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The Bε-tree File System, or BetrFS (pronounced “better eff ess”), is the first in-kernel file system to use a
write-optimized data structure (WODS). WODS are promising building blocks for storage systems because
they support both microwrites and large scans efficiently. Previous WODS-based file systems have shown
promise but have been hampered in several ways, which BetrFS mitigates or eliminates altogether. For ex-
ample, previous WODS-based file systems were implemented in user space using FUSE, which superimposes
many reads on a write-intensive workload, reducing the effectiveness of the WODS. This article also con-
tributes several techniques for exploiting write-optimization within existing kernel infrastructure. BetrFS
dramatically improves performance of certain types of large scans, such as recursive directory traversals,
as well as performance of arbitrary microdata operations, such as file creates, metadata updates, and small
writes to files. BetrFS can make small, random updates within a large file 2 orders of magnitude faster than
other local file systems. BetrFS is an ongoing prototype effort and requires additional data-structure tuning
to match current general-purpose file systems on some operations, including deletes, directory renames,
and large sequential writes. Nonetheless, many applications realize significant performance improvements
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on BetrFS. For instance, an in-place rsync of the Linux kernel source sees roughly 1.6–22× speedup over
commodity file systems.
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1. INTRODUCTION

Today’s applications exhibit widely varying I/O patterns, making performance tuning of
a general-purpose file system a frustrating balancing act. Some software, such as virus
scans and backups, demand large, sequential scans of data. Other software require
many small writes (microwrites). Examples include email delivery, creating lock files
for an editing application, making small updates to a large file, or updating a file’s
atime. The underlying problem is that many standard data structures in the file-system
designer’s toolbox optimize for one case at the expense of another.

Recent advances in write-optimized data structures (WODS) [Bender et al. 2007;
Brodal et al. 2010; Brodal and Fagerberg 2003; Buchsbaum et al. 2000; O’Neil et al.
1996; Sears et al. 2008; Sears and Ramakrishnan 2012] are exciting because they
have the potential to implement both efficient microwrites and large scans. The key
strength of the best WODS are that they can ingest data up to 2 orders of magnitude
faster than B-trees while matching or improving on the B-tree’s point- and range-query
performance [Bender et al. 2007; Brodal and Fagerberg 2003].

WODS have been successful in commercial key-value stores and databases [Apache
2015a, 2015b; Chang et al. 2008; Google, Inc. 2015; Lakshman and Malik 2010;
Tokutek, Inc. 2013a, 2013b], and previous research on WODS in file systems has shown
promise [Esmet et al. 2012; Ren and Gibson 2013; Shetty et al. 2013]. However, progress
toward a production-quality write-optimized file system has been hampered in several
ways:

—Code complexity. A production-quality WODS can easily run to some 50,000 lines
of complex code, which is difficult to shoehorn into an OS kernel. Previous WODS-
based file systems have been implemented in user space.

—FUSE squanders microwrite performance. FUSE [FUSE 2015] issues a query
to the underlying file system before almost every update, superimposing intensive
searches on top of small-write-intensive workloads. Although WODS are no worse
for point queries than any other sensible data structure, small writes in a WODS
are much faster than reads, and injecting needless point queries can nullify the
advantages of write optimization.

—Mapping file system abstractions onto a WODS. We cannot fully realize the
potential performance benefits of write-optimization by simply replacing the B-tree
or other on-disk data structure in a file system with a WODS. The mapping from VFS-
level hooks onto WODS-level operations, as well as the use of kernel infrastructure,
must be adapted to the performance characteristics of a WODS.
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This article describes the Bε-tree File System, or BetrFS, the first in-kernel file sys-
tem designed to take full advantage of write optimization. Specifically, BetrFS is built
using Tokutek’s Fractal Tree index, called TokuDB [Tokutek, Inc. 2013a]—a mature,
well-engineered Bε-tree implementation. BetrFS’s design is tailored to the performance
characteristics of Fractal Tree indexes, but otherwise uses Fractal Trees as a black-box
key-value store, so many of our design decisions may be applicable to other write-
optimized file systems.

Experiments show that, compared to conventional file systems, BetrFS can give one
to two orders-of-magnitude improvement to the performance of file creation, random
writes to large files, recursive directory traversals (such as occur in find, recursive
greps, backups, and virus scans), and meta-data updates (such as updating file atime
each time a file is read).

The contributions of this article are:

—The design and implementation of an in-kernel, write-optimized file system.
—A schema for mapping VFS operations to a WODS that unlocks the potential for fast

writes while also ensuring locality on disk for fast reads.
—A design that uses unmodified OS kernel infrastructure, which has been tuned for

the needs of traditional file systems, yet minimizes the impact on write optimization.
For instance, BetrFS uses the OS kernel’s page cache to service file reads but can
service small writes without blocking to read the surrounding file block into RAM.

—A thorough evaluation of the performance of the BetrFS prototype. For instance,
our results show almost 2 orders of magnitude improvement on a small-write mi-
crobenchmark and a 1.6−22× speedup on an in-place rsync.

Our results suggest that a well-designed Bε-tree-based file system can match or
outperform traditional file systems on almost every operation, some by more than an
order of magnitude. Comparisons with state-of-the-art file systems, such as ext4, XFS,
ZFS, and BTRFS, support this claim. We believe that the few operations that are slower
in our prototype than in standard file systems are not fundamental to WODS but can be
addressed in future work with a combination of algorithmic advances and engineering
effort.

2. MOTIVATION AND BACKGROUND

This section explains the role of microwrites in file-system design, how WODS work,
and how they can improve file-system performance.

2.1. The Microwrite Problem

A microwrite is a write that is too small to utilize the bandwidth to the underlying
storage device because of overheads such as seek time or I/O setup time. Microwrites
can waste storage bandwidth if the system doesn’t take steps to aggregate them.

On a rotating disk, a microwrite is a write for which the seek time dominates the data-
transfer time. For example, if a disk has a 5ms seek time and 100MB/s of bandwidth,
then a write of 0.5MB utilizes 50% of the disk bandwidth; a write much smaller than
this wastes most of the bandwidth. In SSDs, seek time is not an issue, and an SSD can
perform many random I/Os per second compared to a rotating disk. Nonetheless, SSDs
can still face performance bottlenecks when writes are too small. This is because SSDs
perform writes in pages; a microwrite much smaller than the SSD’s page size incurs an
additional overhead of rewriting data that is already on the device. Small writes can
also trigger garbage collection, which consumes internal bandwidth, slowing down all
I/O to the SSD.

Microwrites are pervasive in file systems. Metadata updates, such as file creations,
permission changes, and timestamps are all examples of microwrites in file systems,
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and they can pose performance challenges. For example, maintaining atime is a well-
known performance problem in many file systems [Douthitt 2011]. Unix and Linux
system administrators commonly report 10%–20% performance improvements by dis-
abling the atime option, but this is not always possible because some applications
require accurate atime values. Similarly, applications such as email servers can create
many small files or make small updates within large files, depending on how a user’s
mailbox is stored.

Because microwrites are so common, efficiently handling them is one of the main
drivers of file system design.

One way to mitigate the microwrite problem is to aggregate or batch microwrites.
Logging, for example, batches many microwrites, turning them into large writes. The
challenge with pure logging is preserving read locality: Simple logging can convert a
sequential read of a large file into a series of much more expensive microreads scattered
throughout storage—trading one problem for another.

2.2. Logging versus in-Place File Systems

Conventional file-system data structures force file-system designers to choose between
optimizing for efficient microwrites and efficient scans of files and directories.

Update-in-place file systems [Card et al. 1994; Sweeny et al. 1996] optimize reads
by keeping related items, such as entries in a directory or consecutive blocks in a file,
near each other. These file systems can support file and directory scans at near disk
bandwidth. On the other hand, since items are updated in place, microdata update
performance is often limited by the random-write latency of the underlying disk.

At the other extreme, log-structured file systems [Bent et al. 2009; Rosenblum and
Ousterhout 1992; Seltzer et al. 1993, 1995] optimize for writes, often at the expense
of large reads and searches. Logging ensures that files can be created and updated
rapidly but can leave file and directory updates spread throughout the log, leading
to poor performance when the system later accesses these items. These performance
problems are particularly noticeable in reads that are too large to be serviced from the
system’s page cache in RAM, such as recursive directory traversals, virus scans, and
backups. The original Log-Structured File System design explicitly assumed sufficient
RAM capacity to service all reads [Rosenblum and Ousterhout 1992].
PLFS leverages application-specific behavior to provide both good microwrite and

sequential scan performance by essentially implementing both logging and update-in-
place [Bent et al. 2009]. PLFS is designed for HPC checkpointing workloads, which are
split into separate microwrite-intensive phases and sequential-read-intensive phases.
PLFS logs data during the write phases, then sorts and rewrites the data so that it can
serve reads quickly during the read phases. However, a general-purpose file system
cannot rely on this type of sorting, both because updates and reads are interspersed
and because general-purpose file systems cannot tolerate long down times for sorting
data. Thus, the PLFS design illustrates the challenge for general-purpose file systems:
How to maintain performance for both microwrites and large sequential I/Os for general
file system workloads.

We now explain how this tradeoff stems from the performance characteristics of
commonly used file-system data structures and how Bε-trees largely eliminate this
trade-off.

