these arcs in decreasing topological order with respect
to the end of the arc that is in anchor clique j + 1. There are at most n/2 ≤ m/4 such
arc additions. Each addition of an arc from the last vertex of anchor clique 1 to a vertex w
in anchor clique 2 triggers a backward search that traverses at least ∆ arcs and causes the
level of w to increase from 1 to 2. Each forward search visits only a single vertex. Once all
arcs from anchor clique 1 are added, all vertices in anchor clique 2 have level 2. Addition of
the arcs from the last vertex of anchor clique 2 to the vertices in anchor clique 3 moves all
vertices in anchor clique 3 to level 3. After all the arcs between anchor cliques are added,
every vertex in anchor clique j is on level j. The number of arcs added to obtain these level
increases is at most n/2 ≤ m/4.

Finally, for each anchor clique from 2 through k add an arc from its first vertex in
topological order to the first vertex in the main clique. There are at most n/2 ≤ m/4 such
arc additions. Each addition triggers a backward search that visits only one vertex, followed
by a forward search that traverses all the arcs in the main clique and increases the level
of all vertices in the main clique by one. These forward searches do Θ(∆m) arc traversals
altogether. At most m arcs are added during the entire construction.

We can extend the algorithm to maintain a weak topological numbering by breaking
ties within levels in a way consistent with a topological order. To do this we assign each
vertex v an integer index i(v) as well as a level, and combine the level and index of a vertex
into a single number. To update the indices efficiently, we make the backward and forward
searches depth-first.

Here are the details. Let a = b = nm + 1. Initialize k(v) = 1 and i(v) = a for each
vertex v. The algorithm maintains the invariant that the numbering bk(v) + i(v) is a weak
topological numbering. Variable a counts down and is used to update indices. The algorithm
for adding a new arc (v, w) consists of the following five steps:

Step 1 (test order): If bk(v) + i(v) < bk(w) + i(w), go to Step 5 (the numbering remains
a weak topological numbering).

Step 2 (search backward): Using the incoming arc sets, do a depth-first search backward
from v, visiting only vertices on the same level, until visiting w, traversing at least ∆ arcs,
or running out of arcs to traverse. Let B be a list of the visited vertices in postorder with
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respect to the search (thus a vertex appears later in B than all of its predecessors). If w is
visited, stop and report a cycle. If the search stops without traversing at least ∆ arcs and
k(w) = k(v), set L = B and go to Step 4 (the levels remain a pseudo topological ordering).
If the search stops without traversing at least ∆ arcs and k(w) < k(v), set k(w) = k(v). If
the search traverses at least ∆ arcs, set k(w) = k(v) + 1 and B = [v]. In either of the last
two cases (where k(w) increases), set in(w) = {} and continue to Step 3.

Step 3 (search forward): Using the outgoing arc sets, do a depth-first search forward
from w, following outgoing edges only from vertices whose level increases, stopping early if a
vertex in B is visited. Let F be a list of the vertices whose level increases in reverse postorder
with respect to the search (thus a vertex appears earlier in F than all of its successors).
When traversing a forward arc (x, y), if y = v or y ∈ B, stop and report a cycle. If
k(x) = k(y), add (x, y) to in(y). If k(x) > k(y), set k(y) = k(x), set in(y) = {(x, y)},
and traverse all arcs in out(y). If the forward search finishes without detecting a cycle, set
L = F if k(v) < k(w) or L = B&F if k(v) = k(w), and continue to Step 4.

Step 4 (update indices): While L is non-empty, set a = a − 1, delete the last vertex x
on L, and set i(x) = a.

Step 5 (insert arc): Add (v, w) to out(v). If k(v) = k(w), add (v, w) to in(w).

Theorem 5 While the graph remains acyclic, the vertex numbering is a weak topological

numbering and the incident arc sets are correct. The extended algorithm stops and reports

a cycle if and only if the last arc insertion creates a cycle.

Proof. The set L in Step 4 contains at most n vertices, since each vertex can be on B or
F but not both. Thus a remains positive over all m arc additions, and k(v) < k(w) implies
bk(v) + i(v) < bk(w) + i(w). The proof is the same as the proof of Theorem 1, except
that we must show that Step 4 guarantees that the new numbering is a weak topological
numbering after the arc addition. Suppose the insertion of (v, w) triggers renumbering.
After the renumbering, k(v) ≤ k(w). If k(v) = k(w), then v ∈ B. Whether or not a
forward search occurs, if k(v) = k(w) then v gets a new index smaller than that of w. Thus,
bk(v) + i(v) < bk(w) + i(w). Let (x, y) be an arc other than (v, w). After the renumbering,
k(x) ≤ k(y) by the proof of Theorem 1. Suppose k(x) = k(y). If y ∈ L, x must be in L, so
i(y) < i(x) after the renumbering: B is in postorder with respect to the backward search, if
F is defined it is in reverse postorder with respect to the forward search, and no arc leads
from F to B. If x but not y is in L, then i(x) < i(y) after the renumbering since every new
index is smaller than every old index. If neither x nor y is in L, then neither is renumbered.
It follows that the new numbering is a weak topological order.

