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Three backoff dilemmas

Michael A. Bender



Backoff is about sharing

Classic scenario:
• Many devices.
• 1 (shared) resource.
• Only one device can access the 

resource at a time!

Examples:
• LANs
• Wireless networks
• Transactional memory
• Lock acquisition
• E-mail retransmission
• Congestion control (e.g., TCP)



Randomized backoff

Repeat until resource acquired
•Try to grab resource
•If failed then
randomly choose t in window [1,10]
and wait t seconds. 

[Abramson ’70]
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Randomized backoff

Repeat until resource acquired
•Try to grab resource
•If failed then
randomly choose t in window [1,10]
and wait t seconds. 

[Abramson ’70]

Bad scenario: thousands of 
devices contend for the resource.

W W W
Basic backoff question: 

How to choose and adapt the 
window size W. 

packet 1
packet 2

collision/failure collision/failure successful slot



Standard answer: Binary exponential backoff

Window size W = 2

Repeat until resource acquired:
•Randomly choose slot t in window.
•Try to grab resource at slot t.
•If failed, wait to end of W. 
Then double W. 

[Metcalfe and Boggs ‘76]
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Standard answer: Binary exponential backoff

Window size W = 2

Repeat until resource acquired:
•Randomly choose slot t in window.
•Try to grab resource at slot t.
•If failed, wait to end of W. 
Then double W. 

Why double? 
What if the window size 

changes by a different factor? 

How many attempts to 
acquire the resource 

until a success? 

What about 
robustness 
guarantees? 

How well does 
exponential backoff 

deal with bursty 
arrivals? 

[Metcalfe and Boggs ‘76]

Are there any 
throughput 
guarantees? 

This talk: some answers to 
these research questions. 



I’m going to say something controversial.
Then I’ll try to convince you of it. 





Exponential 
backoff is broken
(scales poorly). 



Exponential 
backoff is broken
(scales poorly). 

poor throughput



Exponential 
backoff is broken
(scales poorly). 

poor throughput

unstable at low 
arrival rates



Exponential 
backoff is broken
(scales poorly). 

poor throughput

unstable at low 
arrival rates

fragile/not 
robust to 
failures



Exponential 
backoff is broken
(scales poorly). 

poor throughput

unstable at low 
arrival rates

fragile/not 
robust to 
failures

But it is used all over the place, often 
hidden inside other protocols. 



Exponential 
backoff is broken
(scales poorly). 

poor throughput

unstable at low 
arrival rates

fragile/not 
robust to 
failures

But it is used all over the place, often 
hidden inside other protocols. 

This talk: some fixes to 
exponential backoff.  

And other backoff algorithms. 



This talk

Act 1: Binary exponential backoff is broken. 
• batch (single burst)
• dynamic arrivals

Act 2: TBD (three backoff dilemmas).
• how to maximize throughput,
• minimize # tries to access resource, and 
• achieve robustness. 

Act 3: How to fix exponential backoff. 
• batch
• dynamic arrivals
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I hope to convey 
intuition about the asymptotic 

analysis of randomized 
backoff. 

What Google says about “randomized backoff” is on 
topic but less algorithmic...



TBD 
(Three backoff dilemmas)

Part 1: binary exponential 
backoff is broken

Analysis in two settings: 
• batch (a single burst)
• dynamic arrivals
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Results (known to every broadcaster/listener):
• If exactly one device broadcasts, then success.
• If two or more devices broadcast, then failure.
• If zero devices broadcast, then nothing.
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I want to focus on backoff as a theory problem.



1. Throughput

# successful slots
total number of slots 

throughput = 4/12

(first backoff dilemma)



All n packets start at the same time  t = 0.
Let T = running time 
(= time when last request succeeds).
Throughput: n/T.

packet-play-device. be 
consistent.

Next few slides: batch scenario  

throughput = 4/12
0 T



Standard binary exponential backoff

Window size W = 2

Repeat until successful transmission:
•Randomly choose slot t in window.
•Try to broadcast at slot t.
•If collision, wait to end of W. 
Then double W. 

Why double? 
What if the window size 

changes by a different factor? 
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What backoff rate is best for batches? 

Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:  

LogLog growth
• After collision:

Binary exponential growth
• After collision:

W = W + 1

W = W
⇣
1 + 1

logW

⌘

W = 2W

W = W
⇣
1 + 1

log logW

⌘

Approx. running time

exponential in n

O(n log n)

O(n log n)

O(n2)

O(n loglog n)

[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]
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Comparison
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Constant-sized windows
• W is a fixed constant

Additive increase
• After collision:

Logarithmic growth
• After collision:  

LogLog growth
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⌘
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⌘

exponential in n
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[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

Optimal (monotonic):
O(n loglog n / logloglog n)  



Moral of the story

Exponential backoff is disappointing
• Used everywhere.
• Poor throughput: < 1/polylog(n).
• Example experiment: n=100.
‣ About 10% of slots are used.
‣ About 90% of resource is wasted!

LogLog backoff is better 
• In simple experiments, much better.
• It’s the best monotonic backoff for batch arrivals.
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• Still, it cannot achieve constant throughput.

Next: explanation why....



Claim: W.h.p, all packets transmit in lglg n ± O(1) rounds.

Simple batch example: we know n (# packets)
Goal: explain why exp backoff backs off too quickly on batches.

fixed-sized 
windows



Claim: W.h.p, all packets transmit in lglg n ± O(1) rounds.

Simple batch example: we know n (# packets)
Goal: explain why exp backoff backs off too quickly on batches.

running time = n lglg n + O(n)

fixed-sized 
windows



Claim: W.h.p, all packets transmit in lglg n ± O(1) rounds.

Simple batch example: we know n (# packets)
Goal: explain why exp backoff backs off too quickly on batches.

running time = n lglg n + O(n)   ⇒   throughput = O(1/ lglg n)

fixed-sized 
windows



Intuition for Fixed Backoff (size-n windows) 

(2) E[#packets remaining] ≤n/4

(1) n/2 packets ⇒ Pr[collision]≤1/2.

Collision probs square (decrease) in each round.
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Intuition for Fixed Backoff (size-n windows) 

(3) E[#packets remaining]≤n/16

(2) E[#packets remaining] ≤n/4

(1) n/2 packets ⇒ Pr[collision]≤1/2.

(4) E[#packets remaining]≤n/256

Collision probs square (decrease) in each round.

Good intuition, but 
incorrect argument! 

 ⇒Pr[collision]≤1/4.

⇒Pr[collision]≤1/16.



Analysis of exponential backoff

Exponential backoff still uses                  rounds.

[Bender, Farach-Colton, 
He, Kuszmaul, Leiserson 05]



2-exponential backoff (Wk+1=2Wk) has              time.

Exponential backoff is exquisitely sensitive to constants. 

[Bender, Farach-Colton, 
He, Kuszmaul, Leiserson 05]



Summary for batch arrivals
Exponential backoff backs off too quickly on 
batches. 

Backing off more slowly is opt for monotonic 
backoff.

It is possible to get asymptotically optimal 
backoff if we sometimes back off and 
sometimes back on.



Queuing theory (with Poisson arrivals) 
[Hastad, Leighton, Rogoff 87] [Goodman, Greenberg, Madras 88] [Goldberg and MacKenzie 96]  [Raghavan and 
Upfal 99][Goldberg, Mackenzie, Paterson, Srinivasan 00] 

• Goal: achieve stability with good arrival rates.
• Exponential backoff is not as stable as polynomial backoff. 

Adversarial queuing theory arrivals 
[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

• Exponential backoff does not adapt well to bursts.

Adversarial queueing theory with n fixed stations 
[Chlebus, Kowalski, Rokicki 06 12] [Anantharamu, Chlebus, Rokicki 09] [Chlebus, Kowalski 04] [Chlebus, 
Gasieniec, Kowalsi, Radzik 05] [Chrobak, Gasieniec, Kowalski 07] etc

• Adversarial injections
• Often deterministic algorithms: round-robin/binary search/etc.

