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2 . Bender et al.

1. INTRODUCTION

In classical bin packing the input is a list L = (a1, as,...,a,) of n items. Each
item a; has size s(a;), where 0 < s(a;) < 1. Given an infinite supply of bins of
unit capacity, the objective is to pack the items into a minimum number of bins
subject to the constraint that the sum of sizes of the items in each bin is no greater
than 1. Bin packing has a wide range of applications including stock cutting, truck
packing, commercials assignment to stations breaks in television programming, and
memory allocation. Because this problem is NP-hard (Gary and Johnson, 1979),
most bin-packing research concentrates on finding polynomial-time approximation
algorithms for bin packing. Bin packing is among the earliest problems for which
the performance of approximation algorithms was analyzed (Coffman, Garey and
Johnson, 1996).

This paper investigates the average-case performance of online algorithms for
bin packing, where item sizes are drawn according to some discrete distribution.
An algorithm is said to be online if the algorithm packs each item as soon as it
“arrives” without any knowledge of the items to arrive in the future. That is, the
decision to pack item a; into some particular bin is based only on the knowledge
of items ay, ...,a;—1. Moreover, once an item has been assigned to a bin, it cannot
be reassigned. Discrete distributions have the property that each item size is an
element of some set {si, 2, ..., s} of integers, where s1 < so... < sy, and each
size has an associated rational probability. The capacity of a bin is a fixed integer
B>sjy.

We overload notation and write s(L) for the sum of the sizes of the items in the
list L. For an algorithm A, we use A(L) to denote the number of bins used by A
to pack the items in L. We write OPT to denote an optimal packing algorithm.
Let F be a probability distribution over item sizes. Then L, (F') denotes a list of n
items drawn according to distribution . When F' is clear from the context, we use
L, instead of L,(F). A packing is a specific assignment of items to bins. The size
of a packing P, written || P||, is the number of bins used by P. For an algorithm
A, we use PA(F) to denote a packing resulting from the application of algorithm
A to the list L, (F'). Given a packing P of a list L, the waste for P, the sum of the
unused bin capacities, is defined as W(P) = B || P|| — s(L).

The expected waste of an algorithm A on a distribution F' is

EW,N(F) = EW (P;(F)),
where the expectation is taken over the random variable L, (F).

1.1 Related Work

There are a substantial number of results for the worst-case analysis of algorithms
for bin packing (Coffman, Garey and Johnson, 1996). There are also a number of
results for the average-case analysis, though fewer than for worst-case analysis.

1.1.1 Bin Packing. The average-case analysis of the standard heuristics (Next
Fit, Best Fit, and First Fit) has been performed for the discrete uniform distribu-
tions U{j, k} where the bin capacity is taken as B = k, and item sizes are uniformly
drawn from 1,2,...,7 < k. When j = k — 1, the online Best-Fit and First-Fit al-
gorithms have ©(y/n) expected waste (Coffman et al., 1991 and Coffman et al.,
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1997).

Remarkably, when 1 < j < k — 2, the expected waste of the optimal is O(1)
(Coffman et al., 1991 and Coffman et al., 2000). An algorithm is said to be stable
under a distribution if the expected waste remains bounded even when the number
of items goes to infinity. Coffman et al. (Coffman et al., 1991) proved that Best
Fit is stable when k& > j(j 4+ 3)/2. Coffman et al. (Coffman et al., 1993) showed
that Best Fit is stable under U{k — 2, k} and is also stable for some specific values
of (j,k) with k& < 14. Tt has been shown experimentally that for most pairs (j, k)
the expected waste of Best Fit is ©(n) (Kenyon and Mitzenmacher, 2002).

1.1.2  The Sum-of-Squares algorithm. Here we describe the Sum-of-Squares al-
gorithm for bin packing in discrete distributions. The gap of a bin is the amount of
unassigned capacity in the bin. Let N(g) denote the number of bins in the current
packing with gap g, 1 < g < B. Initially, N(g) = 0 for all g. The sum-of-squares
algorithm puts an item a of size s(a) into a bin such that after placing the item a

B-1
the value of > N(g)? is minimized.
=1

=

Csirik et al. (Csirik et al., 1999), gave experimental evidence that for discrete
uniform distributions U{j,k} (with & = 100 and 1 < j < 98) EWgg is O(1).
They also showed for j = 99, EW{y = O(y/n). Their results indicated that for
Jj = 97,98, and 99 EWg¢(U{j,100}) has values O(1), O(1), ©(y/n) whereas the
expected waste of BF has values ©(n), O(1), ©(y/n).