3 A One-Way-Search Algorithm for Dense Graphs

The two-way-search algorithm becomes less and less efficient as the graph density increases.
For sufficiently dense graphs, the one-way search algorithm we present in this section is
better: it takes O(n2 log n) time for any number (up to n(n − 1)) of arc insertions. The
algorithm maintains for each vertex v a level k(v) that is a weak topological numbering
satisfying k(v) ≤ size(v). The algorithm pays for its searches by increasing vertex levels,
using the following lemma to maintain k(v) ≤ size(v) for all v.
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Lemma 6 In an acyclic graph, if a vertex v has j predecessors, each of size at least s, then
size(v) ≥ s+ j.

Proof. Order the vertices of the graph in topological order and let u be the smallest
predecessor of v. Then size(v) ≥ size(u) + j ≥ s + j. Here “+j” counts v and the j − 1
predecessors of v other than u.

The algorithm uses Lemma 6 on a hierarchy of scales. For each vertex v, in addition to
a level k(v), it maintains a bound bi(v) and a count ci(v) for each integer i, 0 ≤ i ≤ ⌊lg n⌋,
where lg is the base-2 logarithm. Initially k(v) = 1 for all v, and bi(v) = ci(v) = 0 for all
v and i. To represent the graph, for each vertex v the algorithm stores the set of outgoing
arcs (v, w) in a heap (priority queue) out(v), each arc having a priority that is at most
k(w). (This priority is either k(w) or a previous value of k(w).) Initially all such heaps are
empty.

The arc insertion algorithm maintains a set of arcs A to be traversed, initially empty. To
insert an arc (v, w), add (v, w) to A and repeat the following step until a cycle is detected
or A is empty:

Traversal Step:
1 delete some arc (x, y) from A
2 if y = v
3 then stop the algorithm and report a cycle
4 if k(x) ≥ k(y)
5 then k(y)← k(x) + 1
6 else ✄ k(x) < k(y)
7 i← ⌊lg(k(y)− k(x))⌋
8 ci(y)← ci(y) + 1
9 if ci(y) = 3 · 2i+1

10 then ci(y)← 0
11 k(y)← max

{

k(y), bi(y) + 3 · 2i
}

12 bi(y)← k(y)− 2i+1.
13 delete from out(y) every arc with priority at most k(y) and add these arcs to A.
14 add (x, y) to out(x) with priority k(y).

In a traversal step, an arc (y, z) that is deleted from out(y) may have k(z) > k(y),
because k(z) may have increased since (y, z) was last inserted into out(y). Subsequent
traversal of such an arc may not increase k(z). It is to pay for such traversals that we need
the mechanism of bounds and counts.

We implement each heap out(v) as an array of buckets indexed from 1 through n, with
bucket i containing the arcs with priority i. We also maintain the smallest index of a
nonempty bucket in the heap. This index never decreases, so the total time to increment
it over all deletions from the heap is O(n). The time to insert an arc into a heap is O(1).
The time to delete a set of arcs from a bucket is O(1) per arc deleted. The time for heap
operations is thus O(1) per arc traversal plus O(n) per heap. Since there are n heaps, this
time totals O(1) per arc traversal plus O(n2).

The space needed by the algorithm is O(nlogn+m) for the labels, bounds, and counts,
and O(n2) for the n heaps. Storing the heaps in hash tables reduces their total space to O(m)
but makes the algorithm randomized. By using a two-level data structure [29] to store each
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heap, the space for the heaps can be reduced to O(n1.5 +m) without using randomization.
This bound is O(m) if m/n = Ω(n1/2); if not, the sparse algorithm of Section 2 is faster.

To analyze the algorithm, we begin by bounding the total number of arc traversals,
thereby showing that the algorithm terminates. Then we prove its correctness. Finally, we
bound the running time.

Lemma 7 While the graph remains acyclic, the insertion algorithm maintains k(v) ≤
size(v) for every vertex v.

Proof. The proof is by induction on the number of arc insertions. The inequality holds
initially. Suppose it holds just before the insertion of an arc (v, w) that does not create a
cycle. Consider a traversal step during the insertion that deletes (x, y) from A and increases
k(y). If k(y) increases to k(x) + 1, size(y) ≥ 1 + size(x) ≥ 1 + k(x), maintaining the
inequality for y. The more interesting case is when ci(y) = 3 · 2i+1 and k(y) increases
to bi(y) + 3 · 2i. Each of the increases to ci(y) since it was last zero corresponds to the
traversal of an arc (z, y). When ci(y) was last zero, bi(y) = max

{

0, k(y)− 2i+1
}

. Since
k(y) cannot decrease, bi(y) ≤ k(z) ≤ size(z) when this traversal of (z, y) occurs, since at
this time k(y)− k(z) < min

{

k(y), 2i+1
}

. We consider two cases. If there were at least 3 · 2i
traversals of distinct arcs (z, y) since ci(y) was last zero, then size(y) ≥ bi(y) + 3 · 2i by
Lemma 6, and the increase in k(y) maintains the inequality for y. If not, by the pigeonhole
principle there were at least three traversals of a single arc (z, y) since ci(y) was last zero.
When each traversal happens, k(y)− k(z) ≥ 2i, but each of the second and third traversals
cannot happen until k(z) increases to at least the value of k(y) at the previous traversal.
This implies that when the third traversal happens, k(y) ≥ bi(y) + 3 · 2i, so k(y) will not in
fact increase as a result of this traversal.

