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Abstract In traditional on-line problems, such as scheduling, requests arrive over time,
demanding available resources. As each request arrives, some resources may have to be
irrevocably committed to servicing that request. In many situations, however, it may be
possible or even necessary to reallocate previously allocated resources in order to satisfy
a new request. This reallocation has a cost. This paper shows how to service the requests
while minimizing the reallocation cost.

We focus on the classic problem of scheduling jobs on a multiprocessor system. Each
unit-size job has a time window in which it can be executed. Jobs are dynamically added and
removed from the system. We provide an algorithm that maintains a valid schedule, as long
as a schedule with sufficient slack exists. The algorithm reschedules only a total number of
O(min{log∗ n, log∗∆}) jobs for each job that is inserted or deleted from the system, where
n is the number of active jobs and ∆ is the size of the largest window.

Keywords Scheduling · online problems · reallocation.

1 Introduction

Imagine you are running a doctor’s office. Every day, patients call and try to schedule an
appointment, specifying a time period in which they are free. You respond by agreeing to a
specific appointment time. Sometimes, however, there is no available slot during the period
of time specified by the patient. What should you do? You might simply turn the patient
away. Or, you can reschedule some of your existing patients, making room in the schedule.1

Unfortunately, patients do not like being rescheduled. How do you minimize the number of
patients whose appointments are rescheduled?

While scheduling a doctor’s office may (or may not) seem a somewhat contrived moti-
vating example, this situation arises with frequency in real-world applications. Almost any
scenario that involves creating a schedule also requires the flexibility to change that sched-
ule later, and those changes often have real costs (measured in equipment, computation, or
tempers). For example, in the computational world, scheduling jobs on multiprocess ma-
chines and scheduling computation on the cloud lead to rescheduling. In the physical world,
these problems arise with depressing regularity in scheduling airports and train stations.
Real schedules are always changing.

In a tightly packed schedule, it can be difficult to perform this rescheduling efficiently.
Each task you reschedule risks triggering a cascade of other reschedulings, leading to high
costs (and unhappy patients or passengers). It is easy to construct an example where each job
added or removed changesΩ(n) other jobs, even with constant-sized tasks. In this paper, we
show that if there is slack in the schedule, then these rescheduling cascades can be collapsed
down to O(log∗ n) for unit-size jobs.

1.1 Reallocation Problems

In this paper, we formalize a class of problems that ask the question: how should we modify
resource allocationa to respond to a changing situation. We call such problems reallocation
problems. A reallocation problem is online in the sense that requests arrive and the system
responds. Unlike in the standard online setting where resources are irrevocably assigned, in
a reallocation problem, allocations may change. These reallocations, however, have a cost.

1 Before you get too skeptical about the motivation, this is exactly what M. F-C’s ophthalmologist does.
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Reallocation lies somewhere between traditional notions of offline and online resource
allocation. If the reallocation cost is 0, then there is no penalty for producing an optimal al-
location after each request. In this case, a reallocation problem can be viewed as a sequence
of offline problems. If the cost of reallocation is∞, then no finite-cost reallocation is possi-
ble and the result is a traditional online problem. When there is a bounded but non-zero cost
for reallocation, then there is a trade-off between the quality of an allocation and the cost of
reallocation.

1.2 Our Problem

We focus on the reallocation version of a classical multiprocessor scheduling problem [23]
(described more fully in Section 2). We are given a set of unit-length jobs to process on
m machines. Each job has an arrival time and a deadline. The job must be assigned to a
machine and processed at some point within the specified time window. Jobs are added and
removed from the schedule dynamically. The goal is to maintain a feasible schedule despite
job insertions and deletions.

In order to process a request, it may be necessary to reschedule some previously sched-
uled jobs. There are two ways in which a job may be rescheduled: it may be reallocated to
another time on the same machine, or it may be migrated to a different machine. The mi-
gration cost is the total number of jobs that are moved to different machines when new jobs
are added or removed. The reallocation cost is the total number of jobs that are resched-
uled, regardless of whether they are migrated or retained on the same machine. Our goal
is to minimize both the migration cost and the total reallocation cost. We bound these costs
separately, since we expect that a reallocation might be more expensive if it also entails a mi-
gration. (See [5,7] for other work that considers migrations separately from other scheduling
considerations, such as preëmptions.)

We call an algorithm that processes such a sequence of scheduling requests a reallocat-
ing scheduler. We show in Section 6 that a reallocating scheduler must allow for some job
migrations and that there is no efficient reallocating scheduler without some form of resource
augmentation; here we consider speed augmentation [26, 33]. We say that an instance is γ-
underallocated if it is feasible even when all jobs sizes (processing times) are multiplied by
γ. In other words, the offline scheduler is γ times slower than the online scheduler.

1.3 Results

This paper gives an efficient m-machine reallocating scheduler for unit-sized jobs with ar-
rival times and deadlines. Informally, the paper shows that as long as there is sufficient slack
(independent of m) in the requested schedule, then every request is fulfilled, the reallocation
cost is small, and at most one job migrates across machines on each request. Specifically,
this paper establishes the following theorem:

Theorem 1 There exists a constant γ as well as a reallocating scheduler for unit-length
jobs such that for any m-machine γ-underallocated sequence of scheduling requests, we
achieve the following performance. Let ni denote the number of jobs in the schedule and ∆i

the largest window size when the ith reallocation takes place. Then the ith reallocation
• has reallocation cost O(min {log∗ ni, log∗∆i}) and
• migration cost at most 1.
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We prove Theorem 1 in stages. In Sections 3 and 4, we assume that job windows are
all nicely “aligned,” by which we mean that all job windows are either disjoint, or else one
is completely contained in the other. In Section 3, we show that the multi-machine aligned
case can be reduced to the single-machine aligned case, sacrificing a constant-factor in the
underallocation. In Section 4, we establish Theorem 1, assuming the windows are aligned
and that m = 1. Finally, in Section 5, we remove the alignment assumption from Sections 3
and 4, again sacrificing a constant-factor in the underallocation.