In a theoretical analysis of the sum-of-squares algorithm (Csirik et al., 2000)
Csirik et al. proved that for any perfectly-packable distribution F', EW{q = O(y/n).
They also proved that if F' is a bounded waste distribution then EW g is either
O(1) or ©(logn). In particular, if F'is a discrete uniform distribution U{j, k} where
j <k —1then EWS5(F) = O(1). They also proved that for all lists L,

SS(L) < 30PT(L).

1.1.3  Memory Allocation. Closely related to the bin-packing problem is the
memory-allocation problem. Memory is modeled as an infinitely long array of
storage locations. An allocator receives requests for blocks of memory of various
sizes and requests for their deallocation arrive in some unknown order. Although
the size of the request is known to the allocator, the deallocation time is unknown
at the time of allocation. The deallocation of a block may leave a “hole” in the
memory. The objective of a memory-allocation algorithm is to minimize the total
amount of space wasted in these holes.

Although memory allocation has been studied since the early days of computing,
only a handful of theoretical results concern the competitive ratios of the standard
heuristics for the problem. For the memory-allocation problem, the competitive ra-
tio of an online algorithm is the ratio between the total amount of memory required
by the algorithm to satisfy all requests to W, the largest amount of concurrently
allocated memory. Luby, Naor, and Orda (Luby, Naor and Orda, 1996) showed that
First Fit (the heuristic which assigns a request to the lowest indexed hole that can
accommodate the request) has a competitive ratio of O{min(log W,log C)}, where
C' is the largest number of concurrent allocations. By Robson’s result (Robson,
1974), this bound is the best possible value for any online algorithm. Robson also
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shows that the worst-case performance of Best Fit (the heuristic that assigns a
request to a smallest hole that is large enough to accommodate it) is O(Wr) where
r is the ratio of the sizes of the largest and smallest requests.

A large body of literature exists for the empirical evaluations of memory al-
location algorithms. A thorough, if slightly dated, review of results for memory
allocation can be found in (Wilson et al., 1995). According to the taxonomy of
memory allocation algorithms in that review, our extension of the Sum-of-Squares
bin packing algorithm to memory allocation can be categorized as a Sequential-Fit
algorithm.

Traditionally memory-allocation algorithms were empirically studied using ran-
dom simulations that created synthetic traces (sequences of allocations and deallo-
cations) using distributions that were presumed to resemble the memory allocation
patterns of real programs. The main argument against this way of evaluating allo-
cators is that real programs usually allocate memory in a limited number of sizes,
and with very different probabilities for each size (Zorn and Grunwald, 1994 and
Wilson et al., 1995). The emphasis lately has been on evaluating memory alloca-
tion algorithms using real trace data (Johnstone, 1997), although carefully chosen
distributions continue to be used as well (Berger et al., 2000).

Although a number of application-specific memory allocators have been devel-
oped, it has been empirically shown that in most cases general purpose allocators
perform at least as well as or better than these custom allocators (Berger et al.,
2002). Further, it has been observed that for most real-world allocation patterns
the standard heuristics have very low “wastage” due to fragmentation (Johnstone
and Wilson, 1998). Doug Lea’s algorithm for memory allocation (Lea) is considered
to be one of the best algorithms for memory allocation. It uses an approximation
of the Best-Fit heuristic.

1.2 Results

In this paper we study the performance of the sum-of-squares algorithm and its
variants. We present faster variants of the sum-of-squares algorithm for the online
bin-packing problem. We also show the results of applying the sum-of-squares
algorithm to memory allocation.

We performed our experiments with the uniform distribution U{j, k}. We have
also run our algorithms on interval distributions and other discrete distributions,
especially those that are claimed to be difficult in (Csirik et al., 2006). For the
memory-allocation problem we used both real traces from allocation-intensive pro-
grams and synthetically generated traces that model memory allocation behavior
of real programs.