Lemma 8 If a new arc (v, w) creates a cycle, the insertion algorithm maintains k(v) ≤
size(v) + n, where sizes are before the addition of (v, w).

Proof. Before the addition of (v, w), k(v) ≤ size(v) for every vertex v, by Lemma 7.
Traversal of the arc (v, w) can increase k(v) by at most n, so the desired inequality holds
after this traversal. Every subsequent traversal is of an arc other than (v, w): to traverse
(v, w), an arc into v must be traversed, which results in reporting of a cycle. Thus the
subsequent traversals are of arcs in the acyclic graph before the addition of (v, w). The
proof of Lemma 7 extends to prove that these traversals maintain the desired inequality:
Lemma 6 holds if the size function is replaced by the size plus any constant, in particular
by the size plus n.

Lemma 9 The total number of arc traversals over m arc additions is O(n2 log n).

Proof. By Lemmas 7 and 8, every label k(v), and hence every bound bi(v), remains below
2n. Every arc traversal increases a vertex level or increases a count. The number of level
increases is O(n2). Consider a count ci(v). Each time ci(v) is reset to zero from 3 · 2i+1,
bi(v) increases by at least 2i. Since bi(v) ≤ 2n, the total amount by which ci(v) can decrease
as a result of being reset is at most 12n. Since ci(v) starts at zero and cannot exceed 4n,
the total number of times ci(v) increases is at most 16n. Summing over all counts for all
vertices gives a bound of O(n2 log n) on the number of count increases and hence on the
number of arc traversals.
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Theorem 10 If the insertion of an arc (v, w) creates a cycle, the insertion algorithm stops

and reports a cycle. If not, the insertion algorithm maintains the invariant that k is a weak

topological numbering.

Proof. By Lemma 9 the algorithm terminates. A straightforward induction shows that
every arc (x, y) traversed by the insertion algorithm is such that x is reachable from v, so if
the algorithm stops and reports a cycle, there is one. Suppose the insertion of (v, w) creates
a cycle. Before the insertion of (v, w), k is a weak topological numbering, so the path from
w to v existing before the addition of (v, w) has vertices in strictly increasing order. Thus
v has the largest level on the path. A straightforward induction shows that the algorithm
will eventually traverse every arc on the path and report a cycle, unless it reports another
cycle first.

Suppose addition of an arc (v, w) does not create a cycle. Before the addition, k is a
weak topological numbering. The algorithm maintains the invariant that every arc (x, y)
such that k(x) ≥ k(y) is either on A or is the arc being processed. Thus once A is empty, k
is a weak topological numbering.

Theorem 11 The algorithm runs in O(n2 log n) total time.

Proof. The running time is O(1) per arc traversal plus O(n2). This is O(n2 log n) by
Lemma 9.

The following result shows that the bound in Theorem 11 is tight.

Theorem 12 For any sufficiently large n, there exists a sequence of Θ(n2) arc insertions

that causes the algorithm to do Ω(n2 log n) arc traversals.

Proof. Without loss of generality, suppose n = (7/2)r − 3, where r ≥ 23 is a power of 2.
The graph we construct consists of three categories of vertices: (1) vertices u1, u2, . . . , ur,
(2) sets of vertices S0, S1, . . . , Slg(r)−2 with |Sj | = 3 · 2j+1 (so

∑

j |Sj | = 3(r/2− 1)), and (3)
a set of vertices T with |T | = r. Initially there are no arcs in the graph, and all levels are 1.

First, add arcs (ui, ui+1) in order for 1 ≤ i < r. After these arc additions, k(ui) = i.
These levels are invariant over the remainder of the arc insertions — we use these vertices
as anchors to increase the levels of all the other vertices. In fact, the only time the level of
any other vertex v ∈ (

⋃

j Sj) ∪ T will increase is when adding an arc (ui, v).
The arc insertions proceed in phases ranging from 2 to r. In phase i, first insert arc

(ui−1, t) for all t ∈ T , thereby increasing k(t) to i. Next, consider each j for which there
exists a constant c ≥ 3 such that i = c2j , i.e., i is a sufficiently large multiple of 2j . There
are two cases here, described in more detail shortly. If c = 3, insert arcs from Sj to T , not
causing a level increase to t. If c > 3, the algorithm traverses the arcs from Sj to T again,
but without causing any level increases to t ∈ T . Moreover, the only time any cj(t) or bj(t)
changes, for j > 0, is when the algorithm traverses an arc from Sj to t ∈ T .
Case 1 (add arcs from Sj to T ): If i = 3 · 2j for some j, add arcs (u2j+1−1, sj) for all
sj ∈ Sj , causing k(sj) to increase to 2j+1. Also add arcs (sj , t) for all sj ∈ Sj and t ∈ T .
Observe that before these arc additions ⌊lg(k(t)− k(sj))⌋ =

