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Abstract

We present ceasar, a centerline extraction algorithm that
delivers smooth, accurate, and robust results. Centerlines
are needed for accurate measurements of length along wind-
ing tubular structures. Centerlines are also required in au-
tomatic virtual navigation through human organs, such as
the colon or the aorta, as they are used to control move-
ment and orientation of the virtual camera. We introduce a
concise but general de�nition of a centerline, and provide an
algorithm that �nds the centerline accurately and rapidly.
Our algorithm is provably correct for general geometries.
Our solution is fully automatic, which frees the user from
having to engage in data preprocessing. For a number of
test datasets, we show the smooth and accurate centerlines
computed by our ceasar algorithm on a single 194 MHz
MIPS R10000 CPU within �ve minutes .

1 Motivation

Many aspects of complicated 3D shapes are often better un-
derstood and handled when the shapes are reduced to their
1D centerlines. For example, automatic virtual navigation
through a human colon [6] uses the colon centerline to control
the movement and orientation of the virtual camera. Simi-
larly, accurate length measurements and navigation through
other tubular human organs such as the aorta require center-
line computations. In addition, �nding an optimal path of
minimal collision-probability [5] through tubular structures
in virtual engineering and architectural designs also poses
the same centerline �nding problem.
In this paper we �nd centerlines in binary discretized 3D

occupancy maps of tubular structures. We use segmented
medical CT and MRI scans as our input data. However, the
techniques that we develop are general and may be readily
applied to other domains, because our assumptions are not
speci�c to the source of the data.

2 Overview of Centerline Algorithms

The intuitive notion of a centerline of a 3D object is the
central path through that object. Surprisingly, even when
restricting the shape to non-treelike tubular structures such
as a human colon, it is challenging to construct a formal
mathematical de�nition of its centerline. There has been
extensive work on this topic. We summarize here traditional
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centerline algorithms along with their concepts of what a
centerline should be.
All centerline algorithms assume that the data is pre-

sented as a 3D rectilinear grid called a volume [8] of vol-
umetric sample points called voxels [8]. Two voxels are 6-
connected if at most one of their 3D coordinates di�ers by
1, 18-connected if at most two coordinates di�er by 1, and
26-connected if all three coordinates are allowed to di�er.
A 6/18/26-connected path through this data is a sequence
of 6/18/26-connected voxels. A discrete centerline is such
a path whereas a continuous centerline is an unrestricted
continuous curve in 3D space.
There have been many methods for creating a continuous

centerline from a discrete centerline by using interpolating
and approximating curves [1, 3, 4, 7, 10]. All these methods
employ regularly spaced discrete voxel positions as the con-
trol points. Consequently, a large number of control points
is required to ensure the high accuracy needed to keep the
centerline inside the colon in narrow colon regions. How-
ever, in wide colon sections larger di�erences between the
continuous and discrete centerlines are acceptable. This ar-
rangement is even preferred, if it uses fewer control points,
and thus generates a smoother path and requires fewer com-
putational resources.

2.1 Radiologist Markings

The most basic recipe for �nding the centerline of a colon is
to defer to the expertise of a radiologist [3]. In this least au-
tomated method, the radiologist is provided with a sequence
of 2D cross sections of the colon. On each cross section the
radiologist manually marks the \center" of the cross sec-
tion. Then, all of the centers of cross sections are connected
to form a path, which is then de�ned to be the centerline.
Unfortunately, this method has some severe practical and

fundamental drawbacks. Practically, it is expensive to rely
on the radiologist to click on the centers of all cross sections.
Figure 1 explains the more fundamental drawback. Placing
markings that are optimal in 2D cross sections is insuÆcient
to create an optimal centerline in 3D. In fact, this method
may lead to paths that are non-centered and even penetrate
through the colon wall.