—In Section 2 we present our variants for the sum-of-squares algorithm. The first
is the SSmax(2+v/B) variant, which runs in O(nv/Blog B) time. Our experiments
suggest that the performance of this algorithm is close to the SS algorithm, for all
the distributions mentioned in (Csirik et al., 1999, Csirik et al., 2000 and Csirik
et al., 2006). The remaining algorithms form a family called the segregated
sum-of-squares algorithms (SSS). These algorithms perform well in most of the
distributions mentioned in the above papers. But on some distributions they
do not have the same expected waste as SS. The best runtime in this family is

ACM Journal Name, Vol. 2, No. 3, 09 2001.



Sum-of-Squares Heuristics . 5

O(nlog B).

—In Section 3 we applied SS to the related problem of online memory alloca-

tion. Our experimental comparisons between SS and Best Fit (which has been
experimentally observed to have among the least amount of fragmentation for
real traces) indicate that neither algorithm is consistently better than the other.
Smaller allocation durations appear to favor Best Fit, while larger allocation du-
rations favor SS. Also, if the number of possible request sizes is low (as happens
in most real-world situations), SS appears to have lower waste than Best Fit,
while larger amounts of randomness appear to favor Best Fit.
For interval distributions an interesting phenomenon we observed is that for every
possible range of request sizes there exists a lower bound on the time duration
from which point onwards the sum-of-squares algorithm has lower waste than
Best Fit. In the online memory-allocation problem SS does not seem to have
a consistent asymptotic advantage over Best Fit, in contrast to the bin-packing
problem.

2. FASTER VARIANTS OF THE SUM-OF-SQUARES ALGORITHM

In this section we present variants of the sum-of-squares algorithm. The SSmax(2v/B)
variant of Section 2.2.1 runs in O(n+v/Blog B) time and appears to have an expected
waste remarkably close to that of SS. Experimental results indicate that the seg-
regated sum-of-squares family of algorithms (Section 2.2.2) run faster, but in some
cases, have ©(n) expected waste when SS has ©(y/n) waste.

2.1 Sum-of-Squares Algorithm

The sum of the sizes of items in a bin is the level of the bin. The gap of a bin is the
amount of its unused capacity. If the level of a bin is ¢, then its gap is B—/¢. Let P
be a packing of a list L of items. Let the gap count of g, N(g), denote the number
of bins in the packing that have a gap of g, 1 < g < B. We call N the profile vector
for the packing. We ignore perfectly packed bins (whose gap is 0) and completely

B-1
empty bins. The sum-of-squares for a packing P is ss(P) = > N(g)2.
g=1

The sum-of-squares algorithm is an online algorithm that works as follows. Let
a be the next item to pack. It is packed into a legal bin (whose gap is at least
s(a)) such that for the resulting packing P’ the value of ss(P’) is minimum over all
possible packings of a.

When an item of size s arrives, there are three possible ways of packing the item

(1) Open a new bin: Here the sum of squares increases by 1+ 2N (B — s).
(2) Perfectly fill an old bin: Here the sum of squares decreases by 2N (s) — 1.

(3) Put the item into a bin of gap g where g > s: Here the sum of squares increases
by 2-(N(g —s) — N(g) +1). This step requires finding a g which maximizes
the value of N(g) — N(g — s).

Each time an item arrives, the algorithm performs an exhaustive search to evalu-
ate the change in ss(P) and finds an appropriate bin in O(B) time. In (Csirik
et al., 2006) the authors discuss variants of the original SS algorithm. They
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present O(nlog B) and O(n) variants that approximate the calculation of the sum-
of-squares. The authors prove that these variants have the same asymptotic growth
rate for expected waste as SS, but with larger multiplicative constants. For exam-
ple, they considered the distribution U{400,1000}. For n = 100,000 items, they
state that the number of bins used by the variant is 400% more than optimal,
whereas Best Fit uses only 0.3% more bins, and SS uses 0.25% more bins than
necessary. The situation does improve in favor of their variant for larger values of
n. For n = 107, the variant uses roughly 9.8% more bins than optimal, but SS
uses 0.0025% more bins than necessary. The authors claim their fast variants of SS
are “primarily of theoretical interest” and that they are unlikely to be competitive
with Best Fit except for large values of n.