The crux of our new approach to scheduling appears in Section 4. This section gives
a simple scheduling policy that is robust to changes in the scheduling instances. By con-
trast, most classical scheduling algorithms are brittle, where small changes to a scheduling
instance can lead to a cascade of job reallocations even when the system is highly underallo-
cated. This brittleness is certainly inherent to earliest-deadline-first (EDF) and least-laxity-
first (LLF) scheduling policies, the classical greedy algorithms for scheduling with arrival
times and deadlines. In fact, we originally expected that any greedy approach would neces-
sarily be fragile. We show that this is not the case.

Our new scheduler is based upon a simple greedy policy (“reservation-based pecking-
order scheduling”). Instead of explicitly engineering redundancy, the resiliency of our sched-
uler derives from a basic combinatorial property of the underlying “reservation” system.

1.4 Related Work

We now review related work. Reallocation-style problems have been studied explicitly in
scheduling, combinatorial optimization, and memory and storage allocation. There are many
other domains in which it is possible to identify reallocation problems, even though these
problems have not been studied explicitly in the context of reallocation.

Scheduling and planning. Many reallocation-related questions have been explored in
the scheduling community. One such category of problems is known as “robust scheduling”
(or “robust planning”). In this setting, the goal is to design schedules that can tolerate some
level of uncertainty. See [29, 32] for surveys and [15, 16, 25, 30] for applications to train
and airline scheduling. The assumption in these papers is that the scheduling instance is
approximately static, but there are small changes to the job requirements, or else some error
or uncertainty. The schedule should remain near optimal, despite the error or changes [38].
By contrast, we focus on an arbitrary, worst-case, sequence of requests that may lead to
significant changes in the overall allocation of resources.

Many other papers in the literature work within the similar setting of job scheduling with
reallocations, but with different goals, restrictions, or scheduling problems in mind. Unal et
al. [39] study a problem wherein an initial feasible schedule consisting of jobs with deadlines
must be augmented to include a set of newly added jobs, minimizing some objective function
on only the new jobs without violating any deadline constraints on the initial schedule.
As in the present paper they observe that slackness in the original schedule facilitates a
more robust schedule, but outside of the hard constraints they do not count the reallocation
cost. Hall and Potts [21] allow a sequence of updates and aim to restrict the change in the
schedule, but they evaluate the quality of their algorithm incrementally, rather than with
respect to a full sequence of updates or an offline objective.

More closely related to our setting, Westbrook [41] considers the total cost of migrating
jobs across machines in an online load-balancing problem while also keeping the maximum
machine load competitive with the current offline optimal, which is a different scheduling
problem in a similar framework. Unlike in the present paper, Westbrook considers only
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migration costs and does not include the reallocation cost of reordering jobs on machines.
Sanders et al. [35] consider a similar load-balancing problem with migration costs but no
other reallocation costs; their goal is to study the tradeoff between migration costs and the
instantaneous competitive ratio. See Verschae [40] for more work on job migrations, as well
as more details on robust optimization.

Combinatorial optimization. Resource reallocation has also been studied in other
combinatorial optimization problems. For example, Jansen et al. [24] look at robust algo-
rithms for online bin packing that minimize migration costs.

Some combinatorial reallocation problems are known as “reoptimization problems.”
Consider a hard instance for which you have found a solution. If the problem instance
changes, how hard is it to find a new optimal solution? That is, given an optimal solution for
an input, the goal is to compute a near-optimal solution to a closely related input [1–4, 14].
These papers typically focus on the computational complexity of incremental optimization.
By contrast, we focus here on the cost of changing the schedule (i.e., the cost incurred by
the changes themselves, rather than the cost for computing the new schedule).

Shachnai et al. [36] introduce a model that is closely related to ours. They considered
computationally intractable problems that admit approximation algorithms. When the prob-
lem instance changes, they would like to change the solution as little as possible in order to
reestablish a desired approximation ratio. One difference between their model and ours is
that we measure the ratio of reallocation cost to allocation cost, whereas there is no notion
of initial cost for them. Rather, they measure the ratio of the transition cost to the optimal
possible transition cost that will result in a good solution.

Davis et al. [18] propose a resource reallocation problem where the allocator must assign
resources with respect to a user-determined set of constraints. The constraints may change,
but the allocator is only informed when the solution becomes infeasible. The goals is to
minimize communication between the allocator and the users.

Memory allocation. Memory allocation [28,31,34,45] is a classic example of resource
allocation within operating systems; programs request and free blocks of memory, and there
is some mechanism by which the O/S satisfies these requests. If the allocated blocks can be
moved (e.g., to a new location in physical memory), then the problem of memory allocation
is a reallocation problem.

The focus is typically on the trade-off between time and space: how much time is spent
reallocating memory (and how much performance is sacrificed) versus how much space is
wasted due to poor allocations. This trade-off is explored in papers by Ting [37], Błażewicz
et al. [13], Bendersky and Petrank [12], and Cohen and Petrank [17]. Bender et al. [9] studied
the problem of storage reallocation, i.e., the problem of dynamic memory reallocation where
the blocks are stored on external storage. In this context, the cost of reallocation is much
harder to determine, given the many parameters associated with a disk access. They develop
cost oblivious algorithms that ensure near optimal reallocation cost for a large family of
reallocation cost functions.

Reallocation in other domains. Many existing algorithms, when looked at in the right
way, can be viewed as reallocation problems, e.g., reconfiguring FPGAs [19], maintaining
a sparse array [11, 22, 42–44], or maintaining an on-line topological ordering (e.g., [10, 20,
27]).
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2 Reallocation Model

Formally, an on-line execution consists of a sequence of scheduling requests of the following
form: 〈INSERTJOB, name, arrival, deadline〉 and 〈DELETEJOB, name〉. A job j has integral
arrival time aj and deadline dj > aj , meaning that it must be scheduled in a timeslot no
earlier than time aj and no later than time dj . We call the time interval [aj , dj ] the job’s
window W . We call dj − aj , denoted by |W |, the window W ’s span. We use job j’s span
as a shorthand for its window’s span. Each job takes exactly one unit of time to execute.