Next few slides: dynamic arrivals
(packets start at arbitrary times)
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[Hastad, Leighton, Rogoff 87] [Goodman, Greenberg, Madras 88] [Goldberg and MacKenzie 96]  [Raghavan and 
Upfal 99][Goldberg, Mackenzie, Paterson, Srinivasan 00] 

• Goal: achieve stability with good arrival rates.
• Exponential backoff is not as stable as polynomial backoff. 

Adversarial queuing theory arrivals 
[Bender, Farach-Colton, He, Kuszmaul, Leiserson 05]

• Exponential backoff does not adapt well to bursts.

Adversarial queueing theory with n fixed stations 
[Chlebus, Kowalski, Rokicki 06 12] [Anantharamu, Chlebus, Rokicki 09] [Chlebus, Kowalski 04] [Chlebus, 
Gasieniec, Kowalsi, Radzik 05] [Chrobak, Gasieniec, Kowalski 07] etc

• Adversarial injections
• Often deterministic algorithms: round-robin/binary search/etc.

Next few slides: dynamic arrivals
(packets start at arbitrary times)

packet-centric versus 
station-centric view of 

backoff. 



m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a time 
superpolynomial in the size of the burst. 

O(1) throughput O(1/mc ) throughput
 (for a time superpolynomial in m)

packet arrivals

[Bender, Farach-Colton, 
He, Kuszmaul, Leiserson 05]



Exponential backoff and bursts

Broadcast probability
• A packet in the system for d time units broadcasts with 

probability Θ(1/d).

Contention at time t
• The contention at time t is the sum of the broadcast 

probabilities of all packets currently in the system. 



Exponential backoff and bursts

Contention at time t
• The contention at time t is the sum of the access 

probabilities of all jobs currently in the system.

contention c = O(1)
• prob(slot t is successful) = O(1)

contention c = Ω(1)
• prob(the slot is successful) = 2-Θ(c)

contention c = o(1)
• prob(slot is not empty) = Θ(c)  

The success probability 
is exponentially small in 
the contention.



m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a time 
superpolynomial in the size of the burst. 

O(1) throughput
O(1/poly(m) ) throughput

 (for a time superpolynomial in m)

[Bender, Farach-Colton, 
He, Kuszmaul, Leiserson 05]
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Exponential backoff and bursts

Exponential backoff may not recover from bursts for a time 
superpolynomial in the size of the burst. 

O(1) throughput
O(1/poly(m) ) throughput

 (for a time superpolynomial in m)

O(1) contention

Θ(m) contention

[Bender, Farach-Colton, 
He, Kuszmaul, Leiserson 05]



m

Exponential backoff and bursts

Exponential backoff may not recover from bursts for a time 
superpolynomial in the size of the burst. 

O(1) throughput
O(1/poly(m) ) throughput

 (for a time superpolynomial in m)

O(1) contention

Θ(m) contention

O(log m) contention

O(logm) = 1 +

1

2

+

1

3

+ · · ·+ 1

poly(m)

[Bender, Farach-Colton, 
He, Kuszmaul, Leiserson 05]
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Summery Slide for Part 1

Binary exponential 
backoff is broken 
(doesn’t scale). 

Dynamic arrivals
Exponential backoff doesn’t 

recover fast enough from bursts.

Batch arrivals
Exponential backoff backs off too quickly. 

(Also with Poisson arrivals.) 
Log log backoff is better.



TBD 
(Three backoff dilemmas)

Part 2: TBD 
Three Backoff Dilemmas

How to....
• maximize throughput,
• minimize # tries to access resource, 
• achieve robustness.



1. Throughput

  

# successful slots
total number of slots 

throughput = 4/12

(We’ll need to generalize for dynamic arrivals.)



2. Minimize Effort / Attempts

Each broadcast (attempt to access resource) has a 
cost.
• In a wireless network, this cost is energy.
• In transactional memory, this cost is processor cycles.

Goal: Minimize the number of broadcasts.
• Exponential backoff: O(log n) on average. (But poor 

throughput.)
• Better: O(log2n) on average plus good throughput. 



3. Cope with Failures / Disruption

Everything is unreliable

Broadcast channels fail
• wireless disruption
• adversarial jamming
• solar flares

Transactional memory fails
• guarantees are only best effort

Network links fails
• congestion
• router failures
• misconfiguration
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• In transactional memory: best-effort hardware
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3. Cope with Failures / Disruption

Failures can occur even without collisions.
• In a wireless network: noise and/or jamming.
• In transactional memory: best-effort hardware

In any blocked slot:
• Every transmission attempt fails.
• Everyone senses that the slot is full. 

