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Don’t Thrash: How to Cache Your Hash in Flashdata indexing query processor

queries + 
answers

???
42

data 
ingestion

Funny tradeoff in ingestion, querying, freshness
• “Select queries were slow until I added an index onto the timestamp field... 

Adding the index really helped our reporting, BUT now the inserts are taking 
forever.”
‣ Comment on mysqlperformanceblog.com

• “I'm trying to create indexes on a table with 308 million rows. It took ~20 
minutes to load the table but 10 days to build indexes on it.”
‣ MySQL bug #9544

• “They indexed their tables, and indexed them well, 
 And lo, did the queries run quick! 
 But that wasn’t the last of their troubles, to tell– 
 Their insertions, like treacle, ran thick.”
‣ Not from Alice in Wonderland by Lewis Carroll
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This tutorial
• Better data 

structures can 
essentially do away 
with the insert/query/
freshness tradeoff.

• These structures 
scale to very large 
sizes while efficiently 
using the memory-
hierarchy. 

Fractal-tree® 
index

LSM 
tree

Bɛ-tree
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What we mean by Big Data
We don’t define Big Data in terms of TB,  PB, EB.
By Big Data, we mean
• The data is too big to fit in main memory.
• We need data structures on the data. 
• Words like “index” or “metadata” suggest that there are 

underlying data structures.
• These underlying data structures are also too big to fit in 

main memory. 
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In this tutorial we study the 
underlying data structures for 

managing big data. 

File systems
NewSQL

SQL
NoSQL



But enough about 
databases... 

... more 
about us. 
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Our Research and Tokutek
A few years ago we started working together on 
I/O-efficient and cache-oblivious data structures. 

Along the way, we started Tokutek to commercialize 
our research.

Michael Martin Bradley

11
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Tokutek sells open source, ACID compliant, 
implementations of MySQL and MongoDB.
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File System

MySQL Database
-- SQL processing,
-- query optimization

Application

libFT

Disk/SSD

TokuDB

File System

Standard MongoDB  
-- drivers, 
-- query language, and 
-- data model

Application

libFT

TokuMX
libFT implements the 
persistent structures 

for storing data on disk.  

libFT provides a 
Berkeley DB API 
and can be used 
independently. 
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Our Mindset
• This tutorial is self contained.  
• We want to teach. 
• If something we say isn’t clear to you, please ask 

questions or ask us to clarify/repeat something. 
• You should be comfortable using math.
• You should want to listen to data structures after lunch. 

13
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Topics and Outline for this Tutorial

I/O model.

Write-optimized data structures.

How write-optimized data structures can help file systems.

Cache-oblivious analysis.

Log-structured merge trees.

Indexing strategies. 

Block-replacement algorithms.

Sorting Big Data. 

14
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I/O models

Story for Module

• If we want to understand the performance of data 
structures within databases we need algorithmic models 
for understanding I/O. 

• There’s a long history of memory-hierarchy models. 
Many are beautiful. Most have found little practical use. 

• Two approaches are very powerful, the Disk Access 
Machine (DAM) model and cache-oblivious analysis. 

• We’ll present the DAM model in this module to lay a 
foundation for the rest of the tutorial. 

• Cache-oblivious analysis comes later in the tutorial. 
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I/O models

How computation works: 
• Data is transferred in blocks between RAM and disk. 
• The # of block transfers dominates the running time. 

Goal: Minimize # of block transfers
• Performance bounds are parameterized by 

block size B, memory size M, data size N.

I/O in the Disk Access Machine (DAM) Model

DiskRAM

B

B

M

3

[Aggarwal+Vitter ’88]
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RAM: ~60 nanoseconds per access

Analogy: 
• disk = distance from home to first base (90 feet)
• RAM = distance from AT&T Park to Kauffman Stadium (1500 miles)
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I/O models

Example: Searching in an Array
Question: How many I/Os to perform a binary 
search into an array of size N? 

7

N/B blocks



I/O models

Example: Searching in an Array
Question: How many I/Os to perform a binary 
search into an array of size N? 

Answer: 

7

N/B blocks

O

✓
log2

N

B

◆
⇡ O(log2 N)



I/O models

Example: Searching in an Array Versus B-tree

Moral: B-tree searching is a factor of O(log2 B) 
faster than binary searching.

8

O(logBN)

O(log2 N)

O(logB N) = O

✓
log2 N

log2 B

◆



I/O models

The DAM model is simple and pretty good

The Disk Access Machine (DAM) model 
• ignores CPU costs and 
• assumes that all block accesses have the same cost.

Is that a good performance model?
• Far from perfect. 
• But very powerful nonetheless. 
• (We’ll discuss more later in the tutorial.)

9
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NSF Workshop on Research Directions in Principles of Parallel Computing

We don’t need 
tradeoffs

Write-optimized data 
structures: 
•Faster indexing  

(10x-100x)
•Faster queries 
•Fresh data 
These structures 
efficiently scale to very 
big data sizes. 

Fractal-tree® 
index

LSM 
tree

Bɛ-tree
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How computation works: 
• Data is transferred in blocks between RAM and disk. 
• The number of block transfers dominates the running time. 

Goal: Minimize # of block transfers
• Performance bounds are parameterized by 

block size B, memory size M, data size N.

An algorithmic performance model

DiskRAM

B

B

M

[Aggarwal+Vitter ’88]
8
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Memory and disk access times

Disks: ~6 milliseconds per access.

RAM: ~60 nanoseconds per access

Analogy: 
• disk = walking speed of the giant tortoise (0.3mph)
• RAM = escape velocity from earth (25,000 mph)



The traditional data structure for disks is the B-tree

O(logBN)
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The traditional data structure for disks is the B-tree

Adding a new datum to an N-element B-tree 
uses O(logBN) block transfers in the worst case.
(Even paying one block transfer is too expensive.)

O(logBN)
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Write-optimized data structures performance

• If B=1024, then insert speedup is B/logB≈100.
• Hardware trends mean bigger B, bigger speedup.
• Less than 1 I/O per insert.