2.3. B-trees

B-trees are a widely used on-disk data structure in file systems and databases. A B-
tree is a search tree with fat nodes. The node size is chosen to be a multiple of the
underlying storage device’s block size. Typical B-tree node sizes range from 512 bytes
up to a fraction of a megabyte.
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Fig. 1. A B-tree.

The standard textbook B-tree analysis assumes that all keys have unit size, so that
each B-tree node can hold up to B pivot keys and child pointers. Thus, the fanout of a
B-tree is �(B) and the depth is �(logB N), as shown in Figure 1.

To search for an element, follow the path from the root to the target leaf. To insert or
delete an element, first search for the target leaf, update that leaf, and then perform
the necessary modifications to keep the tree balanced. The search cost dominates the
rebalancing cost since it takes many insertions, along with their searches, before a leaf
node overflows. To find all the elements in a range [a, b], first search for a and then
scan through the leaves containing elements less than or equal to b.

Our performance analysis assumes that accessing a block of size B requires one I/O,
and we measure performance of an algorithm or data structure in terms of the number
of I/Os that the algorithm makes during its execution [Aggarwal and Vitter 1988].1 Our
analysis focuses on I/O-bound workloads and thus ignores computational costs, which
are typically dwarfed by the I/O costs.

In the worst case, a search requires one I/O per level, for a total cost of O(logB N)
I/Os. An update requires a search and possibly splits or merges of nodes. The split and
merge costs are almost always constant and O(logB N) in the worst case, for a total
cost of O(logB N) I/Os. A range query that returns k items takes O(logB N) I/Os for the
search and O(k/B) I/Os to read all the items, for a total cost of O(logB N + k/B) I/Os.

B-tree implementations face a tradeoff between update and range query performance
depending on the node size (B). Larger nodes improve range query performance because
more data can be read per seek (the denominator of the k/B term is larger). However,
larger nodes make updates more expensive because a node must be completely rewrit-
ten each time a new item is added to the index.

Thus, many B-tree implementations use small nodes, resulting in suboptimal range
query performance. Especially as free space on disk becomes fragmented, B-tree nodes
may become scattered on disk (sometimes called aging), thus requiring a range query
to perform a seek for each node in the scan and resulting in poor bandwidth utilization.
For example, with 4KB nodes on a disk with a 5ms seek time and 100MB/s bandwidth,
searches and updates incur almost no bandwidth costs. Range queries, however, must
perform a seek every 4KB, resulting in a net bandwidth of 800KB/s, less than 1% of
the disk’s potential bandwidth.

1In the algorithms literature, this model is often called the Disk-Access model, External-Memory model, or
I/O model.
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Fig. 2. A Bε-tree.

2.4. Bε-trees

A Bε-tree is an example of a write-optimized data structure (WODS). Bε-trees were
proposed by Brodal and Fagerberg [2003] as a way to demonstrate an asymptotic
performance tradeoff curve between B-trees [Comer 1979] and buffered repository
trees [Buchsbaum et al. 2000]. Both data structures support the same operations, but
a B-tree favors queries, whereas a buffered repository tree favors inserts.

Researchers, including the authors of this article, have recognized the practical utility
of a Bε-tree when configured to occupy the “middle ground” of this curve—realizing
query performance comparable to a B-tree but insert performance orders of magnitude
faster than a B-tree.

We first describe the Bε-tree structure and analyze its performance in the same
model used earlier. We then explain how Bε-trees enable implementers to use much
larger blocks, resulting in range-query performance at near disk bandwidth. We de-
scribe upserts, a mechanism for improving performance by avoiding searches in some
application-level operations. Finally, we compare Bε-trees to log-structured merge-
trees, another popular WODS. Bender et al. present a longer version of the tutorial in
this section [Bender et al. 2015].

Like a B-tree, the node size in a Bε-tree is chosen to be a multiple of the underlying
storage device’s block size. Typical Bε-tree node sizes range from a few hundred kilo-
bytes to a few megabytes. In both B-trees and Bε-trees, internal nodes store pivot keys
and child pointers, and leaves store key-value pairs, sorted by key. For simplicity, one
can think of each key-value or pivot-pointer pair as being unit size; both B-trees and
Bε-trees can store keys and values of different sizes in practice. Thus, a leaf of size B
holds B key-value pairs, which we call items herein.

The distinguishing feature of a Bε-tree is that internal nodes also allocate some space
for a buffer, as shown in Figure 2. The buffer in each internal node is used to store
messages, which encode updates that will eventually be applied to leaves under this
node. This buffer is not an in-memory data structure; it is part of the node and is
written to disk, evicted from memory, or the like whenever the node is. The value of ε,
which must be between 0 and 1, is a tuning parameter that selects how much space
internal nodes use for pivots (≈ Bε) and how much space is used as a buffer (≈ B− Bε).

Inserts and deletes. Insertions are encoded as “insert messages,” addressed to a
particular key and added to the buffer of the root node of the tree. When enough
messages have been added to a node to fill the node’s buffer, a batch of messages
are flushed to one of the node’s children. Generally, the child with the most pending
messages is selected. Over the course of flushing, each message is ultimately delivered
to the appropriate leaf node, and the new key and value are added to the leaf. When
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Table I. Asymptotic I/O Costs of Important Operations

Point Query
Data Structure Insert no Upserts w/Upserts Range Query

Bε-tree logB N
εB1−ε

logB N
ε

logB N
ε

logB N
ε

+ k
B

Bε-tree (ε = 1/2) logB N√
B

logB N logB N logB N + k
B

B-tree logB N logB N logB N logB N + k
B

LSM logB N
εB1−ε

log2
B N
ε

log2
B N
ε

log2
B N
ε

+ k
B

LSM+BF logB N
εB1−ε logB N

log2
B N
ε

log2
B N
ε

+ k
B

Bε-trees simultaneously support efficient inserts, point queries (even in the presence
of upserts), and range queries. These complexities apply for 0 < ε ≤ 1. Note that
ε is a design-time constant. We show the complexity for general ε and evaluate the
complexity when ε is set to a typical value of 1/2. The 1/ε factor evaluates to a constant
that disappears in the asymptotic analysis.

a leaf node becomes too full, it splits, just as in a B-tree. Similar to a B-tree, when
an interior node gets too many children, it splits and the messages in its buffer are
distributed between the two new nodes.

Moving messages down the tree in batches is the key to the Bε-tree’s insert perfor-
mance. By storing newly inserted messages in a buffer near the root, a Bε-tree can
avoid seeking all over the disk to put elements in their target locations. The Bε-tree
only moves messages to a subtree when enough messages have accumulated for that
subtree to amortize the I/O cost. Although this involves rewriting the same data mul-
tiple times, this can improve performance for smaller, random inserts, as our later
analysis shows.

Bε-trees delete items by inserting “tombstone messages” into the tree. These tomb-
stone messages are flushed down the tree until they reach a leaf. When a tombstone
message is flushed to a leaf, the Bε-tree discards both the deleted item and the tomb-
stone message. Thus, a deleted item, or even entire leaf node, can continue to exist
until a tombstone message reaches the leaf. Because deletes are encoded as messages,
deletions are algorithmically very similar to insertions.

Point and range queries. Messages addressed to a key k are guaranteed to be applied
to k’s leaf or stored in a buffer along the root-to-leaf path toward key k. This invariant
ensures that point and range queries in a Bε-tree have a similar I/O cost to a B-tree.

In both a B-tree and a Bε-tree, a point query visits each node from the root to the
correct leaf. However, in a Bε-tree, answering a query also means checking the buffers
in nodes on this path for messages and applying relevant messages before returning
the results of the query. For example, if a query for key k finds an entry (k, v) in a leaf
and a tombstone message for k in the buffer of an internal node, then the query will
return “NOT FOUND” since the entry for key k has been logically deleted from the
tree. Note that the query need not update the leaf in this case—it will eventually be
updated when the tombstone message is flushed to the leaf. A range query is similar
to a point query except that messages for the entire range of keys must be checked and
applied as the appropriate subtree is traversed.

Asymptotic Analysis. Table I lists the asymptotic complexities of each operation in
a B-tree and Bε-tree. Parameter ε is set at design time and ranges between 0 and 1.
As we explain later in this section, making ε an exponent simplifies the asymptotic
analysis and creates an interesting tradeoff curve.

The point-query complexities of a B-tree and a Bε-tree are both logarithmic in the
number of items (O(logB N)); a Bε-tree adds a constant overhead of 1/ε. Compared to
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a B-tree with the same node size, a Bε-tree reduces the fanout from B to Bε fanout2,
making the tree taller by a factor of 1/ε. Thus, for example, querying a Bε-tree, where
ε = 1/2, will require at most twice as many I/Os.

Range queries incur a logarithmic search cost for the first key, as well as a cost that is
proportional to the size of the range and how many disk blocks the range is distributed
across. The scan cost is roughly the number of keys read (k) divided by the block size
(B). The total cost of a range query is O(k/B+ logB N) I/Os.

Inserting a message has a similar complexity to a point query, except that the cost
of insertion is divided by the batch size (B1−ε). For example, if B = 1024 and ε = 1/2, a
Bε-tree can perform inserts ≈ εB1−ε = 1

2

√
1024 = 16 times faster than a B-tree.

Intuitively, the tradeoff with parameter ε is how much space in the node is used
for storing pivots and child pointers (≈ Bε) and how much space is used for message
buffers (≈ B− Bε). As ε increases, so does the branching factor (Bε), causing the depth
of the tree to decrease and searches to run faster. As ε decreases, the buffers get larger,
batching more inserts for every flush and improving overall insert performance.