At each step, we say that the active jobs are those that have already been inserted, but
have not yet been deleted. Before each scheduling request, the scheduler must output a
feasible schedule for all the active jobs. A feasible schedule is one in which each job is
properly scheduled on a particular machine for a time in the job’s available window, and
no two jobs on the same machine are scheduled for the same time. Notice that we are not
concerned with actually running the schedule; rather, we construct a sequence of schedules
subject to an on-line sequence of requests.

We define the migration cost of a request ri to be the number of jobs whose machine
changes when ri is processed. We define the reallocation cost of a request ri to be the
number of jobs that must be rescheduled when ri is processed.

When the scheduling instances do not have enough “slack” it may become impossible to
achieve low reallocation costs. In fact, if there are n jobs currently scheduled, a new request
may have reallocation cost Θ(n). Even worse, it may be that most reallocations require
most jobs to be moved, as is shown in Lemma 8: for large-enough s, there exist length-s
request sequences, in which Θ(s2) reallocations are necessary. Moreover, for large-enough
s, there exist length-s request sequences in which Θ(s) machine migrations are necessary
(see Lemma 7).

2.1 Underallocated Schedules and Our Result

To cope with Lemmas 7 and 8, we consider schedules that contain sufficient slack, i.e.,
that are not fully subscribed. We say that a set of jobs is m-machine γ-underallocated,
for γ ≥ 1, if there is a feasible schedule for those jobs on m machines even when the job
length (processing time) is multiplied by γ. This is equivalent to giving the offline scheduler
a processing speed that is γ times slower than the online scheduler. When m is implied by
context, we simply say γ-underallocated.

Overloading terminology, we say that a sequence of scheduling requests is γ-
underallocated if after each request the set of active jobs is γ-underallocated.

2.2 Aligned-Windows Assumption

The assumption of aligned windows is used in Sections 3 and 4, but it is dropped in Sec-
tion 5 to prove the full theorem. We say that a window W is aligned if for any nonnegative
integer i, (i) W has span 2i, and (ii) W has a starting time that is a multiple of 2i. If a job’s
window is aligned, we say that the job is aligned. We say that a set of windows (or jobs) are
recursively aligned if every window (or job) is aligned.

Notice that recursive alignment implies that two jobs’ windows are either equal, disjoint,
or one is contained in the other (i.e., the windows are laminar). Dealing with recursively
aligned windows is convenient in part due to the following observation.
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Lemma 1 If a recursively aligned set of jobs is m-machine γ-underallocated, then for any
aligned window W there are at most m |W | /γ jobs with span at most |W | whose windows
overlap W .

Proof The window W comprises |W | timeslots on each of m machines, for a total of m |W |
timeslots. By definition, a γ-underallocated instance is feasible even if the jobs’ processing
times are increased to γ. Thus, there can be at most m |W | /γ jobs restricted to window W .
Since the set of jobs is recursively aligned, if a job has window W ′ that overlaps W and∣∣W ′∣∣ ≤ |W |, then W ′ is fully contained by W . There can be at most m |W | /γ such jobs.

ut

3 Reallocating Aligned Jobs on Multiple Machines

This section reduces the multiple-machine scheduling problem to a single-machine schedul-
ing problem, assuming recursive alignment. The reduction uses at most one migration per
request.

The algorithm is as follows. For every windowW , record the number nW of jobs having
window W . (This count need only be recorded for windows that actually exist in the current
instance, so there can be at most n relevant windows for n jobs.) Number the processors
from 0, . . . ,m− 1.

Our algorithm maintains the following invariant:

Invariant 1 Every machine has between bnW /mc and dnW /me jobs with windowW , with
the extra jobs being assigned to the smallest-numbered machines.

For each window W , we maintain this invariant by assigning jobs to processors round-
robin. If there are nW jobs with window W , a new job with window W is assigned to
machine (nW +1) mod m. When a job with window W is deleted from some machine mi,
then a job is removed from machine (nW mod m) and migrated to machine mi. All job
reallocations and migrations are performed via delegation to the single-machine scheduler
on the specified machine(s).

The following lemma says that by assigning jobs to processors according to Invariant 1,
the instances assigned to each machine are feasible.

Lemma 2 Consider any m-machine 5γ-underallocated, recursively aligned set of jobs J ,
where γ is an integer. Consider a subset of jobs J ′ such that if J contains nW jobs of
window W , then J ′ contains at most dnW /me jobs of window W . Then J ′ is 1-machine
γ-underallocated.

Proof The proof proceeds in two stages. In the first stage, we show that because the m ma-
chines are 5γ-underallocated, an aligned window W on any given machine contains at most
3 |W | /(5γ) jobs. In the second stage, we show that if a machine has at most 3 |W | /(5γ)
jobs in any aligned window W , then that machine is γ-underallocated. If γ happens to be a
power of 2, then that machine is, in fact 5γ/3-underallocated, which is slightly better. (This
second stage proves the converse of Lemma 1, but with the loss of a factor of 5/3.)

We now proceed with stage one, which means showing that despite the ceilings in In-
variant 1, an aligned window W on any given machine contains at most 3 |W | /(5γ) jobs.
Since J is 5γ-underallocated and recursively aligned, by Lemma 1, for any aligned window
W , there are at most m |W | /(5γ) jobs that have windows nested inside W (i.e., overlapping
W and with span at most |W |).
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By the definition of underallocation, no jobs can have windows smaller than 5γ. Thus,
there are fewer than 2 |W | /(5γ) windows with jobs nested inside W . (The factor of two
comes from a geometric series: at most one window of size |W |, two of size |W | /2, four of
size |W | /4, and so forth, up to |W | /5γ of size 6γ.)