B-tree Some write-optimized 
structures

Insert/delete O(logBN)=O(       ) O(       )logN
logB

logN
B

Data structures: [O'Neil,Cheng, Gawlick, O'Neil 96], [Buchsbaum, Goldwasser, Venkatasubramanian, Westbrook 00], 
[Argel 03], [Graefe 03], [Brodal, Fagerberg 03], [Bender, Farach,Fineman,Fogel, Kuszmaul, Nelson’07], [Brodal, 
Demaine, Fineman, Iacono, Langerman, Munro 10], [Spillane, Shetty, Zadok, Archak, Dixit 11]. 
Systems: BigTable, Cassandra, H-Base, LevelDB, TokuDB. 

11

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Brodal:Gerth_St=oslash=lting.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Demaine:Erik_D=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/i/Iacono:John.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/l/Langerman:Stefan.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/m/Munro:J=_Ian.html
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Optimal Search-Insert Tradeoff  [Brodal, Fagerberg 03]

insert point query

Optimal 
tradeoff

(function of ɛ=0...1)

B-tree
(ɛ=1)
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logB Np
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Illustration of Optimal Tradeoff [Brodal, Fagerberg 03]

Inserts
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ow

Fa
st

Logging

B-tree

Logging

Optimal Curve
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One way to Build Write-
Optimized Structures

  

(other approaches later in tutorial)
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A simple write-optimized structure
O(log N) queries and O((log N)/B) inserts:
• A balanced binary tree with buffers of size B 

Inserts + deletes:
• Send insert/delete messages down from the root and store 

them in buffers. 
• When a buffer fills up, flush. 

16
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Analysis of writes
An insert/delete costs amortized O((log N)/B) per 
insert or delete
• A buffer flush costs O(1) & sends B elements down one 

level.
• It costs O(1/B) to send element down one level of the tree.
• There are O(log N) levels in a tree.

18
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Analysis of point queries

To search: 
• examine each buffer along a single root-to-leaf path. 
• This costs O(log N). 

19
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Obtaining optimal point queries + very fast inserts

Point queries cost O(log√B N)= O(logB N) 
• This is the tree height.

Inserts cost O((logBN)/√B) 
• Each flush cost O(1) I/Os and flushes √B elements.

√B

B

...

fanout: √B

21
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What the world looks like
Insert/point query asymmetry
• Inserts can be fast: >50K high-entropy writes/sec/disk. 
• Point queries are necessarily slow: <200 high-entropy reads/

sec/disk.

We are used to reads and writes having about the 
same cost, but writing is easier than reading. 

Reading is hard.Writing is easier.

22
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The right read-optimization is write-optimization

The right index makes queries run fast. 
• Write-optimized structures maintain indexes efficiently.

data indexing query processor

queries

???
42

answers

data 
ingestion
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The right read-optimization is write-optimization

The right index makes queries run fast. 
• Write-optimized structures maintain indexes efficiently.

Fast writing is a currency we use to accelerate 
queries. Better indexing means faster queries.

data indexing query processor

queries

???
42

answers

data 
ingestion

23
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The right read-optimization is write-optimization
I/O

 L
oa

d

Add selective indexes.

(We can now afford to maintain them.)

24



Don’t Thrash: How to Cache Your Hash in Flash

The right read-optimization is write-optimization
I/O

 L
oa

d

Add selective indexes.

(We can now afford to maintain them.)

Write-optimized structures can significantly 
mitigate the insert/query/freshness tradeoff. 3

24
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Write optimization. ✔ What’s missing?

Optimal read-write tradeoff: Easy
Full featured: Hard

• Variable-sized rows
• Concurrency-control mechanisms
• Multithreading
• Transactions, logging, ACID-compliant crash recovery
• Optimizations for the special cases of sequential inserts 

and bulk loads
• Compression
• Backup

26
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Systems often assume search cost = insert cost

Some inserts/deletes have hidden searches.
Example: 
• return error when a duplicate key is inserted. 
• return # elements removed on a delete.  

These “cryptosearches” throttle insertions 
down to the performance of B-trees.
 

27
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Cryptosearches in uniqueness checking
Uniqueness checking has a hidden search:

In a B-tree uniqueness checking comes for free
• On insert, you fetch a leaf.
• Checking if key exists is no biggie.

If Search(key) == True
Return Error;

Else
Fast_Insert(key,value);
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Cryptosearches in uniqueness checking
Uniqueness checking has a hidden search:

In a write-optimized structure, that crypto-
search can throttle performance
• Insertion messages are injected. 
• These eventually get to “bottom” of structure.
• Insertion w/Uniqueness Checking 100x slower.
• Bloom filters, Cascade Filters, etc help.

If Search(key) == True
Return Error;

Else
Fast_Insert(key,value);

[Bender, Farach-Colton, Johnson, Kraner, Kuszmaul, Medjedovic, Montes, Shetty, Spillane, Zadok 12]

29
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One implementation of pessimistic locking: 
maintain locks in leaves

To insert a new row v, determine whether there 
is already a lock on v at a leaf. 
This is also a cryptosearch.

30

writer lock reader lock writer range lock

A locking scheme with cryptosearches



Performance



Don’t Thrash: How to Cache Your Hash in Flash

Performance of write-optimized data structures

Write performance on large data

MongoDB                       MySQL

32

16x faster>100x faster
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TokuMX runs fast because it uses less I/O

100M inserts into a collection with 3 secondary indexes

33
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Compression

34
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iiBench on SSD

TokuDB on rotating disk beats InnoDB on SSD.

35
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Scaling into the Future
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Write-optimization going forward

Example: Time to fill a disk in 1973, 2010, 2022. 
• log high-entropy data sequentially versus index data in 

B-tree.

Better data structures may be a luxury now, but 
they will be essential by the decade’s end.

Year Size Bandwidth Access Time
Time to log 
data on disk 

Time to fill disk 
using a B-tree
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s

2010 3TB 150MB/s 10ms 5.5h 347d

2022 220TB 1.05GB/s 10ms 2.4d 70y
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Write-optimization going forward

Example: Time to fill a disk in 1973, 2010, 2022. 
• log high-entropy data sequentially versus index data in 

B-tree.

Better data structures may be a luxury now, but 
they will be essential by the decade’s end.

Year Size Bandwidth
Access 
Time

Time to log 
data on disk 

Time to fill disk 
using a B-tree
(row size 1K)

Time to fill using 
Fractal tree*
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s

2010 3TB 150MB/s 10ms 5.5h 347d

2022 220TB 1.05GB/s 10ms 2.4d 70y

* Projected times for fully multi-threaded version
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Write-optimization going forward

Example: Time to fill a disk in 1973, 2010, 2022. 
• log high-entropy data sequentially versus index data in 

B-tree.