At one extreme, when ε = 1, a Bε-tree is just a B-tree, since interior nodes contain
only pivot keys and child pointers. At the other extreme, when ε = 0, a Bε-tree is a
binary search tree with a large buffer at each node, called a buffered repository tree
[Buchsbaum et al. 2000].

The most interesting configurations place ε strictly between 0 and 1, such as ε = 1/2.
For such configurations, a Bε-tree has the same asymptotic point query performance
as a B-tree, but asymptotically better insert performance.

Write optimization. Batching small, random inserts is an essential feature of WODS,
such as a Bε-tree or LSM-tree. Although a WODS may issue a small write multiple
times as a message moves down the tree, once the I/O cost is divided among a large
batch, the cost per insert or delete is much smaller than one I/O per operation. In
contrast, a workload of random inserts to a B-tree requires a minimum of one I/O per
insert to write the new element to its target leaf.

The Bε-tree flushing strategy is designed to ensure that it can always move elements
in large batches. Messages are only flushed to a child when the buffer of a node is
full, containing B − Bε ≈ B messages. When a buffer is flushed, not all messages
are necessarily flushed—messages are only flushed to children with enough pending
messages to offset the cost of rewriting the parent and child nodes. Specifically, at
least (B− Bε)/Bε ≈ B1−ε messages are moved from the parent’s buffer to the child’s on
each flush. Consequently, any node in a Bε-tree is only rewritten if a sufficiently large
portion of the node will change.

Large Nodes. Bε-trees can perform range queries at near disk bandwidth because
they use large nodes that can amortize the cost of seeks. Unlike B-trees, which face a
tradeoff between search and insert costs, batching in a Bε-tree causes the bandwidth
per insert to grow much more slowly as B increases. As a result, Bε-trees use node sizes
of a few hundred kilobytes to a few megabytes.

In the earlier comparison of insert complexities, we stated that a Bε-tree with ε = 1/2
would be twice as deep as a B-tree because some fanout is sacrificed for buffer space.
This is only true when the node size is the same. Because a Bε-tree can use larger nodes
in practice, a Bε-tree can still have close to the same fanout and height as a B-tree.

2More precisely, the fanout is Bε + 1 and the tree height is O(logBε+1 N), which explains why the fanout is 2
and the tree height is O(log N) when ε = 0. By removing this additive 1, the asymptotics simplify better, as
given in Table I, but the simplification does not apply when ε = 0.
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This analysis assumes that all keys have unit size and that nodes can hold B keys;
real systems must deal with variable-sized keys, so B, and hence ε, are not fixed or
known a priori. Variable-sized keys are challenging to analyze in B-trees [Bender et al.
2010]. Nonetheless, the main insight of Bε-trees—that we can speed up insertions by
buffering items in internal nodes and flushing them down the tree in batches—still
applies in this setting.

In practice, Bε-tree implementations select a fixed physical node size and fanout (Bε).
For the implementation in TokuDB and BetrFS, nodes are approximately 4MB, and
the branching factor ranges from 4 to 16. As a result, the fractal tree can always flush
data in batches of at least 256KB.

In summary, Bε-tree implementations can match the search performance of B-trees,
perform inserts and deletes orders of magnitude faster, and execute range queries at
near disk bandwidth.

Performance Example. To get a feeling for Bε-tree performance in practice, consider
the following example. Suppose a key-value store holds 1TB of data, with 128-byte
keys and 1KB records (key+value). Suppose that data are logged for durability, and
periodically all updates in the log are applied to the main tree in a batch. In the case
of a B-tree with 4KB nodes, the fanout of the tree will be 4KB/128B = 32. Thus, the
non-leaf nodes can comfortably fit into the memory of a typical server with 64GB of
RAM, but only a negligible fraction of the 1TB of leaves will be cached at any given
time. During a random insertion workload, most updates in a batch will require exactly
two I/Os: one I/O to read in the target leaf and one I/O to write it back to disk after
updating its contents.

For comparison, suppose a Bε-tree has a branching factor of 16 and nodes of size
1MB. Once again, all but the last level fit in memory. When a batch of logged updates
is applied to the tree, they are simply stored in the tree’s root buffer. Since the root is
cached, this requires a single I/O for the entire set. When an internal node becomes
full and flushes its buffer to a non-leaf child, this causes two writes: An update of
the parent and an update of the child. There are no reads required since both nodes
are cached. When an internal node flushes its buffer to a leaf node, this requires one
additional read to load the leaf into memory.

When one compares the amortized cost to write one update in this example, a Bε-tree
improves small write throughput over a B-tree by a factor of almost 20. The Bε-tree
includes 1TB/1MB = 220 leaves with a fanout of 16, yielding a height of 1+log16 220 ≈ 6.
Each item is therefore involved in seven I/Os: It is written once at each level, and there
is an extra I/O to read in its leaf. But each write also moves 64 other items (1MB/16 =
64kB = 64 records). Thus, the average per-item cost of flushing an item to a leaf is 7/64.
Since a B-tree would require two I/Os for each item, the Bε-tree is able to insert data
2/(7/64) = 18 times faster than a B-tree. As key-value pairs get smaller, say for meta-
data updates, this speedup factor grows, because B-trees must perform two I/Os, no
matter how small the update, whereas Bε-trees share the incurred I/Os over more items.

In both cases, a point query requires a single I/O to read the corresponding leaf for
the queried key. Range queries can be much faster because the Bε-tree seeks only once
every 1MB versus once every 4KB in the B-tree.

Upserts. Bε-trees support upserts, an efficient method for updating a key-value pair
in the tree without first searching for the old value. An example use case for an upsert
is overwriting a small portion of a file block when that block is not in cache.

Upserts enable applications to overcome the Bε-tree search-insert asymmetry. Bε-
trees can perform inserts orders of magnitude faster than a B-tree (or searches in
either data structure), but searches are essentially no faster than in a B-tree. Because
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of this performance asymmetry, an application that performs a query-modify-insert
operation to update a value in a Bε-tree will be limited by the speed of the query.

Upserts are a generalization of the tombstone messages described earlier. With up-
serts, an application can update the value associated with key k in the Bε-tree by
inserting an “upsert message” (k, ( f,�)) into the tree, where f is a call-back function
and � is auxiliary data specifying the update to be performed. This upsert message is
semantically equivalent to performing a query followed by an insert:

v ← query(k); insert(k, f (v,�)).

However, the upsert does not perform these operations. Rather, the message (k, ( f,�))
is inserted into the tree like any other piece of data.

When an upsert message (k, ( f,�)) is flushed to a leaf, the value v associated with
k in the leaf is replaced by f (v,�), and the upsert message is discarded. If the ap-
plication queries k before the upsert message reaches a leaf, then the upsert mes-
sage is applied to v before the query returns. If multiple upserts are pending for
the same key, they are applied to the key in the order they were inserted into the
tree.

Upserts have many applications in file systems. For example, upserts can be used
to update a few bytes in a file block, to update a file’s access time, or to increment a
file’s reference count. Upserts can encode any modification that is asynchronous and
depends only on the key, the old value, and some auxiliary data that can be stored with
the upsert message.

The upsert mechanism does not interfere with I/O performance of searches because
the upsert messages for a key k always lie on the search path from the root of the
Bε-tree to the leaf containing k. Thus, the upsert mechanism can speed updates by one
to 2 orders of magnitude without slowing down queries.

Log-structured merge trees. Log-structured merge trees (LSM trees) [O’Neil et al.
1996] are WODS with many variants [Sears and Ramakrishnan 2012; Shetty et al.
2013; Wu et al. 2015]. An LSM-tree typically consists of a logarithmic number of B-
trees of exponentially increasing size. Once an index at one level fills up, it is emptied
by merging it into the index at the next level. The factor by which each level grows
is a tunable parameter comparable to the branching factor (Bε) in a Bε-tree . For ease
of comparison, Table I gives the I/O complexities of operations in an LSM-tree with
growth factor Bε.

LSM trees can be tuned to have the same insertion complexity as a Bε-tree, but
queries in a naı̈vely implemented LSM tree can require O( log2

B N
ε

) I/Os because the
query must be repeated in O(logB N) B-trees. Most LSM tree implementations use
Bloom filters to avoid queries in all but one of the B-trees, thus improving point query
performance to O( logB N

ε
) I/Os [Apache 2015b; Chang et al. 2008; Google, Inc. 2015;

Lakshman and Malik 2010].
One problem for LSM-trees is that the benefits of Bloom filters do not extend to

range queries. Bloom filters are only designed to improve point queries and do not
support range queries. Thus, a range query must be done on every level of the LSM-
tree—squaring the search overhead in Table I and yielding strictly worse asymptotic
performance than a Bε-tree or a B-tree.

A second advantage of a Bε-tree over an LSM-tree is that Bε-trees can effectively
use upserts, whereas upserts in an LSM-tree will ruin the performance advantage of
adding Bloom filters. As discussed earlier, upserts address a search-insert asymmetry
common to any WODS, including LSM-trees. When an application uses upserts, it
is possible for every level of the tree to contain pending messages for a key. Thus, a
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Fig. 3. The BetrFS architecture.

subsequent point query will still have to query every level of the tree, thus defeating
the purpose of adding Bloom filters. Note that querying every level of an LSM-tree
also squares the overhead compared to a Bε-tree or B-tree and is more expensive than
walking the path from root to leaf in a Bε-tree .