The ceilings in Invariant 1 add at most one job for each of these windows. So the total
number of jobs in J ′ with windows nested inside W is at most |W | /(5γ) + 2 |W | /(5γ) =
3 |W | /(5γ), as promised.

We now continue to stage two, which means describing the previous bound in terms
of γ-underallocation. We impose the restriction that all jobs run only at multiples of γ.
This means that, if γ is a power of 2, then we are already done, and the instance is 5γ/3-
underallocated.

If γ is not a power of 2, however, then the job windows may not line up with multiples
of γ. Specifically, a job window might be placed one slot after a multiple of γ and end just
before another, so that the γ − 1 slots in the beginning and of the window cannot hold jobs.
Thus, a window of length |W | γ may only have |W | − 2 slots that are multiples of γ, and
it may need to house 3 |W | /5 jobs. Since |W | ≥ 5γ and by a simple induction on window
size, there are always enough slots for the jobs. ut

4 Reallocating Aligned Jobs on One Machine

This section describes a single machine, reallocating scheduler for unit-sized jobs.

4.1 Naı̈ve Pecking-Order Scheduling is Logarithmic

We first give the naı̈ve solution, which requires a logarithmic number of reallocations per
job insert/delete. This solution uses what we call pecking-order scheduling, which means
that a job k schedules itself without regard for jobs with longer span and with complete
deference to jobs with shorter span. A job k with window W may get displaced by a job
j with a shorter window (nested inside W ), and k may subsequently displace a job ` with
longer window.2

Lemma 3 Let n denote the maximum number of jobs in any schedule and let ∆ denote
the longest window span. There exists a greedy reallocating scheduler such that for every
feasible sequence of recursively aligned scheduling requests, the reallocation cost of each
insert/delete is O(min {logn, log∆}).

Proof To insert a job j with span 2i, find any empty slot in j’s window, and place j there.
Otherwise, select any job k currently scheduled in j’s window that has span ≥ 2i+1. If no
such k exists, the instance is not feasible (as every job currently scheduled in j’s window
must be scheduled in j’s window). If such a k exists, replace k with j and recursively insert k.
This strategy causes cascading reallocations through increasing window spans, reallocating
at most one job with each span. Since there are at most log∆ distinct window spans in
the aligned case, and moreover all jobs can fit within a window of span n, the number of
cascading reallocations is O(min {logn, log∆}). ut

2 At first glance, Lemma 3 seems to contradict the underallocation requirement given in Lemma 8. That
lower bound, however, applies to the general case, whereas this lemma applies to the aligned case.
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4.2 Pecking-Order Reallocation via Reservations Costs O(min{log∗ n, log∗∆})

We now give a more efficient reallocating scheduler, which matches Theorem 1 when the
scheduling requests are recursively aligned. The algorithm is summarized for job insertions
in Figure 1.

The intuition behind reservation scheduling manifests itself in the process of securing a
reservation at a popular restaurant. If higher-priority diners already have reservations, then
our reservation is waitlisted. Even if our reservation is “confirmed,” a celebrity (or the Pres-
ident, for DC residents) may drop in at the last moment and steal our slot. If the restaurant is
empty, or full of low-priority people like graduate students, then our reservation is fulfilled.
The trick to booking a reservation at a competitive restaurant is to make several reservations
in parallel. If multiple restaurants grant the reservation, we can select one to eat at. If a late
arrival steals our slot, no problem, we have another reservation waiting.

Back to our scheduling problem, by spreading out reservations carefully, jobs will only
interfere if they have drastically different spans. Our algorithm handles jobs with “long”
windows and “short” windows separately, and only a “short” job can displace a “long” job.
The scheduler itself is recursive, so “very short” jobs can displace “short” jobs which can
displace “long” jobs, but the number of levels of recursion here will be log∗∆, as opposed
to log∆ in the naı̈ve solution.

There are two components to the scheduler. The first component uses reservations to
guarantee that jobs cannot displace (many) other jobs having “similar” span, so the realloca-
tion cost, if all jobs have similar spans, isO(1). These (over-)reservations, however, consume
timeslots and amplify the underallocation requirements. Applying the scheduler recursively
at this point is trivial to achieve a good reallocation cost, but the required underallocation
would become nonconstant. The second component of the scheduler is to combine levels
of granularity so that their effects on underallocation do not compound. This more efficient
combining is achieved by augmenting the reservations with an allowance system, which al-
lows long jobs to entirely ignore the reservations made by short jobs—only their schedule
matters.

The remainder of the section is organized as follows. We first discuss an interval decom-
position to separate jobs into different “levels” according to their spans. Then we present the
scheduler with regards to a single job level. Finally we discuss how to incorporate multiple
levels simultaneously.

Interval Decomposition

Our scheduler operates nearly independently at multiple levels of granularity. More pre-
cisely, view these levels from bottom up by defining the thresholds L1, L2, . . . by

L`+1 =

{
25 if ` = 0

2L`/4 if ` > 0
.

The base case is chosen to be L1 = 32 because any smaller power of 2 would yield L1 ≥
L2 ≥ · · · , whereas we want increasing thresholds. It is not hard to see that L` is always a
power of 2, growing as a tower function of 4

√
2. It is often convenient to use the equivalent

relationship L` = 4 lg(L`+1)—each threshold is roughly the lg of the next.
For ` ≥ 1, we define a recursive level-` scheduler that handles jobs and windows W

with span L` < |W | ≤ L`+1. The level-0 scheduler handles the base case of windows with
span at most 32, using the naı̈ve scheduler.
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We call a job (or window) a level-` job (window) if its span falls in the range handled
by the level-` scheduler. The following observation is useful in our analysis.

Observation 2 For ` ≥ 1, there are fewer than L`/4 distinct spans that constitute level-`
windows.