⌊

lg(2j+1 − 2j)
⌋

= j. Moreover,
cj(t) = 0 and bj(t) = 0. For each t, when the last arc insertion occurs, cj(t) increases to
3 ·2j+1. We have, however, that k(t) = 3 ·2j+1 > bj+3 ·2j , and hence k(t) does not increase.
The counter cj(t) is subsequently reset to 0 and bj(t) = k(t) − 2j+1 = k(sj) − 2j . Finally,
the priority of each of these arcs (sj , t) is updated to 3 · 2j in out(sj).
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Case 2 (follow arcs from Sj to T ): Otherwise, i = c2j , for c > 3. Since i > 3 · 2j , the
arcs (sj , t) already exist. Before this step, we have k(sj) = k(t) − 2j+1, for each sj ∈ Sj .
Moreover, we have bj(t) = k(sj) − 2j = k(t) − 3 · 2j . Insert arcs (ui−2j−1, sj), for all
sj ∈ Sj . Such an arc insertion causes k(sj) to increase to the next multiple of 2j . After
the update, we have k(sj) equal to the priority of each arc (sj , t) in out(sj), and hence the
algorithm traverses each of the outgoing arcs. Moreover, lg(k(t) − k(sj)) = lg(i − 2j) = j,
and hence the counter cj is affected. For each t, the counter cj(t) again reaches 3·2j+1. Since
bj(t) = k(t)− 3 · 2j , the level of t again does not increase. The counter cj(t) is subsequently
reset to 0, each bj(t) = k(t)− 2j+1 = k(sj)− 2j , and the priority of each of the arcs (sj , t)
is set to k(t) in out(sj).

In both cases, whenever the phase number i is a large enough multiple of 2j , the algorithm
traverses all arcs (sj , t) such that sj ∈ Sj and t ∈ T . Consider a fixed j. There are
|Sj | · |T | = 3 · 2j+1r such arcs. Summing over all r/2j − 2 phases during which the phase
number is a large enough multiple of 2j , there are (3 · 2j+1r)(r/2j − 2) = Ω(r2) = Ω(n2) arc
traversals from vertices in Sj to vertices in T . Summing over all lg(r)− 2 = Θ(log n) values
of j yields a total of Ω(n2 log n) arc traversals.

The proof of Theorem 12 extends to give a slightly more general result: for any 1 ≤ k ≤
lg n, there is a sequence of Θ(2kn) arc insertions causing the algorithm to do Θ(n2k) arc
traversals. To prove this, omit from the proof of Theorem 12 the sets Sj with j > k. The
generalization implies that Θ(n) arcs are enough to make the algorithm take Ω(n2) time,
and Θ(n1+ǫ) arcs, for any constant ǫ > 0, are enough to make the algorithm take Ω(n2 log n)
time.

4 Simple Extensions

In this section we extend our sparse and dense algorithms to provide some additional ca-
pabilities possessed by previous algorithms. All the extensions are simple and preserve the
asymptotic time bounds of the unextended algorithms.

Our first extension eliminates ties of vertex numbers. To eliminate ties in the extended
sparse algorithm of Section 2 (which maintains a weak topological numbering), we set b =
nm + n + 1 (instead of b = nm + 1), and we initially assign the vertices distinct indices
from nm+1 to nm+ n+1 (instead of initializing all indices to 1). Then all indices remain
distinct between 1 and nm+n+1, so all vertex numbers remain distinct. We can eliminate
ties in the dense algorithm Section 3 in the same way: set b = nm+ n+ 1, set a = nm+ 1,
give each vertex v a distinct index i(v) between nm+1 and nm+n+1 inclusive, and define
the number of v to be bk(v) + i(v); when a vertex v increases in level, decrement a and set
i(v) = a.

This way of breaking ties is more complicated than necessary for the dense algorithm (we
could just set b = n and give the vertices fixed distinct indices between 1 and n inclusive),
but it facilitates our second extension, which maintains a doubly linked list of the vertices
in increasing lexicographic order by level and index, and hence in a topological order. The
method works for either the sparse or dense algorithm. We maintain a pointer to the first
vertex on the list. We also maintain, for each level j, a pointer to the first vertex of level
j or higher, if any. When a vertex decreases in index, it becomes the new first vertex in
its current level, which may be the same or higher than its old level. Moving a vertex and
making all needed pointer changes takes time proportional to one plus the amount by which
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the vertex level increases, and hence does not affect the asymptotic running time. When
moving a group of vertices whose indices change as a result of an arc insertion, we move
them in decreasing order by new index, which is the same as the order in which the new
indices are assigned.

Our third extension explicitly returns a cycle when one is discovered, rather than just
reporting that one exists. We augment each search to grow a spanning tree represented
by parent pointers as each search proceeds. In the sparse algorithm, the backward search
generates an in-tree rooted at v containing all visited vertices; the forward search generates
an out-tree rooted at w containing all vertices whose level increases. If the backward search
causes k(w) to increase to k(v) + 1 and B to become empty, the forward search may visit
vertices previously visited by the backward search. Each such vertex acquires a new parent
when the forward search visits it for the first time. When the algorithm stops and reports
a cycle, a cycle can be obtained explicitly by following parent pointers. Specifically, if the
backward search traverses an arc (w, y), following parent pointers from y gives a path from
y to v, which forms a cycle with (v, w) and (w, y). If the forward search traverses an arc
(x, y) with y = v or y in B, traversing parent pointers from x and from y gives a path
from w to x and a path from y to v, which form a cycle with (x, y) and (v, w). In the dense
algorithm, there is only one tree, an out-tree rooted at v, containing v and all vertices whose
level increases. Vertex v has one child, w. If the search traverses an arc (x, v), following
parent pointers from x gives a path from v through (v, w) to x, which forms a cycle with
(x, v).