In summary, Bloom filter-enhanced LSM-trees can match the performance of Bε-
trees for some but not all workloads. Bε-trees asymptotically dominate LSM-tree per-
formance. In particular, Bε-trees are asymptotically faster than LSM-trees for small
range queries and point queries in upsert-intensive workloads. For this reason, BetrFS
uses Bε-trees, as implemented in Tokutek’s Fractal Tree indexes.

3. BeTRFS DESIGN

BetrFS is an in-kernel file system designed to take full advantage of the performance
strengths of Bε-trees. The overall system architecture is illustrated in Figure 3. In
short, BetrFS runs a kernel-level port of TokuDB on top of another file system (ext4 in
our prototype, although we do not use any ext4-specific features) and is supported by
a shim layer we call klibc. The BetrFS schema translates VFS-level operations into
queries against the TokuDB key-value store.

By implementing BetrFS as an in-kernel file system, we avoid the performance
overheads of FUSE, which can be particularly deleterious for a write-optimized file
system. We also expose opportunities for optimizing our file system’s interaction with
the kernel’s page cache.

The BetrFS VFS schema transforms file-system operations into efficient Bε-tree op-
erations whenever possible. The keys to obtaining good performance from Bε-trees are
(i) to use upsert operations to update file system state and (ii) to organize data so that
file-system scans can be implemented as range queries in the Bε-trees. We describe
how our schema achieves these goals in Section 4.

BetrFS’s stacked file-system design cleanly separates the complex task of implement-
ing write-optimized data structures from other file system implementation tasks such
as block allocation and free-space management. Our kernel port of TokuDB stores data
on an underlying ext4 file system, but any file system should suffice.

Porting a 45KLoC database into the kernel is a nontrivial task. We ported TokuDB
into the kernel by writing a shim layer, which we call klibc, that translates the TokuDB
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Fig. 4. Example of the sort order used in BetrFS.

external dependencies into kernel functions for locking, memory allocation, and file I/O.
Section 6 describes klibc and summarizes our experiences and lessons learned from
the project.

4. THE BeTRFS FILE-SYSTEM SCHEMA

Bε-trees implement a key-value store, so BetrFS must translate file-system operations
into key-value operations. This section presents the BetrFS schema for performing
this translation and explains how this schema takes advantage of the performance
strengths of Bε-trees.

4.1. BetrFS Data and Metadata Indexes

BetrFS stores file system data and metadata using two indexes in the underlying
database: A metadata index and a data index. Since both keys and values may be
variable-sized, BetrFS is able to pack many index entries into each Bε-tree node.

The metadata index. The BetrFS prototype maintains an index mapping full path-
names (relative to the mount point) to file metadata (roughly equivalent to the contents
of struct stat):

path → (size, owner, timestamps, etc . . .) .

The metadata index is designed to support efficient file creations, deletions, lookups,
and directory scans. The index sorts paths first by the number of slashes, then lexico-
graphically. Thus, items within the same directory are stored consecutively, as illus-
trated in Figure 4. With this ordering, scanning a directory, either recursively or not,
can be implemented as a range query, and the layout of metadata entries on disk is
equivalent to a level-order traversal of the file-system tree.

The data index. Although keys and values may be variable-sized, the BetrFS proto-
type breaks files into blocks of up to 4,096-bytes in size for better integration with the
page cache. Thus, the data index maps (file, offset) tuples to blocks:

(path, block-number) → data[4096].

Keys in the data index are also sorted lexicographically, which guarantees that the
contents of a file are logically adjacent and, therefore, as explained in Section 2.4, almost
always physically adjacent on disk. This enables file contents to be read sequentially
at near disk bandwidth.

Because the 4KB block size is only a schema-level parameter, for small and sparse
files, BetrFS can avoid writing zero-padded bytes into TokuDB and lower layers. BetrFS
implements sparse files by simply omitting the sparse blocks from the data index.
BetrFS uses variable-sized values to avoid zero-padding the last block of each file.
This optimization avoids the CPU overhead of zeroing-out unused regions of a buffer
and then compressing the zeros away before writing a node to disk. This optimiza-
tion significantly reduces the overheads on small-file benchmarks. For instance, this
optimization improves throughput on TokuBench (Section 7) by 50%–70%.
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4.2. Implementing BetrFS Operations

Favoring blind writes. A latent assumption in much file system code is that data must
be written at disk-sector granularity. As a result, a small write must first bring the
surrounding disk block into the cache, modify the block, and then write it back. This
pattern is reflected in the Linux page cache helper function __block_write_begin().
Whenever possible, BetrFS avoids this read-modify-write pattern, instead issuing blind
writes or writes without reads.

Reading and writing files in BetrFS. BetrFS implements file reads using range
queries in the data index. Bε-trees can load the results of a large range query from
disk at effectively disk bandwidth.

BetrFS supports efficient file writes of any size via upserts and inserts. Application
writes smaller than one 4K block become messages of the form:

UPSERT(WRITE, (path, n), offset, v, �),

which means the application wrote � bytes of data, v, at the given offset into block n of
the file specified by path. Upsert messages completely encapsulate a block modification,
obviating the need for read-modify-write. Writes of an entire block are implemented
with an insert (also called a put), which is a blind replacement of the block.

As explained in Section 2.4, upserts and inserts are messages inserted into the root
node, which percolate down the tree. By using upserts for file writes, a write-optimized
file system can aggregate many small random writes into a single large write to disk.
Thus, the data can be committed to disk by performing a single seek and one large
write, yielding an order-of-magnitude boost in performance for small random writes.

In the case of large writes spanning multiple blocks, inserts follow a similar path
of copying data from the root to the leaves. The Bε-tree implementation has some
optimizations for large writes to skip intermediate nodes on the path to a leaf, but
they are not aggressive enough to achieve full disk bandwidth for large sequential file
writes. We leave this issue for future work because a solution must carefully address
several subtle issues related to pending messages and splitting leaf nodes.

File-system metadata operations in BetrFS. As shown in Table II, BetrFS also con-
verts almost all metadata updates, such timestamp changes, file creation, and symbolic
linking, into blind inserts. Our initial design used upserts [Jannen et al. 2015]; how-
ever, all VFS-level inode modifications require having the inode in cache. Thus, we
found metadata updates simpler to implement as an insert of the entire inode. Because
inodes are small in BetrFS (144 bytes), converting from an upsert to an insert had
negligible impact on performance.

The only metadata updates that are not inserts in BetrFS are unlink, truncate, and
rename. We now explain the obstacles to implementing these operations as inserts,
which we leave for future work.

Unlink and truncate can both remove blocks from a file. Assuming the file inode
is already in the VFS metadata cache to check permissions on the operation, BetrFS
already knows the length of the file and thus can compute the data index keys for the
operation. BetrFS removes the inode and data blocks in the simplest possible way: By
issuing a TokuDB delete for each block in the data index. TokuDB delete operations are
small messages that are as efficient as upserts; nonetheless, issuing O(n) deletes can
make this an expensive task. The evaluation shows that file deletion time is currently
linear in the file’s size (Figure 8).

Keying by full path also makes recursive directory traversals efficient but makes it
nontrivial to implement efficient renames. For example, our current implementation
renames files and directories by reinserting all the key-value pairs under their new keys
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Table II. Implementation Strategies for Basic
File-system Operations

FS Operation Bε-tree Operation

Mkdir Insert
Rmdir Delete
Create Insert
Unlink Delete + Delete data blocks
Truncate Insert + Delete data blocks
Setattr (e.g. chmod) Insert
Rename Copy file data and metadata
Symlink Insert
Lookup (i.e. lstat) Point Query
Readlink Point Query
Readdir Range Query
File write Upsert/Insert
File read Range Query
MMap readpage(s) Point/Range Query
MMap writepage(s) Insert(s)
Almost all operations are implemented using effi-
cient upserts, blind inserts, point queries, or range
queries. Unlink, truncate, and rename currently
scale with file and/or directory sizes.

and then deleting the old keys, effectively performing a deep copy of the file or directory
being renamed. One simple solution is to add an inode-style layer of indirection. This
approach is well-understood and can sacrifice some read locality as the tree ages.
We believe that data structure-level optimizations can improve the performance of
rename and still preserve file locality as the system ages. We leave these optimizations
for future work.

Although the schema described can use efficient inserts, upserts, and delete mes-
sages to make most changes to the file system, many POSIX file system functions
specify preconditions that the OS must check before changing the file system. For
example, when creating a file, POSIX requires the OS to check that the file doesn’t
already exist and that the user has write permission on the containing directory. These
precondition checks induce queries to the metadata index in BetrFS. Since queries in
Bε-trees are only as fast as B-tree queries, preceding every upsert with a query could
potentially ruin any performance gains on upsert-based operations, such as creations.
In our experiments, the OS cache of file and directory information was able to answer
these queries, enabling file creation and the like to run at the full speed of upserts. We
expect that OS caching will suffice for all but the largest file systems.

Crash consistency. We use the TokuDB transaction mechanism for crash consistency.
TokuDB transactions are equivalent to full data journaling, with all BetrFS data and
metadata updates logged to a file in the underlying ext4 file system. Each operation,
including all inserted values, is placed in a logical redo log. Log entries are retired in
order, and no updates are applied to the tree on disk ahead of the TokuDB logging
mechanism.