This observation follows from the fact that window spans are powers of 2, so there are fewer
than lgL`+1 = L`/4 spans possible.

For ` ≥ 1, we partition level-`windows into nonoverlapping, aligned subwindows called
level-` intervals, each consisting of L` = 4 lgL`+1 timeslots. The reallocation scheduler
operates recursively within each interval to handle lower-level jobs. Because this is pecking-
order scheduling, the recursive scheduler makes decisions without paying attention to the
location of the higher-level jobs, guaranteeing only that each lower-level job is assigned a
unique slot within its appropriate window. In doing so, it may displace a long job and invoke
the higher-level scheduler.

Schedule Level-` Jobs via Reservations

Consider a level-` ≥ 1 window W with span 2kL`, for some integer k ≥ 1 (i.e., W contains
2k level-` intervals). Let x denote the number of jobs having exactly window W .

The window W maintains a set of reservations for these x jobs, where each reservation
is a request for a slot in a given level-` interval. A reservation made by W can be fulfilled;
this means that one slot from the requested interval is assigned to W , and the only level-`
jobs that may occupy that slot are any of the x jobs with window exactly W . Alternatively,
a reservation can be waitlisted; this means that all the slots in the requested interval are
already assigned to smaller windows than W . Which reservations are fulfilled and which
are waitlisted may change over time as jobs get allocated and removed.

We now explain how these reservations are made. Initially, a level-` window W makes
one reservation for each enclosed level-` interval. It makes two additional reservations for
each job having window W . These reservations are spread out round-robin among the in-
tervals within W (and independently of any jobs with any different windows). We maintain
the following invariant:

Invariant 2 For ` ≥ 1, if there are x jobs having level-` window W with |W | = 2kL`, then
W has exactly 2x+ 2k reservations in level-` intervals.
• These reservations are assigned in round-robin order to the intervals in W .
• Each of the enclosed intervals contains either

⌊
2x/2k

⌋
+ 1 or

⌊
2x/2k

⌋
+ 2 of W ’s

reservations, where the leftmost intervals have the most reservations and the rightmost
intervals have the least reservations.

To maintain Invariant 2, when a new job with window W is allocated, W makes two
new reservations, and these are sent to the leftmost intervals that have the least number
(
⌊
2x/2k

⌋
+ 1) of W ’s reservations. When a job having window W is deleted, W removes

one reservation each from the two rightmost intervals that have the most reservations.
We now describe the reservation process from the perspective of the interval, which

handles reservation requests from the < L`/4 level-` windows that contain the interval (see
Observation 2). The interval decides whether to fulfill or waitlist a reservation, prioritiz-
ing reservations made by shorter windows. Each interval I has an allowance allowance(I),
specifying which slots it may use to fulfill reservations. In the absence of lower-level jobs,
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the |allowance(I)| = L`, since the interval has span L`. (When lower-level jobs are intro-
duced, however, the allowance decreases—the allowance contains all those slots that are
not occupied by lower-level jobs.) Thus, the interval sorts the window reservations with re-
spect to span from shortest to longest, and fulfills the |allowance(I)| ≤ L` reservations that
originate from the shortest windows. A fulfilled reservation is assigned to a specific slot in
the interval, while a waitlisted reservation has no slot. The interval maintains a list of these
waitlisted reservations.

The set of fulfilled reservations changes dynamically as insertions/deletions occur.
When a new reservation is made by window W , a longer window W ′ may lose a reserved
slot as one of its fulfilled reservations is moved to the waitlist; if there is a job (of the same
level) in that slot, it must be moved. When a job with windowW is deleted,W has two fewer
reservations, and so may lose two fulfilled slots. If there is a job in either of these slots, then
that job must be moved. (In this case, a longer window W ′ may gain a fulfilled slot, but
this does not require any job movement.) The following invariant is needed to establish the
algorithm’s correctness.

Invariant 3 When a job having window W is newly allocated, W makes two new reserva-
tions. Then the job is assigned to any empty slot for which W has a fulfilled reservation.
There will always be at least one such slot (proved by Lemma 4).

Interestingly, as a consequence of pecking-order scheduling combined with round-robin
reservations:

Observation 3 Which reservations in which intervals are fulfilled and which are waitlisted
is history independent, meaning that which reservations are made is a function of only the
current active jobs, not the preceding sequence of insertions/deletions. The actual placement
of the jobs, however, is not history independent.

Unlike for levels ` ≥ 1, a level-0 window is not decomposed into intervals, and it does
not employ the reservation process. Instead level-0 jobs can be scheduled using the naı̈ve
pecking-order scheduler.

Scheduling Across All Levels

Consider inserting a level-` job j. Suppose j’s window is contained in a higher-level interval
I ′. We schedule j at its own level according to the pecking-order scheduler, without regard
to higher-level schedulers.

Let us first consider the more complicated case that ` ≥ 1. Recall that the first step
of the insertion process is to place two new reservations in level-` intervals. Whenever
the reservations cause another level-` job j′ to move from slot s to slot s′, the allowance
of all higher-level intervals must be updated to reflect the change in slot usage. However,
since both s ∈ I ′ and s′ ∈ I ′, and j′ vacates the original slot s, there is no net change to∣∣allowance(I ′)

∣∣. It is thus sufficient to swap s and s′ for all higher-level intervals I ′, which
may result in a total of one higher-level job movement.

After updating the reservations, the new job j is placed in one of its assigned slots s.
This slot may either be empty, or it may contain a higher-level job h—the scheduler chooses
s without regard to these possibilities. In either case, the slot s will be used by j, so it
must be removed from allowance(I ′) for any ancester interval I ′—meaning the higher-level
scheduler cannot use this slot. If the slot s was empty, then the job j is assigned to that
slot and the insertion terminates. If the slot s was previously occupied by a higher-level job
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• Initially, each level-` ≥ 1 window W has one reservation in each
level-` interval contained in W .