Our fourth extension is to handle vertex insertions and to allow n and m to be unknown
in advance. We maintain n and m as vertex and arc insertions occur. In the unextended
sparse algorithm we give each new vertex an initial level of 1, and we update ∆ each time n
or m increases. In the unextended dense algorithm, we also give each new vertex an initial
level of 1, and each time ⌊lg n⌋ increases, we add a corresponding new set of bounds and
constants. If we want to add indices to either algorithm, we maintain distinct indices as well
as a doubly linked list of the vertices in increasing lexicographic order by level and index.
Until the first arc is inserted, we give new vertices initial indices in increasing order starting
from 1. When the first arc is inserted, we initialize b = 8n3+2n+1, a = 8n3+n+1, and give
the vertices distinct indices between 8n3 + n+ 1 and 8n3 + 2n+ 1 inclusive. Subsequently,
when a new vertex v is inserted we decrement a and set i(v) = a. Each time n doubles,
we re-initialize a and b and assign new vertex indices from 8n3 + n + 1 to 8n3 + 2n + 1
inclusive, in increasing order with respect to the current list order. The extra overhead for
re-initializing indices is O(n).

5 Maintenance of Strong Components

A less straightforward extension of our algorithms is to the maintenance of strong compo-
nents. This has been done for some of the earlier algorithms by previous authors. Pearce [19]
and Pearce and Kelly [20] sketched how to extend their incremental topological ordering algo-
rithm and that of Marchetti-Spaccamela et al. [17] to maintain strong components; HKMST
showed in detail how to extend their algorithms. Here we describe how to extend ours.

Our strong-components algorithms maintain a representation of the condensation of
the graph, which is the graph formed by contracting each strong component to a single
vertex. We represent each vertex in the condensation by a unique canonical vertex in the
corresponding component. We maintain the vertex sets of the components using a disjoint
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set data structure [28], which supports two operations:
Find(x): Given a vertex x, return the canonical vertex of the set containing x.
Link(x, y): Given two different canonical vertices x and y, unite the sets containing

them into a single set whose canonical vertex is x. This operation destroys the old sets
containing x and y.

Initially each vertex is a canonical vertex in its own singleton set. With an appropriate
implementation of the set operations, the time for any sequence of intermixed Link and Find

operations is O(n log n) plus O(1) per operation [28]. In our strong-components algorithms
the number of set operations is O(1) per arc examined, so the time for the set operations
does not increase the asymptotic time bounds for maintaining strong components.

We maintain the arcs in their original form and use Find to transform them into arcs
of the condensation: if (x, y) is an original arc, the corresponding arc of the condensation
is (Find(x),Find(y)). Although the original graph contains no loops or multiple arcs, the
condensation may contain such arcs. Such arcs can be ignored or deleted, since they do not
affect the strong components or the possible topological orders of the components.

Each of our strong components algorithms runs the corresponding cycle-detection algo-
rithm on the condensation. If an arc addition creates a new component, the algorithm does
an extra depth-first search to find the vertices in the new component. Let G be an acyclic
graph, and suppose the addition of arc (u, z) creates a cycle. Then the strong component
containing (u, z) contains exactly the vertices on simple paths from z to u. We can find
all such vertices by marking u and then doing a depth-first search forward from z. When
retreating along an arc (x, y) during the search, we mark x if y is marked. When the search
reaches u, we need not search recursively from u, but there is no harm in doing so. Once
the search finishes, the marked vertices are those in the component. It is straightforward to
verify by induction that this method correctly marks all vertices on simple paths from z to
u. Equivalently, we can do a backward depth-first search from u.

5.1 Strong Components of Sparse Graphs

Our sparse strong-components algorithm maintains for each component a level, a set of
arcs (x, y) such that x is in the component, and a set of arcs (x, y) such that y is in the
component and the components containing x and y are on the same level. We store the level
and the incident arc sets with the canonical vertex of the component. The levels are a pseudo
topological numbering of the components: if (x, y) is an arc, then k(Find(x)) ≤ k(Find(y)).
Initially every vertex is in its own component, all components are on level 1, all the incident
arc sets are empty, and all vertices are unmarked (not in a new component). .

The algorithm for adding a new arc begins by running the sparse cycle-detection algo-
rithm on the existing condensation, but it does not stop when it detects a cycle, it merely
sets a bit indicating that a cycle exists. The backward search continues until it traverse
∆ arcs or runs out of arcs to traverse; the forward search, if it occurs, continues until it
traverses all arcs from vertices whose level increases. Once cycle detection is complete,
the updated levels are a pseudo topological ordering of the current graph, which consists
of the old condensation and the new arc; if the new arc (v, w) creates a new component,
Find(v) and Find(w) are now on the same level, and a cycle has been detected. In this
case, the algorithm does an extra depth-first search backward from Find(v), visiting only
canonical vertices within the level of Find(v) and marking all canonical vertices in the new
component. It then forms the new component by doing appropriate link operations.