TokuDB implements recovery with a combination of checkpointing the Bε-tree and
redo logging. Entries are appended to one of two in-memory log buffers (16MiB by
default). These buffers are rotated and flushed to disk every second or when a log
buffer overflows.

Checkpoints are taken every 60 seconds, which includes flushing a complete, con-
sistent copy of the Bε-tree to disk. After the checkpoint, writes to Bε-tree nodes on
disk are applied copy-on-write; any nodes rendered unreachable after a checkpoint are
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garbage-collected. Once a checkpoint completes, previous log entries can be discarded.
Recovery simply replays all logged updates to the checkpointed tree. Any blocks written
between a checkpoint and a crash are also garbage-collected as part of recovery.

Because our log writes all data at least twice in our current design, our throughput
for large writes is limited to, at most, half of the raw disk bandwidth.

TokuDB includes transactional updates to keys, implemented using multiver-
sion concurrency control (explained further in Section 5.3). BetrFS internally uses
transactions to ensure crash consistency across metadata operations. Although expos-
ing a transactional API may be possible, BetrFS currently uses transactions only as
an internal consistency mechanism. BetrFS generally uses a single transaction per
system call, except for writing data, which uses a transaction per data block. In our
current implementation, transactions on metadata execute while holding appropriate
VFS-level mutex locks, thus making transaction conflicts and aborts vanishingly rare.

Transactions are also beneficial to the performance of some file system operations.
In BetrFS, the file system sync operation is reduced to the cost of a TokuDB log flush.
These benefits are large for sync-heavy workloads, as shown in Section 7.6.

Compression. Compression is important to performance, especially for keys. Both
indexes use full paths as keys, which can be long and repetitive, but TokuDB’s com-
pression mitigates these overheads. Using quicklz [QuickLZ 2015], the sorted path
names in our experiments compress by a factor of 20, making the disk-space overhead
manageable.

The use of data compression also means that there isn’t a one-to-one correspondence
between reading a file system-level block and reading a block from disk. A leaf node is
typically 4 MB, and compression can pack more than 64 file system blocks into a leaf. In
our experience with large data reads and writes, data compression can yield a boost to
file system throughput, up to 20% over disabling compression. We note that our exper-
iments are careful to use random or nontrivial data patterns for a fair measurement.

5. WRITE-OPTIMIZATION IN SYSTEM DESIGN

In designing BetrFS, we set the goal of working within the existing Linux VFS frame-
work. An underlying challenge is that, at points, the supporting code assumes that
reads are as expensive as writes and necessary for update-in-place. The use of write
optimization violates these assumptions because subblock writes can be faster than a
read. This section explains several strategies we used to improve BetrFS performance
while retaining Linux’s supporting infrastructure.

5.1. Eternal Sunshine of the Spotless Cache

BetrFS leverages the Linux page cache to implement efficient small reads, avoid disk
reads in general, and facilitate memory-mapped files. By default, when an applica-
tion writes to a page that is currently in cache, Linux marks the page as dirty and
later writes the page out (i.e., write-back caching). In this way, several application-
level writes to a page can be absorbed in the cache, requiring only a single write to
disk. In BetrFS, however, small writes are so cheap that this optimization does not
always make sense.

In BetrFS, the write system call never dirties a clean page in the cache (i.e., write-
through caching). When an application writes to a clean cached page, BetrFS issues
an upsert to the on-disk Bε-tree and applies the write to the cached copy of that page.
Thus, the contents of the cache are still in sync with the on-disk data, and the cached
page remains clean.

This policy can speed up small writes by reducing write amplification due to the
coarse granularity of block-based I/O. Under the conventional policy, the file system
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must always write back a full disk block, even if the application only writes a single
byte to the page. BetrFS achieves finer-than-block granularity for its writes by encoding
small writes as upserts, which are written to the BetrFS log, and group commit lets
BetrFS aggregate and pack many of its subblock writes into a single block I/O.

Note that BetrFS’s approach is not always better than absorbing writes in the cache
and writing back the entire block. For example, if an application performs hundreds
of small writes to the same block, then it would be more efficient to mark the page
dirty and wait until the application is done to write the final contents back to disk. A
production version of BetrFS should include heuristics to detect this case. We found
that performance in our prototype was good enough without this optimization, though,
so we have not yet implemented it.

The only situation where a page in the cache is dirtied is when the file is memory-
mapped for writing. The memory management hardware does not support fine-grained
tracking of writes to memory-mapped files—the OS knows only that something within
in the page of memory has been modified. Therefore, BetrFS’s mmap implementation
uses the default read and write page mechanisms, which operate at page granularity.

Our write-through caching design keeps the page cache coherent with disk. BetrFS
leverages the page cache for faster warm-cache reads but avoids unnecessary full-page
write-backs.

5.2. FUSE Is Write De-Optimized

We implemented BetrFS as an in-kernel file system because the FUSE architecture
contains several design decisions that can ruin the potential performance benefits of
a write-optimized file system. FUSE has well-known overheads from the additional
context switches and data marshaling it performs when communicating with user-
space file systems. However, FUSE is particularly damaging to write-optimized file
systems for completely different reasons.

FUSE can transform write-intensive workloads into read-intensive workloads be-
cause FUSE issues queries to the user-space file system before (and, in fact, after)
most file system updates. For example, FUSE issues GETATTR calls (analogous to call-
ing stat()) for the entire path of a file lookup, every time the file is looked up by an
application. For most in-kernel file systems, subsequent lookups could be handled by
the kernel’s directory cache, but FUSE conservatively assumes that the underlying file
system can change asynchronously—which can be true, such as in network file systems.

This design choice is benign when the underlying data structure of the file system
is a B-tree. Since searches and inserts have roughly the same cost, and the update
must be issued at block granularity, adding a query before every update will not
cause a significant slowdown and may be required for subblock metadata updates. In
contrast, these searches can choke a write-optimized data structure, where insertions
are 2 orders of magnitude faster than searches. The TokuFS authors explicitly
cite these searches as the cause of the disappointing performance of their FUSE
implementation [Esmet et al. 2012].

The TableFS authors identified another source of FUSE overhead: Double caching
of inode information in the kernel [Ren and Gibson 2013]. This reduces the cache’s
effective hit rate. For slow file systems, the overhead of a few extra cache misses may
not be significant. For a write-optimized data structure working on a write-intensive
workload, the overhead of the cache misses can be substantial.

5.3. TokuDB Overview

This subsection explains additional TokuDB implementation details that are relevant
to understanding the performance of BetrFS. Recall that TokuDB implements Fractal
Tree indexes, an extension to the Bε-tree data structure described in Section 2.4.
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Each node in the Bε-tree is roughly 4MiB in order to ensure that all updates are large
enough to amortize the seek costs of the write. The on-disk node size can vary because
its size is measured before compression. Disk blocks are allocated at 4KiB granularity
in contiguous runs, which are found using a first-fit algorithm.

Internal (non-leaf) nodes contain three kinds data: child pointers, pivot keys, and
operation messages. For internal nodes, the child pointers and pivot keys provide the
same indexing data found in a B-tree. The tree employs B-tree rebalancing, with inter-
nal nodes containing up to 16 children. The messages contain data that are traveling
from the root of the tree to the leaves. For example, a typical message would contain
an “insert” command that specifies a transaction identifier, a key, and a value. When
the message arrives at a leaf, it updates the appropriate key-value record.

When an internal node’s buffers fill up, messages are flushed to the child or children
with enough pending messages to amortize the cost of rewriting the parent and child.
This structured flushing is essential to how Bε-trees batch small writes.

Leaf nodes of a Bε-tree contain key-value records. A leaf is stored in a roughly 4MiB
contiguous range on disk but is internally organized into a height-1 subtree composed
of basement nodes, each roughly 64KiB. For a point query, the system reads the appro-
priate 64KiB basement node directly from disk, not the entire height-1 subtree. For a
write operation, however, the system rewrites the entire height-1 subtree. Each base-
ment node is compressed separately: The 64KiB and 4MiB sizes are measured before
compression, and so the size of a leaf node on disk depends on the compression factor.

To implement multiversion concurrency control, each key-value record contains a
key and one or more values, with each value tagged by a transaction identifier. One
possible value is a tombstone, which indicates that the record is deleted. When the
value produced by a transaction is no longer visible, the system may remove that value
from the key-value record.

TokuDB includes its own cache of on-disk nodes, which are retained according to an
LRU policy. In future work, we will better integrate the cache of on-disk nodes with
the Linux page cache.

5.4. Ext4 as a Block Manager

Since TokuDB stores data in compressed nodes that can have variable size, TokuDB
relies on an underlying file system to act as a block and free space manager for the
disk. Conventional file systems do a good job of storing blocks of large files adjacently
on disk, especially when writes to the file are performed in large chunks.

Rather than reinvent the wheel, we stick with this design in our kernel port of
TokuDB. BetrFS represents tree nodes as blocks within one or more large files on the
underlying file system, which in our prototype is unmodified ext4 with ordered data
mode. We rely on ext4 to correctly issue barriers to the disk write cache, although dis-
abling the disk’s write cache did not significantly impact performance of our workloads.
In other words, all BetrFS file system updates, data or metadata, generally appear as
data writes, and an fsync to the underlying ext4 file system ensures durability of a
BetrFS log write. Although there is some duplicated work between the layers, we ex-
pect that ordered journaling mode minimizes this because a typical BetrFS instance
spans just 11 files from ext4’s perspective. That said, these redundancies could be
streamlined in future work.