2.2 DSF and Dijkstra Shortest Path

Many centerline algorithms use the Dijkstra shortest path
graph algorithm [2] as an intermediate step. The Dijkstra al-
gorithm provably �nds the global minimal weight path in an
undirected weighted graph with non-negative weights. The
algorithm has two phases. The �rst creates a distance from
source field (DSF) by labeling all graph vertices with the
shortest distance from a single source to those vertices. The
second phase creates the shortest path by tracing back to the
source node. Note that this backtrace is not the same as the
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Figure 1: (a) Colon penetrating centerline found by Radiol-
ogist markings. (b) A better centerline is shown that can not
be found using only 2D context.

steepest descent in the DSF. In order to apply the Dijkstra
algorithm to our centerline algorithm, the volume data has
to be transformed into a graph. We implicitly map voxels to
graph vertices and voxel neighbor relations to graph edges
(for more details see Section 3.2 and Figure 4a).
The centerline algorithms using steepest descent or Dijk-

stra's method di�er in how they assign the weights corre-
sponding to orthogonal, 2D-diagonal, and 3D-diagonal ver-
tex neighbor relations. The algorithms employ the 1-0-0
Manhattan metric [15] (only orthogonal neighbors), the 1-
2-3 metric [18] (also diagonal neighbors, but with higher
distance weights), the 3-4-5 Chamfer metric [3], or the 10-
14-17 metric [1]. The metrics are sorted by decreasing er-
ror when compared with the Euclidian distance between the
voxel positions. It is most accurate to use a 1-

p
2-
p
3 Euclid-

ian metric for isotropic volumes and one with axis speci�c
corrections for anisotropic volumes. This is the approach
adopted in this paper.
Independent of the choice of the metric, the resulting

shortest path visits vertices of the graph, and is therefore
guaranteed to reside inside the colon. Unfortunately, this
path tends to cut the corners and travel along boundary
voxels on the inside of sharp turns. Hence, this path gener-
ally does not qualify as centered.
A method for reducing this cutting of corners is to replace

the Dijkstra backtrace path with a path along the centers of
mass of clusters with similar DSF values [15]. This technique
would work well if the \wave fronts" formed by cluster of
voxels of the same DSF value were always perpendicular to
the centerline. Unfortunately, near sharp turns the wave
fronts tilt and can be even parallel to the intuitive centerline
(for more details see Figure 11).

2.3 Distance from Boundary Field

A slight modi�cation to the �rst phase of Dijkstra's algo-
rithm is to replace the single source voxel with the set of all
boundary voxels. The result is a distance �eld that stores
for each voxel the length of its shortest discrete path to
the boundary. Again a variety of distance metrics for edge
weight assignments is possible.
This distance from boundary field (DBF) can be used to

improve the centrality of the centerline by relocating cen-
terline candidate points to the maximal point of the DBF
within the plane perpendicular to the centerline [1]. How-
ever, a single correcting step does not yield an optimal cen-
terline and even iterating this method is not guaranteed to
�nd a global optimum.
A better approach is to relocate centerline point candi-

dates to the maximal DBF voxel within the \wave front" of
same DSF values [18]. However, this disconnects the can-
didate centerline and stitching it back together is based on

local heuristics.

2.4 Topological Thinning

The technique that is traditionally considered to provide
high quality results is called topological thinning or \onion
peeling" [3, 6, 11, 12]. In this general strategy, one layer of
voxels at a time is peeled o� the colon until just the cen-
terline remains. Multiple invariants should be maintained
to avoid errors. The starting and ending voxels can not be
removed and must remain part of the same connected com-
ponent, and the topology must be preserved. No voxel can
be removed that would cause these constraints to be vio-
lated.

Figure 2: Performance of topological thinning on a banjo-
shaped colon. The displayed cross section of the colon depicts
a long neck attached to a body. The onion peeling algorithm
determines that the centerline traverses through the circle in
the neck, whereas a more intuitive location would be through
the square in the body itself.