Better data structures may be a luxury now, but 
they will be essential by the decade’s end.

Year Size Bandwidth
Access 
Time

Time to log 
data on disk 

Time to fill disk 
using a B-tree
(row size 1K)

Time to fill using 
Fractal tree*
(row size 1K)

1973 35MB 835KB/s 25ms 39s 975s 200s

2010 3TB 150MB/s 10ms 5.5h 347d 36h

2022 220TB 1.05GB/s 10ms 2.4d 70y 23.3d

* Projected times for fully multi-threaded version

39
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The right read optimization is 
write optimization.

We don’t need to trade off ingestion 
speed, query speed, and data freshness.

We can insert 10x-100x faster 
without hurting point queries.

write-optimized
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Story for Module
Algorithms for Big Data apply to all storage 
systems, not just databases.
Some big-data users store use a file system.
The problem with Big Data is Microdata...

2



HEC FSIO Grand Challenges

Store 1 trillion files
Create tens of thousands of files 
per second
Traverse directory hierarchies 
fast (ls -R)

B-trees would require at least 
hundreds of disk drives.
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TokuFS
TokuFS
• A file-system prototype
• >20K file creates/sec 
• very fast ls -R
• HEC grand challenges on a cheap disk 

(except 1 trillion files)

[Esmet, Bender, Farach-Colton, Kuszmaul HotStorage12]

TokuFS

TokuDB

XFS
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TokuFS
TokuFS
• A file-system prototype
• >20K file creates/sec 
• very fast ls -R
• HEC grand challenges on a cheap disk 

(except 1 trillion files)

• TokuFS offers orders-of-magnitude speedup
on microdata workloads.
‣ Aggregates microwrites while indexing.
‣ So it can be faster than the underlying file system. 

[Esmet, Bender, Farach-Colton, Kuszmaul HotStorage12]

TokuFS

TokuDB

XFS
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Big speedups on microwrites
We ran microdata-intensive benchmarks

• Compared TokuFS to ext4, XFS, Btrfs, ZFS.
• Stressed metadata and file data.
• Used commodity hardware:
‣2 core AMD, 4GB RAM
‣Single 7200 RPM disk
‣Simple, cheap setup. No hardware tricks.

• In all tests, we observed orders of magnitude speed up.

6
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Create 2 million 200-byte files in a directory tree

Faster on small file creation

7
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Create 2 million 200-byte files in a directory tree

Faster on small file creation

Log 
scale

7
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Faster on metadata scan
Recursively scan directory tree for metadata
• Use the same 2 million files created before.
• Start on a cold cache to measure disk I/O efficiency

8
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Faster on big directories
Create one million empty files in a directory
• Create files with random names, then read them back.
• Tests how well a single directory scales.

9
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Faster on microwrites in a big file
Randomly write out a file in small, unaligned 
pieces

10



TokuFS 
Implementation



Don’t Thrash: How to Cache Your Hash in Flash

TokuFS employs two indexes
Metadata index:
• The metadata index maps pathname to file metadata.
‣ /home/esmet !  mode, file size, access times, ...
‣ /home/esmet/tokufs.c !  mode, file size, access times, ...

Data index:
• The data index maps pathname, blocknum to bytes.
‣ /home/esmet/tokufs.c, 0 !  [ block of bytes ]
‣ /home/esmet/tokufs.c, 1 !  [ block of bytes ]

• Block size is a compile-time constant: 512.
‣ good performance on small files, moderate on large files

12
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Common queries exhibit locality
Metadata index keys: full path as string
• All the children of a directory are contiguous in the 

index
• Reading a directory is simple and fast

Data block index keys:【full path, blocknum】
• So all the blocks for a file are contiguous in the index
• Reading a file is simple and fast

13
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TokuFS compresses indexes
Reduces overhead from full path keys
• Pathnames are highly “prefix redundant”
• They compress very, very well in practice

Reduces overhead from zero-valued padding
• Uninitialized bytes in a block are set to zero
• Good portions of the metadata struct are set to zero

Compression between 7-15x on real data
• For example, a full MySQL source tree

14
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TokuFS is fully functional 
TokuFS is a prototype, but fully functional.
• Implements files, directories, metadata, etc.
• Interfaces with applications via shared library, header.

We wrote a FUSE implementation, too.
• FUSE lets you implement filesystems in user space.
• But there’s overhead, so performance isn’t optimal.
• The best way to run is through our POSIX-like file API.

15



Microdata is the Problem 



Data Structures and Algorithms for Big Data
Module 4: Cache-Oblivious Analysis

Michael A. Bender
Stony Brook & Tokutek

Bradley C. Kuszmaul
MIT & Tokutek

1
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External-memory model:
• Time bounds are parameterized by B, M, N.
• Goal: Minimize # of block transfers ≈ time. 

Beautiful restriction:
• Parameters B, M are unknown to the algorithm or coder.

An optimal CO algorithm is universal for all B, M, N.

Recall the Disk Access Machine

B

DiskRAM

B

M

2



Memory and disk access times

Disks: ~6 milliseconds per access.

RAM: ~60 nanoseconds per access



Memory and disk access times

Disks: ~6 milliseconds per access.

RAM: ~60 nanoseconds per access

Analogy: 
• disk = length of Moby Dick (200,000 words)
• RAM = length of title of Moby Dick (2 words)
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External-memory model:
• Time bounds are parameterized by B, M, N.
• Goal: Minimize # of block transfers ≈ time. 

Beautiful restriction:
• Parameters B, M are unknown to the algorithm or coder.

An optimal CO algorithm is universal for all B, M, N.

Recall the Disk Access Machine

B

DiskRAM

B

M
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External-memory model:
• Time bounds are parameterized by B, M, N.
• Goal: Minimize # of block transfers ≈ time. 

Beautiful restriction:
• Parameters B, M are unknown to the algorithm or coder.

Cache-Oblivious (CO) Algorithms [Frigo, Leiserson, 
Prokop, Ramachandran ’99]

B=?

DiskRAM

B=?

M=?
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External-memory model:
• Time bounds are parameterized by B, M, N.
• Goal: Minimize # of block transfers ≈ time. 