• Initially, each interval I has allowance(I) = I .
• To insert a new level-` ≥ 1 job j with window W :

1. Identify the two underloaded intervals I1 and I2 according to Invariant 2
2. Call RESERVE(I1,W ) and RESERVE(I2,W )
3. Call PLACE(j)

RESERVE(I,W ) // make a reservation in I for level-` window W

1 if there is a slot s ∈ allowance(I) that has not been assigned
2 then fulfill the reservation, assigning slot s to window W and return
3 let W ′ be the longest window with a fulfilled reservation in I ,

and let s be one of its slot
4 if |W ′| ≤ |W |
5 then waitlist the reservation for W
6 else waitlist the reservation for W ′ and take slot s from W ′

7 if there is a level-` job j′ in slot s
8 then MOVE(j′)
9 fulfill the reservation, assigning slot s to W

// Note that though the reservation is fulfilled, the slot
// may be occupied by a higher-level job

MOVE(j′) // level-` job j′ lost the reservation to a slot it occupies
10 let W ′ be the window of j′, and let s be the slot it occupies
11 let s′ be a fulfilled slot, assigned to W ′, not containing any level-` job

// exists by Lemma 4
12 for all ancestor intervals I′ containing W ′

13 do swap s and s′ with regards to reservations and allowances for I′

// both slots are inside I′

if a higher-level job h occupies s′

then schedule h in s instead of s′

14 schedule j′ in slot s′

PLACE(j) // let W be j’s window and let ` be j’s level
15 let s be a fulfilled slot, assigned to W , not containing any level-` job

// exists by Lemma 4
16 schedule j in s, potentially displacing a higher-level job h
17 remove s from the allowance of all higher-level intervals
18 for each ancestor interval whose allowance decreases

// s is only in allowances up to h’s level
19 do adjust the reservations to reflect a smaller allowance,

possibly waitlisting one reservation
20 if a newly waitlisted reservation is for a slot containing a job j′

21 then MOVE(j′)
22 if there is a displaced job h
23 then PLACE(h)

Fig. 1 Pecking-order scheduling with reservations, for levels ` ≥ 1

h, then h is displaced and a new slot must be found. Unlike in the case of reservations,∣∣allowance(I ′)
∣∣ decreases here and we do not immediately have a candidate slot into which

to place h. Instead, we reinsert h recursively using the scheduler at its (higher) level. This
displacement and reinsertion may cascade to higher levels.

In the case that ` = 0, the reservation step is skipped. Instead, the job is placed directly
into an empty slot if possible, or a slot occupied by a job with a strictly longer window.
This process may cause up to lg 32 = O(1) level-0 jobs to move before the last job is



13

• To insert a new level-0 job j with window W :
Call BASEPLACE(j)

BASEPLACE(j)

1 let W be j’s level-0 window.
2 if all slots in W are occupied by level-0 jobs
3 then choose a slot s occupied by level-0 job j′ with strictly longer window
4 schedule j in s, displacing j′

5 BASEPLACE(j′)
6 return

// otherwise, there is a slot available in W
7 choose any slot s in W that is either empty or contains a higher-level job
8 schedule j in s, potentially displacing a higher-level job h
9 remove s from the allowance of all higher-level intervals

10 for each ancestor interval whose allowance decreases
// s is only in allowances up to h’s level

11 do adjust the reservations to reflect a smaller allowance,
possibly waitlisting one reservation

12 if a newly waitlisted reservation is for a slot containing a job j′

13 then MOVE(j′)
14 if there is a displaced job h
15 then PLACE(h)

Fig. 2 The pecking-order scheduler for level-0 jobs.

finally assigned a slot that is not occupied by level-0 jobs. Since the number of level-0
jobs in the enclosing level-1 interval I ′ has increased by 1, the net effect is the same as
above—

∣∣allowance(I ′)
∣∣ decreases by 1. If the level-0 scheduler terminates by displacing a

higher-level job h, then h must be reinserted recursively as above.
Observe that the higher-level scheduler is unaware of the reservation system employed

by the lower-level scheduler. It only knows which slots are in its allowance. These slots are
exactly those that are not occupied by short-window jobs. The interval does not observe the
reservations occurring within nested intervals—only actual job placement matters. When a
lower-level job is deleted, the allowance of the containing interval increases to include the
slot that is no longer occupied.

4.3 Reservation Analysis

We now use the following lemma to establish Invariant 3, which claims that there are always
enough fulfilled reservations. Since the reservations fulfilled by each interval are history
independent (see Observation 3), this proof applies at all points during the execution of the
algorithm.

Lemma 4 Suppose that a sequence of recursively aligned scheduling requests 8-
underallocated. If there are x jobs each having the same window W , then W has at least
x+ 1 fulfilled reservations.

Proof Let |W | = 2kL` for level-` window W . Let y be the number of level-` jobs with
windows nested inside W . Each of those windows makes 2 reservations for each job, plus
an extra reservation to each of the 2k intervals. So the total number of reservations inW is at
most 2(x+y)+2k lgW . In addition, let z be the number of lower-level jobs nested insideW .
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Since we are 8-underallocated, we have 2(x+y)+ z ≤ 2(x+y+ z) ≤ |W | /4 by Lemma 1.
By Observation 2, we have lg |W | ≤ L`/4, and hence 2k lgW ≤ (2kL`)/4 = |W | /4.
Summing these up, we have that at most |W | /2 slots consumed by lower-level jobs and
these reservations.

In order for a particular interval to waitlist even one ofW ’s reservation requests, it would
need to have strictly more than L` of these reservations or lower-level jobs assigned to it.
But there are only |W | /2 slots consumed in total, so strictly less than 1/2 the intervals can
waitlist even one of W ’s reservations. Since window W reserves at least

⌊
2x/2k

⌋
+ 1 slots

in every one of the 2k intervals by Invariant 2, it must therefore be granted strictly more than
(
⌊
2x/2k

⌋
+ 1)(1/2)(2k) ≥ x fulfilled reservations. ut

Since each window W containing x jobs has at least x + 1 fulfilled reservations at
intervals within W , there is always an appropriate slot to schedule a new belonging to this
window. This ensures that each operation leads to only O(1) reallocations at each level.