Unfortunately, onion peeling is computationally expen-
sive. Much research e�ort has been devoted to the prob-
lem of how to speed up the basic topological thinning algo-
rithm. The highest improvement stems from separating the
thinning phase from the connectivity preserving considera-
tions [11]. The main idea here is to �rst determine a rough
candidate centerline, then perform one step of parallel, un-
restricted thinning and �nally computing the union of the
remaining shape and the candidate centerline. This guaran-
tees connectivity and, when iterated, �nds a solution that is
very close to or possibly identical to the normal onion peel-
ing algorithm. However, there is no concise mathematical
formulation of what the onion-peeled centerline should look
like. In fact, there are examples, such as the banjo-shaped
colon in Figure 2, in which the onion peeling algorithm does
not �nd the intuitively desired centerline.

2.5 Centers of Maximally Inscribed Balls

Local maxima in the distance from boundary �eld can geo-
metrically be viewed as centers of maximally inscribed balls.
If the center points are moved, the balls must shrink in size
to remain inside the colon. Intuitively, all of these points
belong on the centerline. However, de�ning the centerline
as the union of these points is insuÆcient, as they typically
form a disconnected set. Ge et al. [3] therefore extended
the class of voxels that can not be removed during topologi-
cal thinning to include these centers of maximally inscribed
balls. With this extra constraint, onion peeling does de-
termine the intuitively desired centerline for a banjo-shaped
colon cross section like in Figure 2, but, fails on other shapes.
For example, Figure 3 depicts a colon with a 
ower shaped
cross section that causes excessive winding of the centerline.
Here the intuitive centerline would exclude the centers of
maximally inscribed balls in the folds.



3 Formal Centerline De�nition

In this paper we introduce a concise but general de�nition
of a centerline. We then present an algorithm that can ac-
curately and rapidly produce such a centerline. We provide
a fully automatic solution, which frees the radiologist from
having to participate in the data preprocessing. Our cen-
terline algorithm is designed to be provably robust . It is
guaranteed to perform correctly even for a winding, twisted
colon with large folds and bulgings.

3.1 Formal Colon/Tubular Object De�nition

It is important to specify exactly which assumptions are
made about the shape of the colon or a more general tubu-
lar object. Once these assumptions are formally de�ned, we
have a set of conditions under which the algorithm is guar-
anteed to run correctly. Our assumptions are minimal and
apply to many other domains in which one might want to
�nd a centerline.
A colon is assumed to have the following properties.

� The colon is a singly-connected component.

� The colon has genus zero, that is, there are no holes or
tunnels through the colon.

� Intuitively, the colon is long and narrow . More for-
mally, these conditions are described as follows. There
exist two disjoint voxel sets: a start set S and an end
set E, such that:

i There are two disjoint ends that are far apart.

That is, for all voxels x and y in the colon of maxi-
mal shortest path length ` and a factor � 2 (:9;1),
if the distance between x and y is suÆciently large,
then x and y must be in S [ E:
d(x; y) > �`) x;y 2 S [ E.

ii The ends S and E of the colon are narrow.

That is, x;y 2 S ) d(x; y) < `

10
, and analogous

for E.
iii The intermediate sections of the colon are narrow.

That is, for any x in the colon, for all y that max-
imize d(x;y), y 2 S [ E.

This de�nition allows us to prove the correctness of the
part of our centerline algorithm that automatically �nds
both colon ends (see Section 4.7).