They also looked at other generalizations of the sum-of-squares algorithm. In-
stead of considering the squares of the elements of the profile vector, they examined
the rth power, for » > 1. These generalizations yield various SrS algorithms. For
all finite » > 1, SrS performed qualitatively the same as SS. For the limit case
of r = 1 (S1S), the resulting algorithm is one that satisfies the any-fit constraint.
That is, the algorithm does not open a new bin unless none of the already open bins
can accommodate the new item to be packed. Best Fit and First Fit are examples
of algorithms that satisfy the any-fit constraint. The SocoS algorithm chooses to
minimize the largest value in the profile vector. This variant has been empirically
observed to have an optimal waste for the uniform distributions U{j, k}. However,
the authors provide examples of distributions for which ScoS has linear waste while
the optimal and SS have sublinear waste.

2.2 Our Variants

Our variants try to approximate the behavior of the sum-of-squares algorithm in
order to decrease the runtime while retaining the performance in qualitative terms.
By attempting to minimize the value of ss(P’), SS effectively tries to ensure that
it has an approximately equal number of bins of each gap g, where 1 < g <
B. Intuitively, the value of ss(P’) can usually be reduced by lowering the largest
gap count. However, minimizing the largest value in the profile vector alone is
insufficient, as the SocoS experiments indicate (Csirik et al., 2006). Nevertheless, this
insight plays a key role in our variants for the sum-of-squares algorithm. Instead of
examining all possible legal gaps for the best possible gap (as SS does), we examine
only the k largest gap counts, for some value of k.

2.2.1 Parameterized SSmax Algorithm. The SSmax (k) parameterized algorithm
is based on the ScoS variant mentioned above. The right choice for k is discussed
later in this section. To pack an item a, SSmax (k) considers a limited set of options:

——place a in an empty bin,

—place it in a non-empty bin with gap s(a) if one exists, thus perfectly packing
the bin, or

—place a in a bin whose gap is one of the k highest gap counts (among those gaps
whose sizes are at least as big as s(a)).

It chooses that option which minimizes the resulting value of ss(P). (Note that

when we set k = B, we get the original SS algorithm. Also note that SSmax(1)
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Distribution Gaps ranked < 2vB (%) | New bins included (%)
U {10,100} 94.49 100

U{30,100} 84.50 100

U{60, 100} 69.50 100

790,100} 51.82 97.33

U{97,100} 16.68 95.74

U{98,100} 1825 97.83

U{99,100} 1934 99.44

U{18..27,100} 15.20 67.70

U{11..13,15..18,51} | 71.41 100

Table I.  Fraction of gaps ranked < 2v/B selected by SS when packing a new item.

is not the same as ScoS, given that the latter does not consider the gap with size
s(a) unless that gap has the highest count, nor does it start a new bin unless this
is unavoidable.) Using a tournament tree (Horowitz, Mehta and Sahni, 2006), we
can find the k largest gap counts in the profile vector in O(klog B).

Ezxperimental Results. When given a new item to pack, SS performs an exhaustive
search to find a gap which minimizes ss(P). This takes O(B) time per item.
Our goal was to create an algorithm that approximates the performance of SS
by computing the change in ss(P) at some k = o(B) gaps. Although the ScoS
algorithm fails to perform as well as SS on some distributions, it does suggest
that it might be worthwhile to examine the largest gap counts. To this end, we
performed the following experiment: We dynamically ordered gaps by decreasing
gap counts and tracked the ranks of the gaps chosen by SS when it packed items.
We observed in almost all the distributions we examined that when a new item
arrives SS almost always choses either to:

(1) use a gap that had a rank < 2v/B, or
(2) open a new bin.

(See Table I for some uniform and interval distributions.) Further, for the uniform
distributions U{j, B}, and especially when j << B, SS chose the highest ranked
gap to accommodate new items. This explains why ScoS works as well as SS for
uniform distributions. We ran most of our experiments on SSmax with & set to
2v/B.

We selected a number of distributions on which to test the performance of
SSmax(2v/B). Our first category of distributions included the uniform and in-
terval distributions used by Csirik et al. (Csirik et al., 1999) to compare SS against
Best Fit. The second category included all distributions mentioned in (Csirik et
al., 2006) in which ScoS had linear waste but SS has sublinear waste.

Of particular interest are the interval distributions U{18..5, 100}, for 18 < 5 < 99.
In (Csirik et al., 1999) the authors present a figure that shows the optimal waste
for these distributions. As j increases from 18 to 99, the optimal waste undergoes a
large number of transitions. We wanted to verify that SSmax(2v/B) has the same
order of waste as SS though all the transitions.