Here are the details. The algorithm for adding a new arc (v, w) consists of five steps
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below. It sets the boolean variable cycle, initially false, to true when it detects a cycle.
During the backward search in Step 2, it deletes loops and multiple arcs instead of traversing
them. To facilitate the latter deletions, it uses a bit matrix M indexed by pairs of vertices.
Initially M is identically zero.

Step 1 (test order): Set u = Find(v) and z = Find(w). If k(u) < k(z), go to Step 4 (the
levels remain a pseudo topological numbering).

Step 2 (search backward): Using the incoming arc sets, search backward from u, visiting
only canonical vertices on the same level as u. Given a candidate arc (x, y) for traversal, if
Find(x) = Find(y) or M(Find(x),Find(y)) = 1, delete (x, y) from out(x) and from in(y);
otherwise, traverse (x, y) as follows: if Find(x) = z then set cycle = true; otherwise, if
Find(x) is unvisited, mark x visited and add all arcs in in(Find(x)) to those to be traversed.
Continue the search until at least ∆ arcs are traversed or no backward arcs remain to be
traversed. Reset all 1 entries in M to 0. Let B be the set of visited canonical vertices. If
the search traverses fewer than ∆ arcs and k(z) = k(u), go to Step 4 (no forward search is
needed). If the search traverses fewer than ∆ arcs and k(z) < k(u), set k(z) = k(u). If the
search traverses at least ∆ arcs, set k(z) = k(u) + 1 and B = {u}. In either of the last two
cases (those in which k(z) increases), set in(z) = {} and continue to Step 3.

Step 3 (search forward): Using the outgoing arc sets, search forward from z, following
outgoing arcs only from canonical vertices whose level increases. The forward search updates
the incoming arc sets as vertex levels increase. Specifically, when traversing a forward arc
(x, y), if Find(y) ∈ B, set cycle = true. If k(Find(y)) = k(z), add (x, y) to in(Find(y)).
If k(Find(y)) < k(z), set k(Find(y)) = k(z), set in(Find(y)) = {(x, y)}, and add all arcs
in out(Find(y)) to those to be traversed.

Step 4 (form component): If cycle = false go to Step 5. Otherwise, proceed as follows.
Set cycle = false. Mark z. Using the incoming arc sets, do a backward depth-first search
from u, visiting only canonical vertices on the same level as u. When traversing a backward
arc (x, y), if Find(x) is marked, mark Find(y). Otherwise, if Find(x) is unvisited, visit
Find(x) and recursively search backward from Find(x); once the recursive search finishes, if
Find(x) is marked, mark Find(y). Once the search from u finishes, for each marked vertex
x 6= z, do Link(z, x), set out(z) = out(z) ∪ out(x), set in(z) = in(z) ∪ in(x), and unmark
x. Finally, unmark z.

Step 5 (add arc): Add (v, w) to out(u). If k(u) = k(z), add (v, w) to in(z).

In the proofs to follow we denote levels just before and just after the insertion of an arc
(v, w) by unprimed and primed values, respectively.

Theorem 13 The sparse strong-components algorithm is correct. That is, it correctly main-

tains the strong components, all the data structures, and the following invariant on the levels:

if (x, y) is an arc, then k(Find(x)) ≤ k(Find(y)).

Proof. The proof is by induction on the number of arc insertions. Initially all the data
structures are correct. It is straightforward to verify that the algorithm correctly maintains
them, assuming that it correctly maintains the strong components and the desired invariant
on levels. Suppose the strong components are correct and the invariant holds before the
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insertion of an arc (v, w). The first three steps of the algorithm do the same thing as the
first three steps of the unextended algorithm, except that they operate on the condensation
instead of the original graph, and they do not stop when a cycle is detected but merely set
cycle = true. It follows that if adding (v, w) does not create a now component, then after
the addition the components are correct and the invariant holds.

Suppose on the other hand that adding (v, w) does create a new component. By the
proof of Theorem 1, the algorithm will definitely set cycle = true. If a forward search
does not occur, no levels change and k(u) = k(z). If a forward search does occur, then
z increases in level, and all canonical vertices reachable from z, including u, have level at
least that of z once the forward search finishes. It follows that at the beginning of Step 4,
k(Find(x)) ≤ k(Find(y)) for every original arc (x, y), and k(u) = k(z). This means that
the new component formed by the addition of (v, w) contains only canonical vertices on the
same level as u and z, and the search in Step 4 will correctly find the vertices in the new
component and correctly update the data structures.

To bound the running time of the algorithm, we need to prove an analogue of Lemma 2.
This requires some definitions. We call an arc (x, y) live if x and y are in different strong
components and dead otherwise. A newly inserted arc that forms a new component is dead
immediately. The level of a live arc (x, y) is k(Find(x)). The level of a dead arc is its
highest level when it was live; an arc that was never live has no level. We identify each
component with its vertex set; an arc insertion either does not change the components or
combines two or more components into one. A component is live if it corresponds to a
vertex of the current condensation and dead otherwise. The level of a live component is
the level of its canonical vertex; the level of a dead component is its highest level when it
was live. A vertex and a component are related if there is a path that contains the vertex
and a vertex in the component. The number of components, live and dead, is at most 2n−1.