3.2 Formal Centerline De�nition

We now describe some basic properties a centerline should
have. Most importantly, the centerline should be a simple
path without any 2D manifolds extending from one end of

Figure 3: A centerline that is forced to include all centers of
maximally inscribed balls, does not only traverse the desired
square in the center of the cross section of a 
ower shaped
colon, but also the circles in the petals of the cross section.
This causes excessive winding of the centerline.

the colon to the other. The centerline should never leave the
inside of the colon. More speci�cally, the centerline should
tend to remain in the \center" of the colon. For winding and
bulging colons, the concept of center may not be well de�ned.
Intuitively, the centerline should be situated as far from the
boundary as possible. On the other hand, it should also
avoid too much winding because the centerline should be as
short as possible within all other constraints. This suggests
that our algorithm should �nd some kind of shortest path
through the colon.
As pointed out in Section 2.2, the Dijkstra shortest path

algorithm requires volume data to be mapped to graph ver-
tices and graph edges. Figure 4a depicts a straightforward
implicit mapping. Edges represent the 26-neighbor relations
between voxels. As weights, we use the exact Euclidian dis-
tances between the voxels that correspond to the graph ver-
tices at both ends of the edge. However, even when including
corrections for anisotropic volumes, an unembellished short-
est path through the colon has the defect that when it turns,
it cuts the corners, instead of staying near the center. There-
fore we enhance the implicit graph by adding more edges
and vertices as depicted in Figure 4b to incorporate penal-
ties for coming close to the colon boundary and to create a
penalized distance from end field (PDEF). There are now 27
vertices per voxel: one center vertex and 26 penalty vertices
that each share a penalty edge with the center vertex. The
penalty edges have a weight equal to half the penalty associ-
ated with including that voxel into the path. Neighbor edges
now always connect to penalty vertices. Since this modi�ca-
tion results in a graph that is a singly connected component
where edges have positive weights, it is guaranteed that the
Dijkstra algorithm will �nd the globally minimal shortest
path. The cost along that shortest path is the accumulated
piecewise Euclidian distance of the path plus the sum of the
penalties of all penalty edges visited along the path.

DSF PDEF(a) (b)

penalty edge :neighbor edge :

DSF lowest 
cost path 

: PDEF lowest 
cost path 

:

Figure 4: 2D top view of the implicit mapping of the voxel
grid and neighbor relations to an undirected graph on which
the Dijkstra algorithm can be applied. (a) A region of a
\plain" distance �eld with a part of a shortest path. (b) The
same region, but now with penalties. Solid neighbor edges
have weights equal to the distance between the voxels. Dashed
penalty edges have a weight equal to half the penalty assigned
to the associated voxel.

We de�ne the centerline to be the minimum cost
path found in the penalized distance �eld. This def-
inition has the following concrete advantages: It is precise,
rapidly computable, and suggests a provably correct algo-



rithm. It does not require any speci�c geometry in order
to run correctly. Naturally, there is a range of penalties
that may be applied to the penalty edges de�ning a family
of continuously varying centerlines. In Section 4.8 we sug-
gest a choice of penalty function that yields a high-quality,
centered path.

4 CEASAR Algorithm

The ceasar algorithm works for any elongated or tubular
structure. Examples of such structures are pipes, tunnels,
blood vessel segments, and colons. In this paper, we concen-
trate on the colon example, because it is arguably the most
complicated tubular shape. The algorithm consists of ten
logical steps :

1. Read a binary segmented colon

2. Crop volume to just colon

3. DBF: Compute distance from boundary field

4. GVF: Compute gradient vector field

5. Flag Non-uniform gradient neighborhoods

6. Connect 
agged voxels

7. DAF: Compute distance from any 
agged voxel field

8. PDEF: Compute penalized distance from end voxel
field

9. Extract minimum cost path from PDEF

10. Smooth centerline

We now describe these steps in detail.

4.1 Binary Segmented Colon

The input for our ceasar algorithm is a binary mask, which
labels the voxels belonging to the colon interior and colon
wall. This mask is generated from the CT scan using a
segmentation algorithm [9]. This algorithm ensures that the
colon is one connected component, that there are no bubbles
or holes in the colon, and that folds from di�erent parts of
the colon are separated by at least one voxel.

4.2 Crop Volume to Just Colon

One essential component of ceasar it that it is computa-
tional eÆcient. Thus, in each step we strive to minimize the
number of voxels that have to be processed. The �rst step in
reducing the number of relevant voxels is to crop the volume
automatically to just the bounding box of the labeled colon
voxels. For our abdominal CT scans, this step reduces the
volume size by 30-50%.