Beautiful restriction:
• Parameters B, M are unknown to the algorithm or coder.

An optimal CO algorithm is universal for all B, M, N.

Cache-Oblivious (CO) Algorithms [Frigo, Leiserson, 
Prokop, Ramachandran ’99]

B=?

DiskRAM

B=?

M=?
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Overview of Module
Cache-oblivious definition
Cache-oblivious B-tree
Cache-oblivious performance advantages
Cache-oblivious write-optimized data structure 
(COLA)
Cache-adaptive algorithms

6
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Traditional B-trees aren’t cache-oblivious

There do exist cache-oblivious B-trees. 
• We can still achieve O(logB N) I/Os per operation, 

even without parameterizing by B or M.

7

O(logBN)

B

The fan-out is a function of B.

[Bender, Demaine, Farach-Colton ’00] [Bender, Duan, Iacono, Wu ’02] 
[Brodal, Fagerberg, Jacob ’02]
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Static cache-oblivious B-Tree (no inserts)

• Technique: divide & conquer (Van Emde Boas layout)

Split into 
sub-trees

Lay out each subtree 

Repeat recursively.

binary tree
with N nodes

[Prokop 99]

lg N

(lg N)/2

(lg N)/2

Yp
NX

X

Y1

Y1

Yp
NY2

Y2
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Dynamic Cache-Oblivious B-trees 

We won’t describe how to dynamize....

After all, the cache-oblivious dynamic B-tree 
isn’t write-optimized. 

We believe that write-optimized data structures 
win out over B-trees (even cache-oblivious 
ones) in the majority of cases.

10

[Bender, Demaine, 
Farach-Colton 00]
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Overview of Module
Cache-oblivious definition
Example: cache-oblivious B-tree
Cache-oblivious performance advantages
Cache-oblivious write-optimized data structure 
(COLA)
Cache-adaptive algorithms

11
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The DAM model is a simplification

12

Disks are organized into 
tracks of different sizes

Fixed-size blocks are fetched.

Tracks get prefetched into the disk 
cache, which holds ~100 tracks.
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The DAM model is a simplification
2kB or 4kB is too small for the model.
• B-tree nodes in Berkeley DB & InnoDB have this size.
• Issue: sequential block accesses run 10x faster than 

random block accesses, which doesn’t fit the model.

There is no single best block size. 
• The best node size for a B-tree depends on the 

operation
(insert/delete/point query).

13
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B Small Big
4K 17.3ms 22.4ms
16K 13.9ms 22.1ms
32K 11.9ms 17.4ms
64K 12.9ms 17.6ms
128K 13.2ms 16.5ms
256K 18.5ms 14.4ms
512K 16.7ms

Time for 1000 Random B-tree Searches 

There’s no best block 
size.
The optimal block size 
for inserts is very 
different.

Small Big
CO B-

tree 12.3ms 13.8ms

[Bender, Farach-Colton, Kuszmaul ’06]
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• Cache-oblivious algorithms work for all B and M...
• ... and all levels of a multi-level hierarchy. 

It’s better to optimize approximately for all B, M 
than to pick the best B and M. 

Cache-Oblivious Analysis

DiskRAM

B=??

B=??

M=??

15

[Frigo, Leiserson, Prokop, Ramachandran ’99]
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Overview of Module
Cache-oblivious definition
Example: cache-oblivious B-tree
Cache-oblivious performance advantages
Cache-oblivious write-optimized data structure 
(COLA)
• You can even make write-optimized data structures 

cache-oblivious 

Cache-adaptive algorithms

16

[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson, SPAA 07]
[Brodal, Demaine, Fineman, Iacono, Langerman, Munro, SODA 10]
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Recall optimal search-insert tradeoff  [Brodal, 
Fagerberg 03]

insert point query

Optimal 
tradeoff

(function of ɛ=0...1)

B-tree
(ɛ=1)

O

✓
logB Np

B

◆

O (logB N)

O (logB N)
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We give a cache-oblivious solution for ɛ=0.
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Simplified CO write-optimized structure (COLA)

O((logN)/B) insert cost  & O(log2N) search cost 
• Sorted arrays of exponentially increasing size.
• Arrays are completely full or completely empty

(depends on the bit representation of # of elmts).
• Insert into the smallest array. 

Merge arrays to make room.

18

20 21 22 23
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Simplified CO write-optimized structure (COLA)

19
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Simplified CO write-optimized structure (COLA)

Insert Cost:
• cost to flush level of size X = O(X/B)
• cost per element to flush level = O(1/B)
• max # of times each element is flushed = log N
• insert cost = O((log N))/B) amortized memory transfers

Search Cost
• Binary search at each level
• log(N/B) + log(N/B) - 1 + log(N/B) - 2 + ... + 2 + 1 

 = O(log2(N/B))

20
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Cache-oblivious write-optimized structure (COLA)

O((logN)/B) insert cost  & O(logN) search cost 
• Some redundancy of elements between levels
• Arrays can be partially full 
• Horizontal and vertical pointers to redundant elements
• (Fractional Cascading)

21
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Overview of Module
Cache-oblivious definition
Example: cache-oblivious B-tree
Cache-oblivious performance advantages
Cache-oblivious write-optimized data structure 
(COLA)
Cache-adaptive algorithms

22



Michael at a Dagstuhl Workshop on 
Database Workload Management

23

Cache-oblivious 
algorithms are 
universal algorithms. 
They are platform 
independent. 

        

External-memory model:
• Time bounds are parameterized by B, M, N.
• Goal: Minimize # of block transfers ≈ time. 

Beautiful restriction:
• Parameters B, M are unknown to the algorithm or coder.
• An optimal CO algorithm is universal for all B, M, N.

Cache-Oblivious Algorithms [Frigo, Leiserson, Prokop, 
Ramachandran ’99]

B=?

DiskRAM

B=?

M=?
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Michael at a Dagstuhl Workshop on 
Database Workload Management

24

Cache-oblivious 
algorithms adapt to 

changing RAM.         

External-memory model:
• Time bounds are parameterized by B, M, N.
• Goal: Minimize # of block transfers ≈ time. 

Beautiful restriction:
• Parameters B, M are unknown to the algorithm or coder.
• An optimal CO algorithm is universal for all B, M, N.