Lemma 14 No vertex level exceeds min
{

m1/2, 2n2/3
}

+1 in the sparse strong-components

algorithm.

Proof. We claim that for any level k > 1 and any level j < k, any canonical vertex of level
k is related to at least ∆ arcs of level j and at least

√
∆ components of level j. We prove

the claim by induction on the number of arc insertions. The claim holds vacuously before
the first insertion. Suppose it holds before the insertion of an arc (v, w). Let u = Find(v)
and z = Find(w) before the insertion. A vertex is reachable from z after the insertion if
and only if it is reachable from z before the insertion. The insertion increases the level only
of z and possibly of some vertices and components reachable from z. It follows that the
claim holds after the insertion for any canonical vertex not reachable from z.

Consider a vertex y that is reachable from z and is canonical after the insertion. Since
levels are a pseudo topological numbering of the components, k′(y) ≥ k′(z). For j such
that k′(z) ≤ j < k′(y), y is related to at least ∆ arcs of level j and

√
∆ components of

level j before the insertion. None of these arcs or components changes level as a result
of the insertion, so the claim holds after the insertion for y and level j. Since any arc or
component of level less than k′(z) that is related to z is also related to y, the claim holds
for y after the insertion if it holds for z.

After the insertion, z is reachable from u. Also, k(u) ≤ k′(z) ≤ k(u) + 1. The claim
holds for u before the insertion. Let (x, y) be an arc of level less than k(u) that is related
to u before the insertion. If x is reachable from z, (x, y) will be dead after the insertion and
hence its level will not change. Neither does its level change if x is not reachable from z.
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Arc (x, y) is related to z after the insertion. Consider a component of level less than k(u)
that is related to u before the insertion. If the component is reachable from z, it is dead
after the insertion of (v, w) and hence does not change level; if it is not reachable from z,
it also does not change level. After the insertion, the component is related to z. It follows
that the claim holds for z and any level j < k(u).

One case remains: j = k(u) < k′(z) = k(u)+1. For the level of z to increase to k(u)+1,
the backward search must traverse at least ∆ arcs of level k(u) before the insertion, each of
which is related to z and on level k(u) after the insertion. The ends of these arcs are in at
least

√
∆ components of level k(u), each of which is related to z and on level k(u) after the

insertion. Thus the claim holds for z and level k(u) after the insertion. This completes the
proof of the claim.

The claim implies that for every level other than the maximum, there are at least ∆
different arcs and

√
∆ different components. Since there are only m arcs and at most 2n−1

components, the maximum level is at most min
{

m/∆, 2n/
√
∆
}

+ 1. The lemma follows.

Theorem 15 The sparse strong-components algorithm runs in O(min
{

m1/2, n2/3
}

m) time

for m arc insertions.

Proof. The proof is like the proof of Theorem 3, using Lemma 14. The only new issue is
that we must bound the time spent doing the search in Step 4. Each arc traversed in this
search was either traversed in Step 2 or is an arc out of a vertex whose level increases. The
number of arc traversals of the former kind is at most ∆ per arc addition; the number of
arc traversals of the latter kind is at most m times the maximum level. The maximum level
is O(∆) by Lemma 14. The time per arc traversal is O(1), plus O(n log n) time over all arc
examinations spent doing disjoint-set operations.

The space required by the extended algorithm is O(n2), since the bit matrix M requires
O(n2) space (or less if bits are packed into words). If we store M in a hash table, the space
becomes O(m) but the algorithm becomes randomized. By using a three-level data struc-
ture [29] to store M we can reduce the space to O(n4/3 +m) without using randomization.
We obtain a simpler algorithm with a time bound of O(m3/2) by eliminating the deletion of
multiple arcs, thus avoiding the need for M , and letting ∆ = m1/2. If we run this simpler
algorithm until m > n4/3, then start over with all vertices on level one and indexed in
topological order and run the more-complicated algorithm with M stored in a three-level
data structure, we obtain a deterministic algorithm running in O(min

{

m1/2, n2/3
}

m) time
and O(m) space.

5.2 Strong Components of Dense Graphs

Our dense strong-components algorithm does two searches per arc addition, the first to find
the new component if any, the second to update levels, bounds, and counts. The levels,
bounds, counts, and arc heaps are of components, not vertices. We store these values with
the canonical vertices of the components. Initially each vertex is in its own component,
all levels are one, all bounds and counts are zero, and all heaps are empty. The algorithm
deletes arcs with both ends in the same component, as well as the second and subsequent
arcs between the same pair of components. As in the sparse extension, to do the latter it
uses a bit matrix M indexed by pairs of vertices, initially identically zero. It also marks
vertices found to be in a new component; initially all vertices are unmarked.
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To insert an arc (v, w), let u = Find(x) and z = Find(y). If k(u) < k(z), add (v, w)
to out(u) with priority k(z). If k(u) ≥ k(z) and u 6= z, do Steps 1–4 below. (If u = z do
nothing.)