4.3 DBF: Compute Distance from Boundary Field

The Euclidian distance between an inside voxel and the colon
boundary is recorded at each voxel. This forms the distance
from boundary field (DBF). We use a four pass algorithm by
Saito [14] that is linear in the number of voxels to compute
the real Euclidian DBF accurately.

4.4 GVF: Compute Gradient Vector Field

The next two ceasar algorithm steps combined deliver a
large reduction in the number of voxels that have to be pro-
cessed. The algorithm would work without these, but the
subsequent steps would be slower.
For each volume position within the colon mask, we com-

pute its central di�erence gradient, which requires reading of
only six neighboring voxels. This forms the gradient vector
field (GVF) of the DBF (see Figure 6). (We also experi-
mented with the smoother 26-voxel neighborhood Sobel �l-
ter [16]. However, it is slower and does not a�ect the �nal
centerline.)

4.5 Flag Non-Uniform Gradient Neighborhoods

Figure 7 depicts a section of a colon with the centerline and
the distance from the boundary gradient vectors. We are
interested in labeling the voxels on and next to the centerline
that often have local neighborhoods of non-uniform GVF
vectors. There are six classes of regions in the GVF:
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Figure 5: (a) Explicit DBF values (rounded to integers). (b)
DBF visualized through a rainbow color map.

Colon 
Boundary

Centerline

(a) (b)

Figure 6: GVF vectors (a) as arrows, and (b) as XYZ=RGB
pixel components along a colon cross section.

Local Max
on centerline

Local Min
on centerline

Local Max
off centerline

Local Min
off centerline

Colon 
Boundary

Centerline

Uniform GVF
off centerline

Uniform GVF
on centerline

Figure 7: Colon boundary and centerline in the GVF.
Squares denote local maxima, hexagons point out local min-
ima, and circles are in uniform GVF vector areas.



(1) Local maxima on the centerline (depicted as solid squares
in Figure 7). All the GVF vectors surrounding such a max-
imum, point towards it. This means each of these vectors
has a di�erent direction.
(2) Local minima on the centerline (depicted as solid
hexagons). All the GVF vectors surrounding such a min-
imum, point away from it towards the neighboring maxima.
In a tubular shape, for each minimum there must be at least
two enclosing maxima. Thus, the GVF vectors at a mini-
mum split in at least two groups of vectors pointing in op-
posite directions.
(3) Uniform areas o� the centerline (depicted as black
dashed circles). All positions close to the colon boundary
have GVF vectors that point in about the same direction
as their neighbors, because the steepest increase of distance
from boundary is always perpendicular to the boundary, and
because the boundary itself has only limited curvature.
(4) Uniform areas on the centerline (depicted as red dot-
ted circles). Unfortunately, there are also areas along the
centerline where the colon widens quickly. Hence, all GVF
vectors neighboring the centerline point uniformly towards
the center of the wide open area. Labeling all non-uniform
GVF positions does not capture this area.
(5) Local maxima o� the centerline (depicted as red dotted
squares). There may exist folds of the colon that enclose
local maxima of the DBF that are not on the centerline. The
GVF vectors surrounding such a maximum have the same
characteristics as the ones surrounding a local maximum on
the centerline.
(6) Local minima o� the centerline (depicted as red dotted
hexagons). Between maxima on and o� the centerline, there
may also be local minima o� the centerline that are indistin-
guishable from those on the centerline, as long as only local
�lters are applied.
We de�ne a set of 8 GVF vectors in a 23 cell of voxel

positions to be uniform, if and only if all 8 vectors di�er by
less than 90 degrees from their average direction. Thus, to
label local non-uniform GVF vectors we:
(a) Compute the normalized average GVF vector for each
23 cell of voxel positions.
(b) Test if the dot-product between any of the 23 GVF vec-
tors and the associated average vector is zero or negative.
(c) Label all 23 voxel cells that have non-positive dot-
products as non-uniform.
It is possible that a voxel is exactly at a local DBF max-

imum and its GVF vector is a zero vector. Note that this
leads to a zero-value dot-product which does cause labeling
of that position. Thus, no special case handling for degen-
erate GVF vectors is necessary.
As each test involves only a small 8 voxel position neigh-

borhood, it can be executed very quickly (14 s for an average
colon) and it produces 
agged voxels that are only 1% of the
inside colon voxels (see Figure 8).