We also considered uniform distributions, but with large bin sizes to see ensure
that the choice of k = 2v/B was not merely applicable to small values of B. Note
that for very small values of B, the value of 2v/B is fairly close to that of B. As one
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Item sizes:

11-13,15-18, Bin size: 51 105 106 107 108 109

SS 9538 31272 97650 300121 516184
SSmax(2v/B) 9559 31314 97665 300172 516388
SSmax(1) 316247 | 3161114 | 3.159x107

SSS(sqrt) 19259 | 144570 | 1287001 12281857 | 1.237x108
18-27, Bin size: 100 10° 10% 107 108 109

SS 8639 25454 76259 229869 622198
SSmax(2v/B) 12333 | 36082 108789 327609 943798
SSmax(1) 939548 | 9409415 | 9.399x107

SSS(sqrt) 146468 | 1447068 | 1.444x107 | 1.443x108
1,11-13,15-18, Bin size: 51 | 10° 10% 107 108 109

SS 585 595 635 414 628
SSmax(2vB) 525 537 594 465 577
SSmax(1) 26422 | 2639009 | 2.64x107

SSS(sqrt) 1130 1236 1278 1026 1648

Table II. Comparison of waste for SS, SSmax(2v/B), SSmax(1), and SSS(sqrt) for various dis-
crete distributions with the number of items n € {105, 10,107, 108, 109}. The waste of SS and
SSmax(2v/B) are of the same order of magnitude. SSmax(1) has linear waste for all three distri-
butions. SSS(sqrt) has linear waste for the first two distributions while SS has sublinear waste.

would expect in such cases, the performance of SSmax(2v/B) is virtually identical
to that of SS.

Finally, we ran experiments to see if SSmax(k) for & much smaller than 2v/B
would perform just as well as SSmax(2v/B). In these experiments k took values in
{1,1og B,VB}.

For each of the distributions mentioned above, we observed that the performance
of SSmax(2v/B) matched that of SS to within a factor of 1.4. In many cases the
factor is as low as 1.02. (See Table II and Figure 1 for results from some of the
distributions.)

Note that in Table II and other tables when it becomes clear that the growth
rate of an algorithm is linear in n, we did not run experiments for n = 10% and
n = 10°. In all other cases, we used 100 samples for n € {10° 10}, 25 samples for
n € {107,108}, and 3 samples for n = 10°.

Table IIT shows that for the interval distributions U{18..j, 100}, for 18 < 5 <99,
SSmax(2v/B) does indeed track the performance of SS. Setting k to VB, log B or
1 results in SSmax(k) having suboptimal waste for one or more distributions.

We also compared the waste of this algorithm with SS for the distributions
U{j,100}, U{j,200} and U{j,1000}. As our results in Table IV, and Figure 2
show, the performance of the SSmax(2v/B) algorithm is remarkably similar to that
of the SS algorithm.

Our experiments thus indicate that the sum-of-squares minimization is suffi-
ciently robust that it is not necessary to compute it precisely to receive its benefits.

2.2.2  Segregated Sum of Squares Variants. All Segregated Sum-of-Squares al-
gorithms (SSS) divide the profile vector N into some number ¢ of approximately
equal-sized contiguous sections of the vector. Each section thus has at most [B/t]
gaps. For each section the algorithm maintains the gaps in a heap, whose top el-
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Fig. 1. Comparison of waste for SS, SSmax(2v/B), SSmax(1), and SSS(sqrt). (a) Item sizes
uniformly drawn in the range 11-13,15-18 with bin size = 51 (block 1 of Table II). (b) Item sizes
uniformly drawn in the range 18-27 with bin size = 100 (block 2 of Table II). In both figures, the
curves represent plots for the number of items packed vs waste/sqrt(number of items). In both
(a) and in (b), SS and SSmax(2v/B) are horizontal lines and are indistinguishable, and hence they
are ©(y/n) waste. Other algorithms in these graphs have linear waste.
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Fig. 2. Comparison of waste for SS and SSmax(Q\/E). In both figures, the curves represent plots
for the number of items packed vs waste. (a) Item sizes are uniformly drawn in the range 1-150
with bin size = 200 (block 2 of Table IV). Both SS and SSmax(2v/B) appear to have constant
waste. (b) Item sizes are uniformly drawn in the range 1-990 with bin size = 1000 (block 3 of
Table IV). The waste of SS and SSmax(2v/B) are of the same order of magnitude.
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Table III.  Orders of magnitude of wastes measured under distributions U{18..5,100}.

ement is a gap with the largest count. To pack an item a of size s, the algorithm
considers the following options:

—place a in an empty bin,

—place it in a non-empty bin with gap s if one exists, thus perfectly packing the
bin,

—place a in a bin with gap in the set {s+ 1,5+ 2,...,s+ ¢}, or

—place a in a bin whose gap is the top element in a section that contains gaps
larger than s.