Cache-Oblivious Algorithms [Frigo, Leiserson, Prokop, 
Ramachandran ’99]
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M=?
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External-memory model:
• Time bounds are parameterized by B, M, N.
• Goal: Minimize # of block transfers ≈ time. 

Beautiful restriction:
• Parameters B, M are unknown to the algorithm or coder.
• An optimal CO algorithm is universal for all B, M, N.

Cache-Oblivious Algorithms [Frigo, Leiserson, Prokop, 
Ramachandran ’99]
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Cache-oblivious 
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changing RAM. 
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External-memory model:
• Time bounds are parameterized by B, M, N.
• Goal: Minimize # of block transfers ≈ time. 

Beautiful restriction:
• Parameters B, M are unknown to the algorithm or coder.
• An optimal CO algorithm is universal for all B, M, N.

Cache-Oblivious Algorithms [Frigo, Leiserson, Prokop, 
Ramachandran ’99]
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There was an activity of presenting an abstract 
for a fictional paper that we wanted to write. 

25

We have this concern  
at --- (social media 

company).

We have this concern at 
---- (database company).

Cache-oblivious 
algorithms adapt to 
changing RAM. 



So we proved some theorems

26

Theorem: Some (but 
not all) cache-oblivious 
algorithms adapt to 
changing sizes of RAM. 
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Some cache-oblivious algorithms run optimally 
even when the RAM changes arbitrarily over time. 
• Sorting
• Problems with a special recursive structure

(matrix multiplication, transpose, Gaussian elimination, 
all-pairs shortest paths)

Some CO algorithms adapt when RAM changes

B=?

DiskRAM

B=?

M=?

DiskRAM

B

B

M(t)

27



Don’t Thrash: How to Cache Your Hash in Flash

Summary
In the cache-oblivious model, B and M are 
unknown to the coder.
(Of course, we still use B and M in proofs.)
It’s remarkable how many common I/O-efficient 
data structures have cache-oblivious 
alternatives. 
Sometimes it’s better to optimize approximately 
for all B and M instead of picking the best B 
and M.

28
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Module 5: Log Structured Merge Trees

Michael A. Bender
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Log Structured Merge Trees 

Log structured merge trees are write-optimized data 
structures developed in the 90s.

Over the past 10 years, LSM trees have become 
popular (for good reason).

Accumulo, Bigtable, bLSM, Cassandra, HBase, 
Hypertable, LevelDB are LSM trees (or borrow ideas).

http://nosql-database.org lists 122 NoSQL 
databases. Many of them are LSM trees.

2

[O'Neil, Cheng, 
Gawlick, O'Neil 96]

http://nosql-database.org
http://nosql-database.org
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Recall Optimal Search-Insert Tradeoff  [Brodal, 
Fagerberg 03]

insert point query

Optimal 
tradeoff

(function of ɛ=0...1)
O
�
log1+B" N

�
O

✓
log1+B" N

B1�"

◆

3

LSM trees don’t lie on the optimal search-insert 
tradeoff curve. 
But they’re not far off.
We’ll show how to move them back onto the 
optimal curve.



   

Log Structured Merge Tree 

An LSM tree is a cascade of B-trees. 
Each tree Tj has a target size |Tj | . 
The target sizes are exponentially increasing. 
Typically, target size |Tj+1| = 10 |Tj |. 

4

[O'Neil, Cheng, 
Gawlick, O'Neil 96]

T0 T1 T2 T3 T4



   

LSM Tree Operations

Point queries:

5

T0 T1 T2 T3 T4



   

LSM Tree Operations

Point queries:

Range queries:

5

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4



   

LSM Tree Operations

Insertions:
• Always insert element into the smallest B-tree T0.

• When a B-tree Tj  fills up, flush into Tj+1 . 

6

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

insert

flush



   

LSM Tree Operations

Deletes are like inserts:
• Instead of deleting an 

element directly, insert 
tombstones.

• A tombstone knocks out a 
“real” element when it lands 
in the same tree.

7

T0 T1 T2 T3 T4

T0 T1 T2 T3 T4

insert tombstone
 messages



   

Static-to-Dynamic Transformation
An LSM Tree is an example of a “static-to-
dynamic” transformation                     .

• An LSM tree can be built out of static B-trees.
• When T3 flushes into T4, T4 is rebuilt from scratch. 

8

[Bentley, Saxe ’80]

T0 T1 T2 T3 T4

flush



This Module   

9

Let’s analyze LSM trees.

BM



I/O models

Recall: Searching in an Array Versus B-tree

Recall the cost of searching in an array versus 
a B-tree.

10

O(logBN)

O(logB N) = O
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I/O models

Recall: Searching in an Array Versus B-tree

Recall the cost of searching in an array versus 
a B-tree.

10
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Analysis of point queries
Search cost:

11

T0 T1 T2 T3 T
logN

...

logB N + logB N/2 + logB N/4 + · · ·+ logB B

= O(logN logB N)

=

1

logB
(logN + logN � 1 + logN � 2 + logN � 3 + · · ·+ 1)



   

Insert Analysis
The cost to flush a tree Tj of size X is O(X/B).

• Flushing and rebuilding a tree is just a linear scan. 

The cost per element to flush Tj is O(1/B).
The # times each element is moved is ≤ log N.
The insert cost is O((log N)/B) amortized 
memory transfers. 

12

Tj has size X.

A flush costs O(1/B) per element.

Tj+1 has size ϴ(X).



   

Samples from LSM Tradeoff Curve

sizes grow by B
(ɛ=1)
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13

sizes grow by B1/2

(ɛ=1/2)



   

How to improve LSM-tree point queries? 
Looking in all those trees is expensive, but can 
be improved by

• caching,
• Bloom filters, and
• fractional cascading.

14

T0 T1 T2 T3 T4



   

Caching in LSM trees 
When the cache is warm, small trees are 
cached. 

15

T0 T1 T2 T3 T4

When the cache is warm, 
these trees are cached.



   

Bloom filters in LSM trees 
Bloom filters can avoid point queries for 
elements that are not in a particular B-tree. 

16

T0 T1 T2 T3 T4



   

Fractional cascading reduces the cost in each tree 

Instead of avoiding searches in trees, we can use a 
technique called fractional cascading to reduce the 
cost of searching each B-tree to O(1).