Step 1 (find component): Set k(z) = k(u) + 1 and set A = {(v, w)}. Do a depth-first
search forward from z, visiting only canonical vertices of level less than k(z). To do the
search, remove arcs (x, y) from out(z) in non-decreasing order by priority until out(z) is
empty or the minimum priority of an arc in out(z) is at least k(z). Given an arc (x, y),
proceed as follows. Add (x, y) to A. If Find(y) = u, mark u. If k(Find(y)) < k(z), set
k(Find(y)) = k(z) and search forward recursively from Find(y); once the search finishes, if
Find(y) is marked, mark Find(x).

Step 2 (form component): If z is marked, unite the components containing the marked
canonical vertices into a single new component whose canonical vertex is z by doing appro-
priate Link operations. Form the new arc heap of z by melding the heaps of the marked
vertices, including z. Unmark all marked vertices.

Step 3 (update levels, bounds, and counts): Repeat the following until A is empty:
Delete some arc (x, y) from A. If Find(x) 6= Find(y) and M(Find(x),Find(y)) = 0,

proceed as follows. Set M(Find(x),Find(y)) = 1. If k(Find(x)) ≥ k(Find(y)), increase
k(Find(y)) to k(Find(x)) + 1; otherwise, set i = ⌊lg(k(Find(y))− k(Find(x)))⌋, add one
to ci(Find(y)), and if ci(Find(y)) = 3 ∗ 2i+1, set ci(Find(y)) = 0, set k(Find(y)) =
max

{

k(Find(y)), bi(Find(y)) + 3 ∗ 2i
}

, and set bi(Find(y)) = k(Find(y)) − 2i+1. Delete
from out(Find(y)) each arc with priority at most k(Find(y)) and add it to A. Add (x, y)
to out(Find(x)) with priority k(Find(y)).

Step 4 (reset M): Reset each 1 in M to 0.

Theorem 16 The dense strong-components algorithm correctly maintains strong compo-

nents and the inequality k(v) ≤ size(v) for every vertex v.

Proof. The proof is by induction on the number of arc insertions. The theorem holds
initially. Suppose it holds before the insertion of an arc (v, w). Let u = Find(v) and
z = Find(w) before the insertion, and consider vertex levels just before the insertion. If
u = z or k(u) < k(z), the theorem holds after the insertion. Suppose u 6= z and k(u) ≥ k(z),
so that Steps 1–4 are executed. Step 1 visits all vertices of level less than k(u)+1 reachable
from z and increases their level to k(u) + 1. Since z is reachable from u after the insertion
of (v, w), all such vertices have size at least k(u)+1 after the insertion. Thus such increases
in level maintain the inequality between levels and sizes. If the insertion of (v, w) creates a
new component, the vertices in the component are exactly those on paths from z to u, all
of which must have level at most k(u) before the insertion. Thus Step 1 will visit and mark
all such vertices, including u, and Step 2 will correctly form the new component. Step 3
updates levels, bounds, and counts exactly as in the unextended algorithm except that it
operates on components, not vertices, and it traverses no arcs with both ends in the same
component and at most one arc between any pair of components. The proof of Lemma 7
extends to show that Step 3 maintains the inequality between levels and sizes. Thus the
theorem holds after the insertion.

Theorem 17 The dense strong-components algorithm runs in O(n2 log n) total time.
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Proof. The proof of Lemma 9 extends to show that the extended dense algorithm does
O(n2 log n) arc traversals, from which the theorem follows.

The space required by the extended dense algorithm is O(n2), or O(n log n +m) if the
heaps and the matrix M are stored in hash tables.

5.3 Topological Order

It is straightforward to apply the ideas from Sections 2 and 4 to extend the spare and dense
strong-components algorithms to maintain a weak topological numbering of the components
and/or a list of the components in a topological order. We leave this extension as an exercise.

6 Concluding Remarks

We have presented two algorithms for incremental cycle detection and related problems, one
for sparse graphs and one for dense graphs. Their total running times areO(min

{

m1/2, n2/3
}

m)
and O(n2 log n), respectively. The sparse algorithm is faster for graphs whose density m/n is
o(n1/3 log n); the dense algorithm is faster for graphs of density ω(n1/3 log n). The O(n2/3m)
bound of the sparse algorithm is best only for graphs with density in the sliver from ω(n1/3)
to o(n1/3 log n). The HKMST paper gives a lower bound of Ω(nm1/2) for algorithms that
maintain an explicit list of the vertices in a topological order and do vertex updates only
within the so-called “affected region,” the set of vertices that are definitely out of order
when a new arc is added. Unlike previous algorithms, our algorithms do not do updates
completely within the affected region, yet they do not beat the HKMST lower bound, and
we have no reason to believe it can be beaten. On the other hand, for graphs of intermediate
density our bounds are far from O(nm1/2), and perhaps improvements coming closer to this
bound are possible.

Another interesting research direction is to investigate whether batch arc additions can
be handled faster than single arc additions (other than by reverting to a static algorithm if
the batch is large enough). See [4, 23]. One may also ask whether arc deletions, instead of
or in addition to insertions, can be handled. Our cycle-detection and topological-ordering
algorithms remain correct if arcs can be deleted as well as inserted, but the time bounds
are no longer valid, and we have no interesting bounds. Maintaining strong components as
arcs are deleted, or as arcs are inserted and deleted, is an even more challenging problem.
See [24] and the references contained therein.
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