It chooses that option which minimizes the resulting value of ss(P). Thus, the best
gap size can be selected in ©(t) steps. The choices of ¢ differentiate the various
members of the SSS family. The two values of ¢ we experimented with were VB
and log B.

Ezperimental Results. We ran our experiments on the U{j, k} distributions. For
B = k = 100, for each value of j from 1 to 99, and for each of n € {10°, 105, 107,
108, 10%}, we computed the average waste of SS, BF, SSS(sqrt), and SSS(log). We
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U{j,100} k =2vB

j=12 [ SS | SSmax(k) || j=75 | SS | SSmax(k) || j=99 | SS SSmax (k)
105 [ 40 | 42 900 | 974 32302 | 32287
108 | 47 | 57 916 | 982 108251 | 108176
107 | 52 | 52 680 | 776 308919 | 308223
108 | 45 | 45 923 | 1014 876747 | 876354
U{j,200} k =2vB
j=24 | SS [ SSmax(k) | j=150 | SS SSmax(k) [ j=198 | SS SSmax (k)
105 | 117 | 117 3094 | 3574 82875 83680
106 |91 [ a1 2691 | 2895 193144 | 193332
107 | 63 | 63 3920 | 3723 541186 | 538786
1085 [ 78 |78 3639 | 3684 1908245 | 1908852
U{j,1000} k =2vB
j=120 | SS SSmax(k) || j=400 | SS SSmax (k) || j=990 | SS SSmax (k)
10° 253 | 253 4432 | 8062 977566 | 959566
10° 876 | 876 5139 | 8328 2552676 | 2498732
107 580 | 580 5020 | 8031 5201380 | 5086175
108 672 | 672 4882 | 8081

Table TV. Comparison of waste for SS and SSmax(2+/B) for various uniform distributions U{7, k}.
Here the item sizes are drawn at random between 1...j and k denotes the bin size. The number
of items n € {105,106,107,108}. The waste of SS and SSmax(2v/B) are of the same order of
magnitude. For j = 99, both SS and SSmax(2v/B) have ©(y/n) waste. In all the other cases both
algorithms have constant waste.

averaged the waste over 100 runs for n € {10°,10°}, over 25 runs for n € {107,108},
and over 3 runs for n = 10°. We know from (Coffman et al., 2000) that EWjpp =
O(1) for j <k —2 =98, and EW}pp = O(y/n) when j = k —1 = 99. We have
summarized the results in Table V, showing the waste for j at 12, 25, 75, 97, 98
and 99.

The experiments show all versions of the SSS algorithms have the constant-waste
property for j < 98, and appear to have qualitatively the same waste as SS for
7 =99. Both SSS algorithms appear to be within 0.80% of SS in terms of waste.

The SSS variants, however, do not fare as well on some of the interval distribu-
tions. Table II suggests for some of the distributions, SS has sublinear waste, while
the SSS(v/B) algorithm appears to exhibit linear waste.

The variants we have presented are uncomplicated algorithms that are easily
implemented.

3. MEMORY ALLOCATION

Researchers have long observed the similarity between bin packing and memory
allocation (Dyckhoff, 1990, Coffman and Leung, 1977, and Coffman and Leighton,
1986). A number of heuristics that apply to bin packing translate directly to
memory allocation and vice-versa. Since the sum-of-squares algorithm is effective
for bin packing (Csirik et al., 2006), we also study the algorithm in the context of
memory allocation.
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j=12 10° 108 107 108 10°