4.6 Connect Flagged Voxels

The previous ceasar algorithm step results in a number
of disconnected components of 
agged voxels. We connect
these components by applying the following procedure for
each 
agged voxel.
(a) Pick a voxel from the 
agged source volume and 
ag the
corresponding voxel in the destination volume.
(b) Starting from that 
agged voxel traverse the source vol-
ume along the GVF vectors and 
ag all voxels along the path
in the destination volume.
(c) Stop the traversal as soon as another 
agged voxel is
reached.

(a) (b)

Figure 8: (a) Zoomed and (b) complete colon with highlighted
voxels at non-uniform vector positions.

Figure 9 shows an example, in which starting from a min-
imum, the path taken towards the next maximum results in
a sequence of voxels along a path that is centralized in the
DBF. In fact, the walk is self-correcting: each GVF vector
can be viewed as a combination of the direction along the
continuous centerline and the direction towards it. Due to
the discrete nature of the path we might reach a voxel to
the left of the continuous centerline. At that position the
component of the GVF vector towards the centerline points
to the right. Thus, the next step brings us back to the right.
Any error caused by discretization is corrected in the next
step.

Local Max
on centerline

Local Min
on centerline

Figure 9: Connecting 
agged voxels. Starting from each

agged voxel, we follow along the GVF vectors until we reach
another 
agged voxel.

Starting from 
agged voxels near, but o� the centerline,
the followed path is directed towards the centerline and even-
tually merges with one of the path starting from a local
minimum on the centerline. Consequently, this method also
connects the o� centerline minima and maxima to the set of

agged voxels on the centerline. At the end, we have labeled
a set of voxels that includes all centerline voxels and totals
just 15-30% of all colon voxels. All further operations are
restricted to this set of voxels.

4.7 DAF: Compute Distance from Any Flagged
Voxel Field

The following three ceasar steps are an adaptation of the
Dijkstra shortest path graph algorithm as outlined in Sec-
tions 2.2 and 3.2. This �rst step just computes the distance
from any 
agged voxel field (DAF) with anisotropically cor-
rect Euclidian distance as weights in the implicit graph of
Figure 4a. We assume that any well segmented colon has
the properties listed in Section 3.1 (long and narrow). Then,
independently of which colon voxel we select as a starting
point, the furthest voxel is provably at one of the two ends
of the colon. Figure 11 shows the resulting DAF of a colon.



4.8 PDEF: Compute Penalized Distance from End
Voxel Field

Repeating the search for the furthest voxel from the end
voxel found in the previous step, we would discover the voxel
at the other end of the colon. However, during the second
search we extend the mapping of the volume data to include
a graph to incorporate penalties for coming close to the colon
boundary as illustrated in Section 3.2, and thus create the
penalized distance from end voxel field (PDEF).
The penalty p at a voxel v is assigned based on the DBF

value at that voxel v and a global upper bound of all DBF
values (M > max(DBF )). The penalty p is

p(v) = 5000 � [1� DBF (v)

M
]16:

Note that DBF (v)

M
is always in the range of [0,1]. Thus

[1� DBF (v)

M
]16 is in the same range, but with the maximal

values for voxels close to the boundary. The factor 5000 is
needed to ensure that the penalty overpowers the advantages
of choosing a straight path. Choosing 5000 is a heuristic,
that allows skeleton segments to be up to 3000 voxels long
without exceeding 
oating point precision.
For our implementation we did not need to explicitly store

all 26 penalty vertices and edges depicted in Figure 4, be-
cause the only way to incorporate a center vertex in the path
is to go through two of its penalty vertices, and thus along
the two penalty edges of equal penalty weight. Therefore,
we can actually keep the implicit edges and vertices from the

(a) (b)

Figure 10: (a) Zoomed and (b) complete colon with all

agged voxels highlighted.