17

Idea: We’re looking for a key, and we already 
know where it should have been in T3, try to 
use that information to search T4.

T0 T1 T2 T3 T4



   

Searching one tree helps in the next 
Looking up c, in Ti we know it’s between b, and e.

18

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

1

Showing only the bottom level of each B-tree.



   

Forwarding pointers  
If we add forwarding pointers to the first tree, we 
can jump straight to the node in the second tree, to 
find c.

19

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

2



   

Remove redundant forwarding pointers 
We need only one forwarding pointer for each block 
in the next tree.  Remove the redundant ones.

20

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

3



   

Ghost pointers 
We need a forwarding pointer for every block in the 
next tree, even if there are no corresponding 
pointers in this tree.  Add ghosts.

21

a c d f h i j k m n p q t u y z

Ti+1

Ti

b e v w

ghosts

h m

4



   

LSM tree + forward + ghost = fast queries 
With forward pointers and ghosts, LSM trees require 
only one I/O per tree, and point queries cost only
                    .
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[Bender, Farach-Colton, Fineman, Fogel, Kuszmaul, Nelson 07]

O(logR N)



   

LSM tree + forward + ghost = COLA
This data structure no longer uses the internal nodes 
of the B-trees, and each of the trees can be 
implemented by an array.
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Don’t Thrash: How to Cache Your Hash in Flash

Story of this module
This module explores indexing. 
Traditionally, (with B-trees), indexing improves 
queries, but cripples insertions. 
But now we know that maintaining indexes is 
cheap.  So what should we index? 

2



Don’t Thrash: How to Cache Your Hash in Flash

An Indexing Testimonial

This is a graph from a real user, who added 
some indexes, and reduced the I/O load on 
their server.  (They couldn’t maintain the 
indexes with B-trees.)

3
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Add selective indexes.



   

What is an Index?
To understand what to index, we need to get on 
the same page for what an index is.



   

Row, Index, and Table
Row

• Key,value pair
• key = a, value = b,c

Index
• Ordering of rows by key

(dictionary)
• Used to make queries fast

Table
• Set of indexes

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

create table foo (a int, b int, c int, 
primary key(a));



   

An index is a dictionary
Dictionary API:  maintain a set S subject to 

• insert(x):  S ← S ∪ {x}
• delete(x):  S ← S - {x}
• search(x): is x ∊ S? 
• successor(x): return min y > x s.t.  y ∊ S 
• predecessor(y): return max y < x s.t.  y ∊ S 

We assume that these operations perform as 
well as a B-tree.  For example, the successor 
operation usually doesn’t require an I/O.



   

A table is a set of indexes
A table is a set of indexes with operations:

• Add index: add key(f1,f2,...);
• Drop index: drop key(f1,f2,...);
• Add column: adds a field to primary key value.
• Remove column: removes a field and drops all indexes 

where field is part of key.
• Change field type
• ...

Subject to index correctness constraints.
We want table operations to be fast too. 



   

Next: how to use indexes to improve queries.



   

Indexes provide query performance
1. Indexes can reduce the amount of retrieved 
data.

• Less bandwidth, less processing, ...

2. Indexes can improve locality.
• Not all data access cost is the same
• Sequential access is MUCH faster than random access

3. Indexes can presort data.
• GROUP BY and ORDER BY queries do post-retrieval 

work 
• Indexing can help get rid of this work 
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a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

An index can select needed rows

count (*) where a<120;



   

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

100 5 45
101 92 2

An index can select needed rows

100 5 45
101 92 2

2

}

count (*) where a<120;



   

No good index means slow table scans
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100; 



   

No good index means slow table scans
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100; 

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

101 92 2
156 56 45

256 56 2
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You can add an index
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

alter table foo add key(b);

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198



   

A selective index speeds up queries
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100; 

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198



   

A selective index speeds up queries
a b c

100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

count (*) where b>50 and b<100; 

b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198
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b a
5 100
6 165
23 206
43 412
56 156
56 256
92 101
202 198

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

Selective indexes can still be slow

sum(c) where b>50; 
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Indexes provide query performance
1. Indexes can reduce the amount of retrieved 
data.

• Less bandwidth, less processing, ...

2. Indexes can improve locality.
• Not all data access cost is the same
• Sequential access is MUCH faster than random access

3. Indexes can presort data.
• GROUP BY and ORDER BY queries do post-retrieval 

work 
• Indexing can help get rid of this work 



   

b,c a
5,45 100
6,2 165

23,252 206
43,45 412
56,2 256
56,45 156
92,2 101

202,56 198

Covering indexes speed up queries

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

alter table foo add key(b,c);

sum(c) where b>50; 



   

b,c a
5,45 100
6,2 165

23,252 206
43,45 412
56,2 256
56,45 156
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202,56 198

56,2 256
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202,56 198

Covering indexes speed up queries

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

56,2 256
56,45 156
92,2 101

202,56 198
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sum(c) where b>50; 
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Indexes provide query performance
1. Indexes can reduce the amount of retrieved 
data.

• Less bandwidth, less processing, ...

2. Indexes can improve locality.
• Not all data access cost is the same
• Sequential access is MUCH faster than random access

3. Indexes can presort data.
• GROUP BY and ORDER BY queries do post-retrieval 

work 
• Indexing can help get rid of this work 



   

b,c a
5,45 100
6,2 165

23,252 206
43,45 412
56,2 256
56,45 156
92,2 101

202,56 198

Indexes can avoid post-selection sorts

a b c
100 5 45
101 92 2
156 56 45
165 6 2
198 202 56
206 23 252
256 56 2
412 43 45

select b, sum(c) group by b;

b sum(c)
5 45
6 2
23 252
43 45
56 47
92 2
202 56
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This Module   

2

The algorithmics of 
cache-management. 

This will help us 
understand I/O- and 

cache-efficient 
algorithms. 



   

Goal: minimize # block transfers. 
• Data is transferred in blocks between RAM and disk. 
• Performance bounds are parameterized by B, M, N. 

When a block is cached, the access cost is 0.
Otherwise it’s 1.

Recall Disk Access Model

DiskRAM

BM

3

[Aggarwal+Vitter ’88]



   

Disk Access Model (DAM Model):
• Performance bounds are parameterized by B, M, N.