SS 46 48 53 50 18
SSS(sqrt) | 46 49 53 50 18
SSS(log) | 46 48 53 50 18

BF 46 49 53 50 18

j=25 10° 108 107 108 10°

SS 60 62 58 53 68
SSS(sqrt) | 61 63 58 53 68
SSS(log) | 61 63 58 53 68

BF 177 834 7322 71893 728368
=75 10° 106 107 108 109

SS 920 902 917 873 1041
SSS(sqrt) | 934 906 927 902 1025
SSS(log) | 1003 | 953 973 933 1008

BF 43448 | 425606 | 4243029 | 42460163 | 424241908
j=97 10° 106 107 108 109

SS 22546 | 44786 | 70274 69163 75352
SSS(sqrt) | 22456 | 44721 | 70604 69663 75932
SSS(log) | 22171 | 44391 | 70244 69493 75452
BF 23176 | 53006 | 100244 | 1791953 | 1.766107
j=98 10° 10% 107 108 109

SS 25863 | 69799 | 153116 | 231056 254947
SSS(sqrt) | 25523 | 69639 | 153076 | 232996 256707
SSS(log) | 25453 | 69224 | 152036 | 231396 255127
BF 24068 | 78129 | 178346 | 254016 214507
j=99 10° 10% 107 108 109

SS 33996 | 107707 | 354053 | 1089447 | 2848891
SSS(sqrt) | 33772 | 107207 | 354003 | 1079132 | 2484005
SSS(log) | 33651 | 106743 | 352245 | 1076027 | 2832558
BF 26330 | 88169 | 302489 | 950047 27843191

Table V. Comparison of SSS algorithms with SS and BF for various uniform distributions, where
items sizes are drawn in the ranges 1...j for j = 12,25,75,97,98,99 and bin size = 100, and the
number of items n € {10°,10%,107,108,10%}. All variants of SS have waste of the same order of
magnitude as SS. BF has linear waste when j € {25,75,97,98}, while SS has sublinear waste for
those values of j.

3.1 Memory Allocation

Closely related to the bin-packing problem is the memory-allocation problem in
paged-memory operating systems. In this online problem, memory is represented
as an infinitely long array of storage locations. Requests for blocks of memory of
various sizes, and requests for their deallocation arrive over time. Although the
size of the request is known to the allocator, the deallocation time is unknown at
the time of allocation. When an allocation request arrives, it must be satisfied by
assigning a contiguous set of free memory locations. Once an allocation has been
made, the block cannot be moved until it is deallocated. The deallocation of a block
may leave a “hole” in the memory. The objective of a memory allocation-algorithm
is to minimize the total amount of space wasted in these holes.
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3.2 Sum-of-Squares Algorithm for Memory Allocation

The algorithm maintains a list L of free blocks of memory. It also maintains a
profile vector P, which lists the number of free blocks of each size. (The block
sizes that have a zero count are not explicitly stored in the vector.) When a new
request for allocation arrives, the algorithm computes, for each block size that is
sufficiently large to satisfy the request and has nonzero count, the sum-of-squares
that would result of a block that size were used to satisfy the request. The algorithm
selects a block that has the minimum sum-of-squares value. When a free block is
selected the requested memory is allocated from the beginning of the block. The
selected block is deleted from the list L and a new block that represents the left-
over portion of the block is inserted into L. If a request does not fit into any of the
free blocks, then we “enlarge” memory to accommodate the new request. When
a deallocation request arrives, we obtain a free block and it is added into L. If
the newly deallocated block is contiguous with a previously deallocated block (or
blocks) in L, these blocks are merged to form one larger free block. Free blocks
at the end of memory are discarded and the memory “shrinks” to end at the last
allocated block. In all cases, the profile vector P is updated appropriately.

3.3 Experimental Results

We compared the performance of the SS algorithm for memory allocation against
Best Fit, which is among the best-performing algorithms for memory allocation
(Berger et al., 2002, and Johnstone and Wilson 1998). Two of our experiments
involved real traces from allocation-intensive programs, namely espresso, a program
for logic circuit optimization, and cfrac, a program for factoring integers based on
the method of continued fractions. For espresso we used the largest sample input
file provided with the software. For cfrac we used as input a 52 digit integer. The
rest of the experiments were based on synthetic traces. The parameters for our
experiments in memory allocation were

—the distribution of request sizes, and

—the distribution of request durations.