4.4 Trimming Windows to ni and Deamortization

As described thus far, the reallocation cost of our scheduler depends only on the span of
windows, and we would obtain a reallocation cost for the ith request of O(log∗∆i), where
∆i is the longest window span of all active jobs when the ith request is made. This span ∆i,
however, could be significantly larger than ni, the number of active jobs when the request is
made. To obtain a better performance bound when ni � ∆i, we augment the scheduler to
trim windows according to an estimate on the number of currently active jobs, constructively
making the trimmed span obey ∆i = O(ni).

Note that the naı̈ve pecking-order scheduler obtains a bound with respect to ni (see
Lemma 3), without trimming windows, by preferentially choosing empty slots over occu-
pied slots. Due to the complexity of the reservation system and waitlisting, however, it is not
obvious that such a simple analysis applies here.

To trim window spans to O(ni), the number of active jobs after the ith request, we
maintain a value n∗ such that n∗/4 ≤ ni ≤ n∗. For every job that has a window larger
than 2γn∗, we trim its window—reducing it arbitrarily to span 2γn∗. The adjusted instance
remains γ-underallocated, since there are at most n∗ other jobs scheduled in the trimmed
window with span 2γn∗.

We update n∗ using standard techniques from amortized algorithms. In particular, when-
ever the number of active jobs exceeds n∗, double n∗; whenever the number of active jobs
drops below n∗/4, halve n∗. To achieve good reallocation cost, it is sufficient to rebuild the
schedule from scratch every time the value of n∗ changes. During such a global rebuild, jobs
need not be re-inserted one by one. Rather, first calculate the new schedule (e.g., by simu-
lating a one-by-one reinsertion), then move every job once. Since this rebuilding involves
moving ni ≤ n∗ jobs, and it occurs only after Θ(n∗) insertions or deletions, rebuilding
incurs an amortized reallocation cost of O(1).

This amortized solution can be deamortized, resulting in good worst-case reallocation
costs. The main idea is to rebuild the schedule gradually, performing a little of the update
every time a new reallocation request is serviced. This approach is reminiscent of how one
deamortizes the rebuilding of a hash table that is too full or too empty. Whenever n∗ doubles
or halves, the existing schedule becomes old, and an initially empty new schedule is created.
All subsequent insertion requests are made directly into the new schedule trimming windows
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according to the new value of n∗, and subsequent deletion requests are made into whichever
version contains the deleted job. Active jobs are gradually moved from the old schedule to
the new schedule—with two such movements occurring on each subsequent request—by
deleting any job from the old schedule and re-inserting it into the new schedule. Each new
request thus translates into O(1) requests—the new request plus two additional insertions
and deletions for the movements. By the time n∗ changes again, the old schedule is empty.

The remaining question is how the old and new schedule can coexist within the same
timeline. Our solution is to interleave both schedules, using all even timeslots for one version
and all odd timeslots for the other. As long as the instance of jobs is 2γ-underallocated, then
the interleaved schedule is effectively γ-underallocated.

4.5 Wrapping Up

We conclude with the following lemma, which puts together the various results in this sec-
tion. One factor of 2 in the underallocation comes from the aforementioned deamortization;
if an amortized bound is acceptable, then being 8-underallocated is sufficient.

Lemma 5 For any 1-machine 16-underallocated sequence of recursively aligned schedul-
ing requests, we achieve the following performance. Let ni denote the number of jobs in the
schedule and ∆i the largest window span when the ith reallocation takes place. Then the ith
reallocation has cost O(min {log∗ ni, log∗∆i}).

Proof We consider the performance of the pecking-order scheduler with reservations, where
we maintain an estimate n∗ via deamortized shrinking and doubling and trim all windows
to 2γn∗, for γ = 16.

Lemma 4 shows that there is always a slot available to put a job (Invariant 3), and
hence we observe that there are at most O(1) reallocations at each level of the scheduler.
Specifically, on insertion, the two reservations may result in two calls to MOVE for jobs at the
same level as the one being inserted. Each MOVE results in one reallocation of the job being
moved, plus at most one reallocation at a higher level. Then the call to PLACE may cascade
across all levels, but it in aggregate it only includes one MOVE per level, each causing at
most two reallocations. The total number of reallocations for a single job insertion/deletion
is thus O(1) per level for a total of O(log∗∆i). The deamortization process multiplies this
cost by a constant.

Since the estimate n∗ is always bounded by n∗/4 ≤ ni ≤ n∗, and all windows are
trimmed to 2γn∗, we have the maximum trimmed span of 2γ(4ni) = O(ni). It follows that
the number of levels is O(log∗ ni), which completes the proof. ut

5 Reallocating Unaligned Jobs on Multiple Machine

In this section, we generalize to jobs that are not aligned, removing the alignment assump-
tions that we made in Sections 3 and 4. We show that if S is a γ-underallocated sequence
of scheduling requests, then we can safely trim each of the windows associated with each
of the jobs, creating an aligned instance. Since the initial sequence of scheduling requests is
underallocated, the resulting aligned sequence is also underallocated, losing only a constant
factor.

We first define some terminology. If W is an arbitrary window, we say that
ALIGNED(W ) is a largest aligned window that is contained in W . (If there is more than
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one largest window, choose arbitrarily.) Notice that |ALIGNED(W )| ≥ |W | /4. If J is a set
of jobs, then ALIGNED(J) is the set of jobs in which the window W associated with each
job is replaced with ALIGNED(W ).

Lemma 6 Consider any m-machine 4γ-underallocated set of jobs J , where γ is an integer.
Then ALIGNED(J) is m-machine γ-underallocated.