Goal: Minimize # of block transfers.
Beautiful restriction:

• Parameters B, M are unknown to the algorithm or coder.

Recall Cache-Oblivious Analysis

DiskRAM

B=??M=??

4

[Frigo, Leiserson, Prokop, Ramachandran ’99]



   

CO analysis applies to unknown multilevel hierarchies: 
• Cache-oblivious algorithms work for all B and M...
• ... and all levels of a multi-level hierarchy. 

Moral: 
• It’s better to optimize approximately for all B, M rather than to try 

to pick the best B and M.

Recall Cache-Oblivious Analysis

DiskRAM

B=??M=??

5

[Frigo, Leiserson, Prokop, Ramachandran ’99]



   

Cache-Replacement in Cache-Oblivious Algorithms 

Which blocks are currently cached in RAM? 
• The system performs its own caching/paging.
• If we knew B and M we could explicitly manage I/O.

(But even then, what should we do?)

6

DiskRAM

B=??M=??



   

Cache-Replacement in Cache-Oblivious Algorithms 

Which blocks are currently cached in RAM? 
• The system performs its own caching/paging.
• If we knew B and M we could explicitly manage I/O.

(But even then, what should we do?)

But systems may use different mechanisms, so what 
can we actually assume? 

6

DiskRAM

B=??M=??



   

This Module: Cache-Management Strategies

With cache-oblivious analysis, we can assume 
a memory system with optimal replacement.

Even though the system manages memory, we 
can assume all the advantages of explicit 
memory management. 

7

DiskRAM

B=??M=??



   

This Module: Cache-Management Strategies
An LRU-based system with memory M performs cache-management 
< 2x worse than the optimal, prescient policy with memory M/2. 

Achieving optimal cache-management is hard because predicting 
the future is hard.

But LRU with (1+ɛ)M memory is almost as good (or better), than the 
optimal strategy with M memory. 

8

DiskOPT

M

[Sleator, Tarjan 85]

DiskLRU

(1+ɛ) M
LRU with (1+ɛ) more memory is 

nearly as good or better... ... than OPT.



   

The paging/caching problem
A program is just sequence of block requests:

Cost of request rj 

Algorithmic question:

• Which block should be ejected when block rj  is 
brought into cache?

9

r1, r2, r3, . . .

cost(rj) =

⇢
0 block rj is already cached,

1 block rj is brought into cache.



   

The paging/caching problem
RAM holds only k=M/B blocks. 

Which block should be ejected when block rj  is 
brought into cache?

10

DiskRAM

M

rj

???



   

Paging Algorithms
LRU (least recently used)

• Discard block whose most recent access is earliest.

FIFO (first in, first out)
• Discard the block brought in longest ago.

LFU (least frequently used)
• Discard the least popular block.

Random 
• Discard a random block.

LFD (longest forward distance)=OPT 
• Discard block whose next access is farthest in the future.

11

[Belady 69]



   

LFD (Longest Forward Distance) [Belady ’69]:  
• Discard the block requested farthest in the future.

Cons:  Who knows the Future?!

Pros:  LFD can be viewed as a point of 
comparison with online strategies. 

12
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LFD (Longest Forward Distance) [Belady ’69]:  
• Discard the block requested farthest in the future.

Cons:  Who knows the Future?!

Pros:  LFD can be viewed as a point of 
comparison with online strategies. 

14

Page 5348 shall be 
requested tomorrow 

at 2:00 pm 

Optimal Page Replacement



   

Competitive Analysis
An online algorithm A is k-competitive, if for 
every request sequence R:

Idea of competitive analysis: 
• The optimal (prescient) algorithm is a yardstick we use 

to compare online algorithms. 

15

costA(R)  k cost
opt

(R)



   

LRU is no better than k-competitive
Memory holds 3 blocks

The program accesses 4 different blocks 

The request stream is

16

M/B = k = 3

rj 2 {1, 2, 3, 4}

1, 2, 3, 4, 1, 2, 3, 4, · · ·



   

LRU is no better than k-competitive

17

requests

blocks in 
memory
of size 3

There’s a block transfer at every step because 
LRU ejects the block that’s requested in the next step.

1  2  3  4  1  2  3  4  1  2

1  1  1     1  1  1     1  1

   2  2  2     2  2  2     2

      3  3  3     3  3  3

         4  4  4     4  4  4



   

LRU is no better than k-competitive

18

requests

blocks in 
memory
of size 3

LFD (longest forward distance) has a 
block transfer every k=3 steps.

1  2  3  4  1  2  3  4  1  2

1  1  1  1  1  1  1  1  1  1

   2  2  2  2  2           2

      3           3  3  3  3      

         4  4  4  4  4  4  4



   

LRU is k-competitive
In fact, LRU is k=M/B-competitive. 

• I.e., LRU has k=M/B times more transfers than OPT. 
• A depressing result because k is huge so k . OPT is 

nothing to write home about.

19

 [Sleator, Tarjan 85]



   

On the other hand, the LRU bad example is fragile

20

requests

blocks in 
memory
of size 3

If k=M/B=4, not 3, then both LRU and OPT do well.
If k=M/B=2, not 3, then neither LRU nor OPT does well.

1  2  3  4  1  2  3  4  1  2

1  1  1     1  1  1     1  1

   2  2  2     2  2  2     2

      3  3  3     3  3  3

         4  4  4     4  4  4



   

LRU is 2-competitive with more memory

LRU is at most twice as bad as OPT, when LRU 
has twice the memory. 

In general, LRU is nearly as good as OPT when 
LRU has a little more memory than OPT.

21

LRU|cache|=k(R)  2OPT|cache|=k/2(R)

[Sleator, Tarjan 85]



   

LRU is 2-competitive with more memory

LRU is at most twice as bad as OPT, when LRU 
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In general, LRU is nearly as good as OPT when 
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LRU has more memory, but OPT=LFD can see the future.



   

LRU is 2-competitive with more memory

LRU is at most twice as bad as OPT, when LRU 
has twice the memory. 

In general, LRU is nearly as good as OPT when 
LRU has a little more memory than OPT.

21

LRU|cache|=k(R)  2OPT|cache|=k/2(R)

[Sleator, Tarjan 85]

LRU has more memory, but OPT=LFD can see the future.



   

Divide LRU into phases, each with k faults.

LRU Performance Proof

22
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Divide LRU into phases, each with k faults.