Traditionally, synthetic traces for memory allocation have used exponential dis-
tributions for request sizes and distributions. However, according to (Zorn and
Grunwald, 1994), interval distributions (as represented by their MEAN model)
are almost as accurate as more complex distributions in modeling the memory al-
location behavior of real programs. Further, according to (Wilson et al., 1995),
exponential distributions are unrealistic in modeling request durations. Therefore,
we restricted our experiments to interval distributions.

For our experiments with real traces we compared the maximum amount of live
data in a run against the maximum amount of memory used by the allocator in
that run. This is similar to one of the measures of fragmentation in (Johnstone and
Wilson, 1998). Note that these events may not occur at the same time in a run.

Table VI shows the results of our experiments. We observed very similar per-
formance for both algorithms. CFRAC does not deallocate most of the blocks it
allocates—this explains the very low fragmentation.
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Program | Maximum Max. usage | Max. usage | Frag. Frag.
live memory | (SS) (BF) (SS) (BF)
Espresso 158187 168624 168396 6.59% 6.45 %
Cfrac 2413594 2413597 2413597 0.00012% | 0.00012%
Table VI. Comparison of SS and Best Fit for real traces.

For the synthetic traces we measured the waste of the algorithm (as the sum of
the blocks on the free list) after each request was assigned a block of memory. The
waste of the algorithm for a run is the maximum waste taken over all the allocation
requests. While this might seem like an unconventional measure of performance
for memory allocation algorithms, it is indeed a reasonable measure because, after
a while, allocation and deallocation requests result in a “stable state” where the
amount of new blocks being created is almost exactly matched by existing blocks
being deleted.

The value of the request size, B, ranged from 1 to 2000. The values of the request
duration, ¢, ranged from 1 to 21,000.

The experiments indicate that neither algorithm is consistently of lower waste
than the other for these distributions. Even when an algorithm has a lower waste
than the other, both algorithms seem to have waste of the same order of magnitude.
Figure 3(a) is a typical example of the scenario where BF has lower waste than SS.
Our experiments suggest that BF appears to have an advantage over SS when
the duration of the requests are small. Figure 3(b) is a typical example of the
scenario where SS has lower waste than BF. Figure 4(a) shows the difference in
waste between the two algorithms as the request size increases. The difference
between the waste of BF and that of SS also increases as the longevity of the
allocation requests increases (Figure 4(b)). Our experiments also suggest that for
every possible range of request sizes there exists a lower bound on the time duration
from which point onwards the sum-of-squares algorithm has lower waste than Best
Fit (Figure 5).

Our experiments suggest that in the online memory-allocation problem SS does
not seem to have an asymptotic advantage over Best Fit for the uniform and interval
distributions, in contrast with the bin-packing problem. In bin packing SS performs
well since it tries to maintain an equal number of bins for each gap size. So when
an item arrives, the allocator finds a suitable gap size and is able to pack a bin
perfectly.

A possible explanation for the behavior of the algorithms indicated by our exper-
iments is as follows. In our experiments with synthetic traces the request size and
the duration are uncorrelated (they are independent random variables). So when
the system reaches a steady state where the rate of allocation and deallocation are
the same, most of the time the Best-Fit allocator is able to find a hole of an ap-
propriate size for any request. Deallocation provides Best Fit the same advantage
that helps SS perform well in bin packing.
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Fig. 3. Comparison of the waste of Best Fit against Sum of Squares for memory allocation. These
are plots of the number of allocation requests vs. waste. (a) Duration range is 500-599, and size
range is 100-199. The size range and the duration range are fixed. Best Fit has lower waste, but
the waste appears to be of the same order as for Sum of Squares. (b) Duration range is 3000-3099,
size range is 150-249. The size range and the duration range are fixed. Best Fit has higher waste,
but the waste appears to be of the same order as for Sum of Squares.
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Fig. 4. Comparison of waste of Best Fit and Sum of Squares for memory allocation. (a) The is
a plot of request size vs. waste. Duration range is 500-599. The number of allocation requests is
5000. The duration range and the number of allocation requests are fixed. The difference in waste
increases as the block size increases. (b) This is a plot of request duration vs. waste. Block size
range is 101-200. The number of allocation requests is 20,000. The difference between the waste
of BF and SS increases as item duration increases.
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Fig. 5. Comparison of SS and BF over a range of parameters of request sizes and durations. For
all points above the curve SS has lower waste than BF. For all points below the curve, BF has
lower waste than SS.
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