5.5. Representation of Files

Each block of a file in BetrFS is indexed logically by path and offset, rather than by
physical location or in extents, as is common practice in many file systems. Rather,
mapping this logical key to a physical location is encapsulated in the Bε-tree imple-
mentation.
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Table III. Lines of Code in BetrFS by Component

Component Description Lines

VFS Layer Translate VFS hooks to TokuDB queries. 1,987
TokuDB Kernel version of TokuDB. (960 lines changed) 44,293
klibc Compatibility wrapper. 4,155
Linux Modifications 58

Encapsulating data placement within the Bε-tree has many advantages. Sparse files
can be trivially implemented by using the inode size field and omitting keys from the
data index. For example, a sparse file /home/foo containing only blocks 1 and 100
will have the values of /home/foo:001 and /home/foo:100 stored consecutively in the
tree—allowing the entire file to be read in one efficient I/O. No space is wasted, neither
in an indexing structure nor in the tree via zero-filled blocks. Separating data indexing
from the inode also keeps the size of BetrFS metadata small. BetrFS is able to pack
the inode information of several files into the space of a single disk block. Pushing
the indexing to the Bε-tree also facilitates the implementation of upserts, multiversion
concurrency control, and variable sized blocks because it is difficult to manage subblock
and variable-sized blocks in a physical index.

The disadvantage of this representation is that a key must be stored for every value.
Keys are highly repetitive, and this overhead is negated with compression.

6. IMPLEMENTATION

Rather than do an in-kernel implementation of a write-optimized data structure from
scratch, we ported TokuDB into the Linux kernel as the most expedient way to obtain a
write-optimized data structure implementation. Such data structure implementations
can be complex, especially in tuning the I/O and asymptotic merging behavior.

In this section, we explain how we ported a large portion of the TokuDB code into the
kernel, challenges we faced in the process, lessons learned from the experience, and
future work for the implementation. Table III summarizes the lines of code in BetrFS,
including the code interfacing the VFS layer to TokuDB, the klibc code, and minor
changes to the Linux kernel code, explained later. The BetrFS prototype uses Linux
version 3.11.10.

6.1. Porting Approach

We initially decided the porting was feasible because TokuDB has very few library
requirements and is written in a C-like form of C++. In other words, the C++ features
used by TokuDB are primarily implemented at compile time (e.g., name mangling and
better type checking) and did not require runtime support for features like exceptions.
Our approach should apply to other WODS, such as an LSM tree, inasmuch as the
implementation follows a similar coding style.

As a result, we were able to largely treat the TokuDB code we used as a binary
blob, creating a kernel module (.ko file) from the code. We exported interfaces used by
the BetrFS VFS layer to use C linkage and similarly declared interfaces that TokuDB
imported from klibc to use C linkage.

We generally minimized changes to the TokuDB code and selected imported code
at object-file granularity. In a few cases, we added compile-time macros to eliminate
code paths or functions that would not be used but required cumbersome dependencies.
Finally, when a particularly cumbersome user-level API, such as fork, is used in only a
few places, we rewrote the code to use a more suitable kernel API. We call the resulting
set of dependencies imported by TokuDB klibc .
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Table IV. Classes of ABI Functions Exported by klibc

Class ABIs Description
Memory 4 Allocate buffer pages and heap objects.
Threads 24 Pthreads, condition variables, and mutexes.
Files 39 Access database backend files on underlying, disconnected file system.
zlib 7 Wrapper for kernel zlib.
Misc 27 Print errors, qsort, get time, etc.
Total 101

6.2. The klibc Framework

Table IV summarizes the ABIs exported by klibc. In many cases, kernel ABIs were
exported directly, such as memcpy, or were straightforward wrappers for features such
as synchronization and memory allocation. In a few cases, the changes were more
complex.

The use of errno in the TokuDB code presented a particular challenge. Linux passes
error codes as negative return values, whereas libc simply returns negative 1 and
places the error code in a per-thread variable errno. Checks for a negative value and
reads of errno in TokuDB were so ubiquitous that changing the error-handling behav-
ior was impractical. We ultimately added an errno field to the Linux task struct; a
production implementation would instead rework the error-passing code.

Although wrapping pthread abstractions in kernel abstractions was fairly straight-
forward, static initialization and direct access to pthread structures created problems.
The primary issue is that converting pthread abstractions to kernel abstractions re-
placed members in the pthread structure definitions. Static initialization would not
properly initialize the modified structure. Once the size of pthread structures changed,
we had to eliminate any code that imported system pthread headers lest embedded
instances of these structures calculate the wrong size.

In reusing ext4 as a block store, we faced some challenges in creating module-level
file handles and paths. File handles were more straightforward: We were able to create
a module-level handle table and use the pread (cursor-less) API to ext4 for reads
and writes. We did have to modify Linux to export several VFS helper functions that
accepted a struct file directly, rather than walking the process-level file descriptor
table. We also modified ext4 to accept input for reads with the O_DIRECT flag that were
not from a user-level address.

When BetrFS allocates, opens, or deletes a block store on the underlying ext4 file
system, the module essentially chroots into an ext4 file system disconnected from
the main tree. Because this is kernel code, we also wish to avoid permission checks
based on the current process’s credentials. Thus, path operations include a “context
switch” operation, where the current task’s file system root and credentials are saved
and restored.

6.3. Changes to TokuDB

With a few exceptions, we were able to use TokuDB in the kernel without major
modifications. This subsection outlines the issues that required refactoring the code.

The first issue we encountered was that TokuDB makes liberal use of stack allocation
throughout. One function allocated a 12KB buffer on the stack! In contrast, stack sizes
in the Linux kernel are fixed at compile time and default to 8KB. In most cases, we
were able to use compile-time warnings to identify large stack allocation and convert
them to heap allocations and add free functions. In the case where these structures
were performance-critical, such as a database cursor, we modified the TokuDB code to
use faster allocation methods, such as a kernel cache or per-CPU variable. Similarly,
we rewrote several recursive functions to use a loop. Nonetheless, we found that deep
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stacks of more modest-sized frames were still possible and increased the stack size to
16 KB. We plan to rein in the maximum stack size in future work.

Finally, we found a small mismatch between the behavior of futexes and kernel wait
queues that required code changes. Essentially, recent implementations of pthread
condition variables will not wake a sleeping thread due to an irrelevant interrupt,
making it safe (though perhaps inadvisable) in user space not to double-check invari-
ants after returning from pthread_cond_wait. The Linux-internal equivalents, such
as wait_event, can spuriously wake a thread in a way that is difficult to distinguish
without rechecking the invariant. Thus, we had to place all pthread_cond_wait calls
in a loop.

6.4. Future Work and Limitations

The BetrFS prototype is an ongoing effort. The effort has reached sufficient maturity
to demonstrate the power of write optimization in a kernel file system. However, there
are several points for improvement in future work.

The most useful feature currently missing from the TokuDB codebase is range up-
serts; upserts can only be applied to a single key or broadcast to all keys. Currently, file
deletion must be implemented by creating a remove upsert for each data block in a file;
the ability to create a single upsert applied to a limited range would be useful, and we
leave this for future work. The primary difficulty in supporting such an abstraction is
tuning how aggressively the upsert should be flushed down to the leaves versus applied
to point queries on demand; we leave this issue for future work as well.

One subtle tradeoff in organizing on-disk placement is between rename and search
performance. BetrFS keys files by their path, which currently results in rename copying
the file from one disk location to another. This can clearly be mitigated by adding a
layer of indirection (i.e., an inode number); however, this is at odds with the goal of
preserving data locality within a directory hierarchy. We plan to investigate techniques
for more efficient directory manipulation that preserves locality. Similarly, our current
prototype does not support hard links.

Our current prototype also includes some double caching of disk data. Nearly all
of our experiments measure cold-cache behavior, so this does not affect the fidelity of
our results. Profligate memory usage is nonetheless problematic. In the long run, we
intend to better integrate these layers, as well as eliminate emulated file handles and
paths.

7. EVALUATION

We organize our evaluation around the following questions:

—Are microwrites on BetrFS more efficient than on other general-purpose file systems?
—Are large reads and writes on BetrFS at least competitive with other general-purpose

file systems?
—How do other file system operations perform on BetrFS?
—What are the space (memory and disk) overheads of BetrFS?
—Do applications realize better overall performance on BetrFS?

Unless otherwise noted, benchmarks are cold-cache tests. All file systems benefit
equally from hits in the page and directory caches; we are interested in measuring the
efficiency of cache misses.

All experimental results were collected on a Dell Optiplex 790 with a 4-core 3.40GHz
Intel Core i7 CPU, 4GB RAM, and a 250GB, 7200 RPM ATA disk. Each file system
used a 4,096-byte block size. The system ran Ubuntu 13.10, 64-bit, with Linux kernel
version 3.11.10. Each experiment compared with several general purpose file systems,
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Fig. 5. Total time to create 500,000 200-byte
files, using 1, 2, and 4 threads. We mea-
sure the number of files created per second.
Higher is better.

Fig. 6. Sustained rate of file creation for
3 million 200-byte files, using 4 threads.
Higher is better.

including BTRFS, ext4, XFS, and ZFS. Error bars and ± ranges denote 95% confidence
intervals.