(a) (b)

Figure 11: (a) Zoomed and (b) complete colon DAF views vi-
sualized through color rainbow mappings. (a) The �ne struc-
ture of the DAF showing \same distace wave fronts" that
\leak" around corners. This causes the centers of mass of
same distances from source not to lie on the centerline. (b)
The overall distance increases along the DAF of the com-
plete colon. The starting point on the top right is colored
black and colors become brighter with increasing distance.

DAF generation method, but add the penalty directly to the
computation of the accumulated distance at each voxel v:

dist(vk) = dist(vk�1) + dist(vk; vk�1) + penalty(vk):

(a) (b)

Figure 12: (a) Zoomed and (b) complete colon PDEF views
visualized through color rainbow mappings. (a) The �ne
structure of the PDEF showing the \same distance wave
fronts" progressing most rapidly in the center of the colon.
(b) The overall distance increase along the PDEF of the com-
plete colon.

4.9 Minimum Cost Path

We choose the voxel with the largest PDEF value as start-
ing voxels for the second phase of the Dijkstra algorithm.
Because of our inclusion of strong penalties into the PDEF,
this results in a global minimum path between both colon
ends that is optimally centered, and follows maximal values
of the DBF. This path is the discrete centerline as de�ned
in Section 3.2 and depicted in Figure 13.

(a) (b)

Figure 13: (a) Zoomed and (b) complete colon with center-
line.

4.10 Smoothing

For some applications an optimal discrete centerline is not
the most desired centralized path. For example, in guided
virtual endoscopy, the camera is moved along the central-
ized path. To maintain a steady view, a smooth curve is
favored over a discrete \stair step" path. Given the opti-
mal discrete path and the distance from the colon boundary
at each centerline voxel, we can compute an approximating
spline [13, 17] with adaptive error tolerance. In very narrow
areas the allowed error should be very small, while in wide
openings a little larger divergence is acceptable. This can
be elegantly expressed as a percentage of the distance from
boundary. Any percentage below 50% guarantees that the



(a) (b)

Figure 14: (a) Zoomed and (b) complete colon with the cen-
terline after smoothing.

centerline is always closer to the center than to the bound-
ary. This additional freedom to place the continuous cen-
terline is then used to minimize curvature along the center-
line. Speci�cally, we use a B-spline curve that interpolates
the �rst and last voxel and approximates the ones in be-
tween. The control points are placed close to centerline vox-
els at non-uniform intervals. We apply a number of heuris-
tics (min/max curvature, min/max DBF, maximal control
point separation) to minimize the number of control points
that is needed to achieve the desired accuracy. In the exam-
ple of Figure 14 an error tolerance of 35% requires 17% of
the discrete centerline voxels as control points while a 50%
tolerance needs 13% and results in a smoother centerline.

5 Results

We tested our ceasar algorithm on three colon datasets and
one aorta dataset. Tables 1 and 2 list the details about the
dataset sizes and how many ceasar steps changed the num-
ber of processed voxels. In all cases the discrete centerlines
were placed right in the center according to visual inspec-
tion by virtual colonoscopy and according to mathematical
measures such as the DBF.
Table 3 lists the platform and timings of all the ceasar al-

gorithm steps for each test dataset. The complete algorithm
time was always below 5 minutes for the colon datasets and
just 26 seconds for the aorta. Figure 13 depicts the �nal cen-
terlines computed with their associated volumes. It includes
a frame from our virtual navigation through a colon that