Proof Assume for the sake of contradiction that ALIGNED(J) is not γ-underallocated. This
implies that there must exist a window W that has > m |W | /γ jobs with trimmed windows
contained in W (as otherwise we could schedule the size γ jobs via a simple inductive
argument). Let J ′ ⊆ J be the jobs whose trimmed windows are contained in W .

Since J is 4γ-underallocated, we now examine an (unaligned) scheduling of the jobs
in J ′ that satisfies the 4γ-underallocation requirement. We observe that all the jobs in
J ′ are scheduled in a region of size at most 4 |W |. However, since the schedule is 4γ-
underallocated, there can be at most 4m|W |/(4γ) jobs in this region of size 4|W |. That
is |J ′| ≤ m|W |/γ, which is a contradiction. ut

From this we can conclude with the proof of Theorem 1:

PROOF OF THEOREM 1. Jobs are scheduled as follows: first, a new job has its window
aligned; second, it is delegated to a machine in round-robin fashion; finally, it is scheduled
via single-machine pecking-order scheduling with reservations. When a job is deleted, it is
removed by the appropriate single-machine scheduler, and then there is at most one migra-
tion to maintain the balance of jobs across machines. This is the only time that jobs migrate.

Let γ = 320. Then Lemma 6 shows that the set of aligned jobs is m-machine 80-
underallocated, and Lemma 2 shows that the aligned jobs assigned to each machine are
1-machine 16-underallocated. Finally, Lemma 5 shows that each single-machine scheduler
operation has cost O(min {log∗ ni, log∗∆i})—and each job addition or deletion invokes
O(1) single-machine scheduler operations. ut

6 What Happens Without Underallocation?

This section explains what happens without underallocation and why migrations are neces-
sary at all.

If migration cost is to be bounded only by reallocation cost and since jobs have unit size,
it is trivial to transform a parallel instance to a single-machine instance by making a single
machine go m times faster. Since migration cost across machines could be more expensive
than rescheduling a single machine, we are interested in providing a tighter bound on the
migration cost. The question then is: are migrations necessary? The following lemma shows
that they are. In fact, the per-request migration cost must be Ω(1) in the worst-case for any
deterministic algorithm.

Lemma 7 There exists a sufficiently large sequence of s job insertions/deletions on m > 1

machines, such that any deterministic scheduling algorithm has a total migration cost of
Ω(s).
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Proof Without loss of generality, assume 6m divides s. Divide the s requests into s/(6m)

consecutive subsequences of 6m requests each. Each subsequence is as follows:
1. Insert 2m span-2 jobs with window [0, 2].
2. Delete the m jobs scheduled on the first m/2 machines.
3. Insert m span-1 jobs with windows [0, 1].
4. Delete all 2m remaining jobs.

After step 1, the only feasible schedule is to put two jobs on each machine. After step 2,
half the machines have two jobs, and the other half of the machines have no jobs. The only
feasible schedule after step 3 is to have on each machine a span-1 job starting at time 0, and
a span-2 job starting at time 1. This means that half of the span-2 jobs must migrate across
machines, causing m/2 migrations. There are thus m/2 migrations for every 6m requests,
or a total of s/12 migrations. ut

It is also easy to see that for some sequences of scheduling requests, if they are not un-
derallocated, it is impossible to achieve low reallocation costs, even if there exists a feasible
schedule.

Lemma 8 There exists a sequence of s job inserts/deletions, such that any scheduling algo-
rithm has a rescheduling cost of Ω(s2).

Proof Consider for example η = s/2 jobs numbered 0, 1, . . . , η−1, where job j has window
[j, j + 2]. With the insertion of one additional job having window [0, 1], forcing the job to
be scheduled at time 0, all η other jobs are forced to schedule during their later slot. If that
job is deleted and another unit-span job with window [η, η + 1] is inserted, then all jobs are
forced to schedule during their earlier slot. By toggling between these two options, all jobs
are forced to move, resulting in cost Ω(η) to handle each request. Repeating η times gives a
total cost of Ω(η2) = Ω(s2). ut

7 Conclusions and Open Questions

The results in this paper suggest several followup questions. First, is it possible to generalize
this paper’s reallocation scheduler for the case where jobs are not unit-sized? Observe that
we are limited by the computational difficulty of scheduling with arrival times and deadlines
when jobs are not unit size; see [6] for recent results with resource augmentation. We are
also limited by the following observation:

Observation 4 Suppose there exist jobs of size 1 and jobs of size k, for any k > 1. For
any reallocation scheduler, there is a sequence of Θ(n) scheduling requests that has aggre-
gate reallocation cost Ω(kn), for k ≤ n, even if the requests are γ-underallocated for any
constant γ.

Proof Consider a schedule of length m = 2γk. Assume there are k unit-sized jobs that are
each scheduled with a window beginning at 0 and ending atm. In addition, consider a single
large job p that has size k and a window of span exactly k.

Initially, all k unit-size jobs are scheduled and they remain in the system throughout.
The large job p is initially scheduled at time slot 0. It is then deleted from time slot 0 and
re-inserted at time slot k, and then again at time slot 2k, 3k, . . . ,m− k. The same sequence
of 2γ insertions and deletions is then repeated n times.

During a single sequence of 2γ insertions and deletions, each of the k unit-sized jobs
has to be rescheduled at least once, resulting in Ω(kn) reallocation cost. ut
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Does there exist a reallocation scheduler that handles jobs whose sizes are integers less
than or equal to k and matching the bounds in Observation 4? There could be applications
where jobs are not unit size, but where k is relatively small.

What happens if other types of reallocations are allowed, such as if new machines can
be added or dropped from the schedule, or if machine speeds can change?

In this paper, γ is impracticably large, and the paper does not attempt to optimize this
constant, preferring clarity of exposition. How much can this constant be improved? Is there
a reallocation scheduler where γ = 1 + ε?

Finally, what other scheduling and optimization problems lend themselves to study in
the context of reallocation?
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