OPT[k] must have ≥ 1 fault in each phase. 
• Case analysis proof. 
• LRU is k-competitive. 

LRU Performance Proof

22

r1, r2, . . . , ri, ri+1, . . . , rj , rj+1, . . . , r`, r`+1, . . .



   

Divide LRU into phases, each with k faults.

OPT[k] must have ≥ 1 fault in each phase. 
• Case analysis proof. 
• LRU is k-competitive. 

OPT[k/2] must have ≥ k/2 faults in each phase. 
• Main idea: each phase must touch k different pages.
• LRU is 2-competitive. 

LRU Performance Proof

22

r1, r2, . . . , ri, ri+1, . . . , rj , rj+1, . . . , r`, r`+1, . . .



   

Under the hood of cache-oblivious analysis

Moral: with cache-oblivious analysis, we can 
analyze based on a memory system with optimal, 
omniscient replacement.

• Technically, an optimal cache-oblivious algorithm is 
asymptotically optimal versus any algorithm on a memory 
system that is slightly smaller. 

• Empirically, this is just a technicality. 

23

DiskOPT

M

DiskLRU

(1+ɛ) M

This is almost as good or better... ... than this.



   

Ramifications for New Cache-Replacement Policies

Moral: There’s not much performance on the 
table for new cache-replacement policies. 

• Bad instances for LRU versus LFD are fragile and 
depend on a particular cache size.  

There are still research questions: 
• What if blocks have different sizes [Irani 02][Young 02]?
• There’s a write-back cost? (Complexity unknown.)
• LRU may be too costly to implement (clock algorithm).
• The cache-size changes over time. 

24

[Bender, Ebrahimi, Fineman, Ghasemiesfeh, Johnson, McCauley 13]
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Story for Module

Another way to create an index is to sort
• Sorting creates an index all-at-once.
• Sorting does not incrementally maintain an index.
• Sorting is faster than the best algorithms to 

incrementally maintain an index.

I/O-efficient mergesort
Parallel sort

2



How computation works: 
• Data is transferred in blocks between RAM and disk. 
• The # of block transfers dominates the running time. 

Goal: Minimize # of block transfers
• Performance bounds are parameterized by 

block size B, memory size M, data size N.

Modeling I/O Using the Disk Access Model

DiskRAM

B

B

M

3

[Aggarwal+Vitter ’88]



Merge Sort 
To sort an array of N objects
• If N fits in main memory, then just sort elements.
• Otherwise,
‣ divide the array into M/B pieces;
‣ sort each piece (recursively); and
‣merge the M/B pieces.

4

sort sort sort sort sort sort

merge



Why Divide into M/B pieces? 
• We want as much fan-in as possible.
• The merge needs to cache one block for each 

sorted subinput.
• Plus one block for the output.
• There are M/B blocks in memory.
• So the fan-in can be at most O(M/B)

Memory
(size M)

B

B

M

B



Merge Sort 

6

sort sort sort sort sort sort

merge

merge merge merge merge merge merge



Intuition for Merge Sort Analysis

Question: How many I/Os to sort N elements? 
• First run takes N/B I/Os.
• Each level of the merge tree takes N/B I/Os.
• How deep is the merge tree?
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Intuition for Merge Sort Analysis

Question: How many I/Os to sort N elements? 
• First run takes N/B I/Os.
• Each level of the merge tree takes N/B I/Os.
• How deep is the merge tree?
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This bound is the best possible.



Merge Sort Analysis
T(N), the number of I/Os to sort N items, satisfies 
this recurrence: 

Solution: 

8

T (N) =
N

B
when N < M

T (N) =
M

B
· T

✓
N

M/B

◆
+

N

B

# of pieces
cost to sort each 
piece recursively cost to merge

cost to sort something 
that fits in memory

O

✓
N

B
logM/B

N

B

◆

Cost to scan data # of scans of data 



Sorting is Faster Than Index Maintenance

I/Os to sort N objects:

I/Os to insert N objects into a COLA:

I/Os to insert N objects into a B-tree:

Sorting can usually be done in 2 passes since 
M/B is large.

9
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Parallel Sort
Big data might not fit on one machine.
So use many machines and parallelize.

Parallelizing merge sort is tricky, however.

10

P P P P P P P P P

Network



Distribution Sort 
To sort an array of N objects
• If N fits in main memory, then just sort elements.
• Otherwise
‣ pick M/B pivot keys;
‣ partition data according to pivot keys; and
‣ sort each partition (recursively).

11

sort sort sort sort sort sort

partition



Parallelizing Partitioning 
• Broadcast the pivot keys to every processor.
• Compute the local rank of each pivot on each processor.
‣ Sort local data to make this fast.

• Sum the local ranks to get global ranks.
• Send each datum to the right processor. 
• The final step is a merge, since the local data was sorted.
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Engineering Parallel Sort 
• Scheduling:
‣ Overlap I/O with computation and network communcation.
‣ Schedule network communication carefully to avoid network contention.

• Hardware:
‣ Use a serious network.
‣ Get rid of slow disks.  Some disks are 10x slower than average.  Probably failing.

• In memory:
‣ Must compute local pivot ranks efficiently.
‣ Employ a heap data structure to perform merge efficiently.
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Sorting Contest

Bradley holds the world record for sorting a 
Terabyte: sortbenchmark.org
• 400 dual core machines with 2400 disks in 2007.
• Ran in 3.28 minutes.
• Used a distribution sort.
• Terabyte sort now deprecated, since it’s the same as 

minute sort (how much can you sort in a minute).
• Today to compete, you must sort 100TB in less than 

two hours.
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Fast sorting is an important 
tool for big data.



Summery Slide

Sorting provides many 
opportunities for cleverness.

Fast sorting is an important 
tool for big data.



Summery Slide

No one can take my Terabyte 
sorting trophy!

Sorting provides many 
opportunities for cleverness.

Fast sorting is an important 
tool for big data.



Closing Words
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We want to feel your pain. 
We are interested in hearing about other scaling 
problems. 
Come talk to us.
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Big Data Epigrams
The problem with big data is microdata. 
Sometimes the right read optimization is a 
write-optimization. 
It’s often better to optimize approximately for 
all B, M than to pick the best B and M.
As data becomes bigger, the asymptotics 
become more important. 
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