7.1. Microwrites

We evaluated microwrite performance using both meta-data and data-intensive mi-
crobenchmarks. To exercise file creation, we used two configurations of the TokuBench
benchmark [Esmet et al. 2012]. In the first configuration, shown in Figure 5, we created
500,000 200-byte files in a balanced directory tree with a fanout of 128. TokuBench also
measures the scalability of the file system as threads are added; in this experiment,
we measured up to four threads since our machine has four cores.

BetrFS exhibited substantially higher cumulative throughput than the other file
systems. The closest competitor was ZFS at one thread; as more threads were added,
the gap widened considerably. Compared to ext4, XFS, and BTRFS, BetrFS throughput
was an order of magnitude higher.

The second configuration of the TokuBench benchmark is shown in Figure 6. This
setup demonstrates the sustained rate of file creation. We again create 200-byte files in
a balanced directory tree with fanout of 128, but for this experiment, we create 3 million
files. Each data point represents the cumulative throughput at the time the ith file was
created. Four threads were used for all file systems. In the case of ZFS, the file system
crashed before completing the benchmark, so we reran the experiment five times and
used data from the longest running iteration. BetrFS is initially among the fastest file
systems and continues to perform well for the duration of the experiment. The steady-
state performance of BetrFS is an order of magnitude faster than the other file systems.

This performance distinction is attributable to both fewer total writes and fewer
seeks per byte written—that is, better aggregation of small writes. Based on profil-
ing from blktrace, one major distinction is total bytes written: BetrFS writes 4–10×
fewer total MB to disk, with an order of magnitude fewer total write requests. Among
the other file systems, ext4, XFS, and ZFS wrote roughly the same amount of data but
realized widely varying underlying write throughput. The only file system with a com-
parable write throughput was ZFS, but it wrote twice as much data using 12.7× as
many disk requests.

To measure microwrites to files, we wrote a custom benchmark that performs 1,000
random 4-byte writes within a 1GiB file, followed by an fsync(). Table V lists the
results. BetrFS was 2 orders of magnitude faster than the other file systems.

These results demonstrate that BetrFS improves microwrite performance by 1 to 2
orders of magnitude compared to current general-purpose file systems.

ACM Transactions on Storage, Vol. 11, No. 4, Article 18, Publication date: November 2015.



18:22 W. Jannen et al.

Table V. Random Write Performance
Time in seconds to execute 1,000 4-byte
microwrites within a 1GiB file. Lower is
better.

File System Time (s)

BetrFS 0.17 ± 0.01
ext4 11.60 ± 0.39
XFS 11.71 ± 0.28
BTRFS 11.60 ± 0.38
ZFS 14.75 ± 1.45

Fig. 7. Large file I/O. We sequentially read and write 1GiB files. Higher is better.

7.2. Large Reads and Writes

We measured the throughput of sequentially reading and writing a 1GiB file, 10 blocks
at a time. We created the file using random data to avoid unfairly advantaging com-
pression in BetrFS. In this experiment, BetrFS benefits from compressing keys, but not
data. We note that with compression and moderately compressible data, BetrFS can
easily exceed disk bandwidth. The results are illustrated in Figure 7.

Most general-purpose file systems can read and write at disk bandwidth. In the
case of a large sequential reads, BetrFS can read data at roughly 85 MiB/s. This read
rate is commensurate with overall disk utilization, which we believe is a result of less
aggressive read-ahead than the other file systems. We believe this can be addressed by
retuning the TokuDB block cache prefetching behavior.

In the case of large writes, the current BetrFS prototype achieved just below half of
the disk’s throughput. One reason for this is that all writes are written twice—once to
the log and once to the Bε-tree. Another reason is that each block write must percolate
down the interior tree buffers; a more efficient heuristic would detect a large streaming
write and write directly to a leaf. We leave optimizing these cases for future work.

7.3. Directory Operations

In this section, we measure the impact of the BetrFS design on large directory opera-
tions. Table VI reports the time taken to run find, grep -r, mv, and rm -r on the Linux
3.11.10 source tree, starting from a cold cache. The grep test recursively searches the
file contents for the string “cpu_to_be64”, and the find test searches for files named
“wait.c”. The rename test renames the entire kernel source tree, and the delete test
does a recursive removal of the source.

Both the find and grep benchmarks demonstrate the value of sorting files and their
metadata lexicographically by full path so that related files are stored near each other
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Table VI. Directory Operation Benchmarks
Time is measured in seconds. Lower is better.

FS find grep dir rename delete

BetrFS 0.36 ± 0.06 3.95 ± 0.28 21.17 ± 1.01 46.14 ± 1.12
BTRFS 3.87 ± 0.94 14.91 ± 1.18 0.08 ± 0.05 7.82 ± 0.59
ext4 2.47 ± 0.07 46.73 ± 3.86 0.10 ± 0.02 3.01 ± 0.30
XFS 19.07 ± 3.38 66.20 ± 15.99 19.78 ± 5.29 19.78 ± 5.29
ZFS 11.60 ± 0.81 41.74 ± 0.64 14.73 ± 1.64 14.73 ± 1.64

Fig. 8. Time, in seconds, to delete a file in BetrFS. Lower is better. We observe a linear relationship between
the time to delete a file and its size.

Table VII. Average Time in Cycles to Execute a Range of Common File System Calls
Lower is better.

FS chmod mkdir open read stat unlink write

BetrFS 4,913 ± 0 67,072 ± 26 1,697 ± 0 561 ± 0 1,076 ± 0 47,873 ± 8 32,142 ± 4
BTRFS 4,574 ± 0 24,805 ± 14 1,812 ± 0 561 ± 0 1,258 ± 0 26,131 ± 1 3,891 ± 0
ext4 4,970 ± 0 41,478 ± 19 1,886 ± 0 556 ± 0 1,167 ± 0 16,209 ± 0 3,359 ± 0
XFS 5,342 ± 0 73,782 ± 19 1,757 ± 0 1,384 ± 0 1,134 ± 0 19,124 ± 0 9,192 ± 0
ZFS 36,449 ± 118 171,080 ± 308 2,681 ± 0 6,467 ± 0 1,913 ± 0 78,946 ± 7 18,382 ± 0

on disk. BetrFS can search directory metadata and file data 1 or 2 orders of magnitude
faster than the other file systems.

The BetrFS schema was designed to map VFS operations to efficient Bε-tree oper-
ations whenever possible. Unfortunately, there are some VFS operations that do not
map to an individual Bε-tree operation. Section 7.3 explains that directory deletes and
renames require a Bε-tree operation for each data and metadata entry involved in the
operation. Figure 8 shows measurements of file deletions of increasing sizes, showing
that the cost is indeed linear in the number of file data blocks. This is because, for each
data block, BetrFS issues an individual Bε-tree delete followed by a delete for the file
metadata.

Both the rename and delete tests show the worst-case behavior of BetrFS. Because
BetrFS does not include a layer of indirection from pathname to data, renaming re-
quires copying all data and metadata to new points in the tree. Although there are
known solutions to this problem, such as by adding a layer of indirection, we plan to
investigate techniques that can preserve the appealing lexicographic locality without
sacrificing rename and delete performance.

7.4. System Call Nanobenchmarks

Finally, Table VII shows timings for a nanobenchmark that measures various system
call times. Because this nanobenchmark is warm-cache, it primarily exercises the VFS
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Table VIII. BetrFS Disk Usage, Measured in GiB, after Writing
Large Incompressible Files, Deleting Half of Those Files, and

Flushing Bε-tree Nodes

Total BetrFS Disk Usage (GiB)
Input Data After Writes After Deletes After Flushes

4 4.14 ± 0.07 4.12 ± 0.00 4.03 ± 0.12
16 16.24 ± 0.06 16.20 ± 0.00 10.14 ± 0.21
32 32.33 ± 0.02 32.34 ± 0.00 16.22 ± 0.00
64 64.57 ± 0.06 64.59 ± 0.00 34.36 ± 0.18

layer. BetrFS is close to being the fastest file system on open, read, and stat. On chmod,
mkdir, and unlink, BetrFS is in the middle of the pack.

Our current implementation of the write system call appears to be slow in this
benchmark because, as mentioned in Section 5.1, writes in BetrFS issue an upsert to
the database, even if the page being written is in cache. This can be advantageous
when a page is not written often, but that is not the case in this benchmark.

7.5. Space Overheads

This section details space overheads, both in terms of disk and memory.
The Fractal Tree index implementation in BetrFS includes an LRU cache of Bε-tree

nodes. Node-cache memory is bounded. BetrFS triggers background flushing of dirty
nodes when memory exceeds a low watermark and forces writeback at a high water-
mark. The high watermark is currently set to one-eighth of total system memory. This
is configurable, but we found that additional node-cache memory had little performance
impact on our workloads.

The interaction between the Linux page cache and the Bε-tree node cache is complex.
As explained in Section 5.1, BetrFS rarely writes dirty cached pages, and they may be
easily reclaimed under memory pressure. Writes to uncached data are inserted directly
into the Bε-tree. However, the Linux page cache will often double-cache BetrFS data
that are read because those data are retrieved from one or more cached Bε-tree nodes.
And although the Bε-tree node cache size is bounded, the page cache size is not. From
the perspective of BetrFS, the page cache is largely a read accelerator, and page cache
pages can be quickly and easily reclaimed.