Table 1: Colon dataset sizes and the reduction of voxels that
have to be processed during the execution of the ceasar al-
gorithm.

dataset study4 study5 study8

original size X 514 514 514
original size Y 514 514 514
original size Z 363 360 372

auto cropped size X 416 409 406
auto cropped size Y 398 339 379
auto cropped size Z 363 363 375

colon CT voxels 96M 95M 98M
cropped colon voxels 59M 50M 58M
inside colon voxels 3.2M 1.5M 2.4M


agged as % of colon 1% 2% 1%
connected as % of colon 27% 18% 15%

centerline voxels 1644 1814 1967

Table 2: Reduction of voxels that have to be processed during
the execution of the ceasar applied to an aorta dataset.

dataset (256� 256� 211) aorta

aorta CT voxels 13M
cropped aorta voxels 6.7M
inside aorta voxels 230K


agged as % of aorta 1.8%
connected as % of aorta 14%

centerline voxels 351

compares the centerline found by \onion peeling" with the
more smooth and more central centerline found by ceasar.
Finally, it also demonstrates the results of applying ceasar

to more complicated data such as an aorta and a lobster.

Table 3: Time spent in each of the ceasar algorithm steps.
( All tests were done on an SGI Challenge with 4GB memory
running IRIX 6.5 using a single MIPS R10000 CPU running
at 194 MHz.)

dataset study4 study5 study8 aorta

cropping 16s 13s 15s 2s
DBF 106s 86s 97s 11s
GVF 44s 41s 43s 5s


agging 18s 10s 14s 1s
connecting 17s 13s 15s 2s

DAF 9s 6s 7s 1s
PDEF 74s 19s 28s 2s

centerline 3s 3s 3s 1s
B-spline 11s 87s 27s 1s

total 299s 278s 250s 26s

6 Conclusions and Future Work

Based on an analysis of prior centerline de�nitions, we in-
troduced new, mathematically sound de�nitions of a colon
and a centerline. We then showed that ceasar | our cen-
terline extraction algorithm that delivers smooth, accurate
and robust results | always fully automatically �nds the
two ends of the colon and always computes a provably con-
nected centerline that is optimal with respect to length as
well as centrality. We explained in detail our ceasar im-
plementation and reported results that not only empirically
verifyed the correctness of the centerline, but also showed
the superior speed of the ceasar algorithm, that is, less
than 5 minutes for all our colon dataset studies. Finally, we
also demonstrated that ceasar can be applied to a variety
of colon shapes as well as to other tubular structures such
as an aorta.

We plan to reduce the running times of the ceasar algo-
rithm further by employing more cache coherent data layouts
and data traversals as well as by parallelizing it for eÆcient
use on multiple CPU computers. We also will extend the
algorithm to enable handling of tree structures such as the
lungs.



Colon study 4 Colon study 5

Colon study 8 Aorta

Onion Peeling (green) Lobster
vs. CEASAR (white)

Figure 15: Six datasets with centerlines computed by the
ceasar algorithm. (See color plates)
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Figure 5: (a) Explicit DBF values (rounded to integers).

(b) DBF visualized through a rainbow color map.

Colon 
Boundary

Centerline

(a) (b)
Figure 6: GVF vectors (a) as arrows, and (b) as

XYZ=RGB pixel components along a colon cross sec-

tion.

(a) (b)
Figure 8: (a) Zoomed and (b) complete colon with high-

lighted voxels at non-uniform vector positions.

(a) (b)
Figure 10: (a) Zoomed and (b) complete colon
with all 
agged voxels highlighted.

(a) (b)
Figure 11: (a) Zoomed and (b) complete colon
DAF views visualized through color rainbow
mappings.

(a) (b)
Figure 12: (a) Zoomed and (b) complete colon
PDEF views visualized through color rainbow
mappings.
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Figure 15: Six datasets with centerlines computed
by the ceasar algorithm.