No single rule governs BetrFS disk usage because stale data may remain in non-
leaf nodes after delete, rename, and overwrite operations. Background cleaner threads
attempt to flush pending data from five internal nodes per second. This creates fluctu-
ation in BetrFS disk usage, but overheads swiftly decline at rest.

To evaluate the BetrFS disk footprint, we wrote several large incompressible files,
deleted half of those files, and then initiated a Bε-tree flush. After each operation, we
calculated the BetrFS disk usage using df on the underlying ext4 partition.

Writing new data to BetrFS introduced very little overhead, as seen in Table VIII. For
deletes, however, BetrFS issues an upsert for every file block, which had little impact
on the BetrFS footprint because stale data are lazily reclaimed. After flushing, there
was less than 3GiB of disk overhead, regardless of the amount of live data.

7.6. Application Performance

Figure 9 presents performance measurements for a variety of metadata-intensive ap-
plications. We measured the time to rsync the Linux 3.11.10 source code to a new
directory on the same file system using the --in-place option to avoid temporary file
creation (Figure 9a). We performed a benchmark using version 2.2.13 of the Dovecot
mail server to simulate IMAP client behavior under a mix of read requests, requests
to mark messages as read, and requests to move a message to one of 10 other folders.
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Fig. 9. Application benchmarks.

The balance of requests was 50% reads, 50% flags or moves (Figure 9b). We exercised
the git version control system using a git-clone of the local BetrFS source tree and a
git-diff between two milestone commits (Figure 9c). Finally, we measured the time
to tar and un-tar the Linux 3.11.10 source (Figure 9d).

BetrFS yielded substantially higher performance on several applications, primar-
ily applications with microwrites or large streaming reads or writes. In the case of
the IMAP benchmark, marking or moving messages is a small-file rename in a large
directory—a case BetrFS handled particularly well, cutting execution time in half
compared to most other file systems. Note that the IMAP test is a sync-heavy work-
load, issuing more than 26K fsync() calls over 334 seconds, each forcing a full BetrFS
log flush. rsync on BetrFS realized significantly higher throughput because writing a
large number of modestly sized files in lexicographic order is, on BetrFS, aggregated
into large, streaming disk writes. Similarly, tar benefited from both improved reads
of many files in lexicographic order as well as efficient aggregation of writes. tar on
BetrFS was only marginally better than BTRFS, but the execution time was at least
halved compared to ext4 and XFS.

The only benchmark significantly worse on BetrFS was git-clone, which does an
lstat on every new file before creating it—despite cloning into an empty directory.
Here, a slower, small read obstructs a faster write. For comparison, the rsync --in-
place test case illustrates that, if an application eschews querying for the existence of
files before creating them, BetrFS can deliver substantial performance benefits.
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These experiments demonstrate that several real-world, off-the-shelf applications
can benefit from executing on a write-optimized file system without application modifi-
cations. With modest changes to favor blind writes, applications can perform even bet-
ter. For most applications not suited to write optimization, performance is not harmed
or could be tuned.

In general, we expect applications that perform small, random, or unaligned writes
to see substantial performance gains on BetrFS. Applications that issue frequent sync
operations should also benefit from its ability to persist new data quickly. Applications
that are bandwidth-bound will continue to be bandwidth-bound, but may run more
slowly due to BetrFS logging. The only applications that we expect to perform poorly
are those that issue extraneous queries. This behavior has little consequence in a
system where each write is preceded by a read, but the read-write asymmetry of write-
optimization renders such behavior insensible.

8. RELATED WORK

Previous write-optimized file systems. TokuFS [Esmet et al. 2012] is an in-
application library file system also built using Bε-trees. TokuFS showed that a write-
optimized file system can support efficient write- and scan-intensive workloads. TokuFS
had a FUSE-based version, but the authors explicitly omitted disappointing measure-
ments using FUSE.

KVFS [Shetty et al. 2013] is based on a transactional variation of an LSM-tree
called a VT-tree. Impressively, the performance of this transactional, FUSE-based file
system was comparable to the performance of the in-kernel ext4 file system, which does
not support transactions. One performance highlight was on random writes, where
they outperformed ext4 by a factor of 2. They also used stitching to perform well on
sequential I/O in the presence of LSM-tree compaction.

TableFS [Ren and Gibson 2013] uses LevelDB to store file-system metadata. The
authors showed substantial performance improvements on metadata-intensive work-
loads, sometimes up to an order of magnitude. They used ext4 as an object store for
large files, so sequential I/O performance was comparable to ext4. They also analyzed
the FUSE overhead relative to a library implementation of their file system and found
that FUSE could cause a 1,000× increase in disk-read traffic (see Figure 9 in their
paper).

If these designs were ported to the kernel, we expect that they would see some,
but not all, of the performance benefits of BetrFS. Because the asymptotic behavior
is better for Bε-trees than LSMs in some cases, we expect that the performance of an
LSM-based file system will not be completely comparable.
Other WODS. COLAs [Bender et al. 2007] are an LSM tree variant that uses fractional
cascading [Chazelle and Guibas 1986] to match the performance of Bε-trees for both
insertions and queries, but we are not aware of any full featured, production-quality
COLA implementation. xDict [Brodal et al. 2010] is a cache-oblivious WODS with
asymptotic behavior similar to a Bε-tree.

Key-Value Stores. WODS are widely used in key-value stores, including BigTable
[Chang et al. 2008], Cassandra [Lakshman and Malik 2010], HBase [Apache 2015b],
LevelDB [Google, Inc. 2015], TokuDB [Tokutek, Inc. 2013a], and TokuMX [Tokutek,
Inc. 2013b]. BigTable, Cassandra, and LevelDB use LSM-tree variants. TokuDB and
TokuMX use Fractal Tree indexes. LOCS [Wang et al. 2014] optimizes LSM-trees for a
key-value store on a multichannel SSD.

Instead of using WODS, FAWN [Andersen et al. 2009] writes to a log and maintains
an in-memory index for queries. SILT [Lim et al. 2011] further reduces the design’s
memory footprint during the merging phase.
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Alternatives to update-in-place. No-overwrite (copy-on-write) file systems perform
in-memory modifications to existing file blocks before writing them persistently at new
physical locations. Thus, file data can be logically, but not physically, overwritten. Log-
structured file systems are one class of no-overwrite file system with a very specific
data placement policy, but other no-overwrite data placement policies also exist.

Log-structured File Systems and their derivatives [Andersen et al. 2009; Lee et al.
2015; Lim et al. 2011; Rosenblum and Ousterhout 1992] are write-optimized in the
sense that they log data and are thus very fast at ingesting file system changes. How-
ever, they still rely on read-modify-write for file updates and suffer from fragmentation.
BTRFS, WAFL, and ZFS are feature-rich no-overwrite file systems whose policies lever-

age copy-on-write semantics to implement advanced features like versioning, self-
consistency, and checkpoints [Bonwick 2004; Hitz et al. 1994; Rodeh et al. 2013]. The
Write Anywhere File Layout (WAFL) uses files to store its metadata, giving it incredi-
ble flexibility in its block allocation and layout policies [Hitz et al. 1994]. One of WAFL’s
main goals is to provide efficient copy-on-write snapshots. BTRFS uses copy-on-write B-
trees throughout, providing both versioning and checkpoints. BTRFS also implements
back-references to help with defragmentation. ZFS rethinks the division of labor within
the storage stack and seeks to ease both the use and management of file systems. ZFS
ensures that all data on disk are self-consistent, provides pooled storage, and supports
numerous features including deduplication. All three of these file systems provide ad-
vanced features beyond what traditional file systems offer, but none addresses the
microwrite problem.

The no-overwrite mechanism is powerful and flexible. However, it is impossible to
maintain physical locality in the presence of versions and updates since file blocks can
be physically adjacent in exactly one file version. Extra bookkeeping for back-references
can help to aid defragmentation in exchange for added complexity [Macko et al. 2010].

Block indexing. As discussed in Section 5.5, BetrFS does not store location informa-
tion in its inodes. Instead, it relies on queries to the WODS to transparently retrieve its
data. Alternative techniques for indexing file data include extents and direct pointers
to blocks.

For large files with few updates, extents are very space efficient. A single range can
represent the location information for an entire file, regardless of size. However, ex-
tents introduce complexity when files become fragmented, which can occur for various
reasons: insufficient contiguous free space to fit an entire file, copy-on-write updates
to a file, or file versioning. In these cases, many extents must be managed per file, and
logic for merging and splitting ranges must be introduced.

Block pointers are simple and flexible, with a single pointer for each file block.
Reading or writing a file requires following each pointer. Fragmentation does not impact
file representation in pointer-based indexing schemes.

Logical logging. This is a technique used by some databases in which operations,
rather than the before and after images of individual database pages, are encoded and
stored in the log [Gray and Reuter 1993]. Like a logical log entry, an upsert message
encodes a mutation to a value in the key-value store. However, an upsert is a first-class
storage object. Upsert messages reside in Bε-tree buffers and are evaluated on the fly
to satisfy queries or to be merged into leaf nodes.

9. CONCLUSION

The BetrFS prototype demonstrates that write-optimized data structures are a pow-
erful tool for file-system developers. In some cases, BetrFS outperforms traditional
designs by orders of magnitude, advancing the state of the art over previous results.
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Nonetheless, there are some cases where additional work is needed, such as further
data-structure optimizations for large streaming I/O and efficient renames of directo-
ries. Our results suggest that further integration and optimization work is likely to
yield even better performance results.
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