Model: adversary can block slots arbitrarily.



3. Cope with Failures / Disruption

Goal: Constant throughput despite failures
• Waste at most a constant fraction of the slots

Examples 
• Jamming Resistant MAC Protocols [Awerbuch, Richa, Scheideler ’08] 

[Richa, Scheideler, Schmid, Zhang ‘10] [Richa, Scheideler, Schmid, Zhang 11] [Richa, 
Scheideler, Schmid, Zhang ’12]

‣Adversary can jam O(1) fraction of the slots
‣fixed-station versus packet centric

• Resource-competitive analysis [King, Saia, Young ’11] [Gilbert, Young 
’12 ] [Gilbert, King, Pettie, Porat, Saia, Young’14] 

‣adversary can jam arbitrary, but there is a cost for this jamming.  



TBD 
(Three backoff dilemmas)

Part 3: how to fix binary 
exponential backoff 

Analysis in two settings: 
• batch (a single burst)
• dynamic arrivals



Batch arrivals

maximize throughput
minimize effort

achieve robustness

# successful slots

throughput = 4/12

TBD



Constant throughput for batches

Claim: When W=Θ(n), there are Θ(n) successes w.h.p..
Upshot:  We can reduce W by a constant factor.
Corollary:  All packets transmit in Θ(n) w.h.p..

[Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]
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Sawtooth backoff [Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]
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Guess a value of  W = n. 
Back on with window size  W/2, W/4, W/8, …
Back off with  W = 2n.
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Sawtooth backoff [Greenberg and Leiserson ‘89]
[Gereb-Graus and Tsantilas ‘92]

[Bender, Farach-Colton, He, Kuszmaul, Leiserson ‘05]

Time0"

10"

20"

30"

40"

50"

60"

70"

0" 50" 100" 150" 200" 250"

Window Size

Theorem:  For n packet that arrive at time 0, w.h.p., all packets 
transmit after

O(n) time ⇒ O(1) throughput
O(log2 n) attempts.

Robust to failures. (I’ll state a theorem later.)
But lousy with dynamic arrivals. 



Dynamic arrivals

maximize throughput
minimize effort

achieve robustness

# successful slots

throughput = 4/12

[Bender, Fineman, GIlbert, Young 14]



Dynamic arrivals: synchronize into batches

Group packets into synchronized batches.

packets arriving 
here stay silent 

until the 2nd batch

1st batch starts

... and ends

2nd batch starts

... and ends

3rd batch starts

... and ends

packets arriving 
here stay silent 

until the 3rd batch
...
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Control channel implements a busy signal  

Data channel implements batches. 

Synchronize batches using busy signal

[Wu and Li ’88] [Haas and Deng ’02]

busy signal free

control channel

busy signal 

... it joins the 
next batch 
protocol...

When it hears 
that the channel 

is free....

... and 
broadcasts a 
busy signal.

A packet arriving 
here stays silent 
while it hears a 

busy signal. 

data channel

.



Protocol on one channel

Wait until two consecutive “silent” rounds.

Set round counter to 0:
• In odd rounds: broadcast 
  (simulate control channel).

• In even rounds: run Sawtooth backoff
  (simulate data channel).

Theorem:  For n requests that arrive dynamically, 
                    Synchronized Sawtooth achieves Θ(1) throughput, w.h.p.

[Bender, Fineman, GIlbert, Young 14]



Protocol on one channel

Wait until two consecutive “silent” rounds.

Set round counter to 0:
• In odd rounds: broadcast 
  (simulate control channel).

• In even rounds: run Sawtooth backoff
  (simulate data channel).

Theorem:  For n requests that arrive dynamically, 
                    Synchronized Sawtooth achieves Θ(1) throughput, w.h.p.

Packets broadcast every 
other round.  

O(n) attempts is expensive!

[Bender, Fineman, GIlbert, Young 14]



Dynamic arrivals

maximize throughput
minimize effort

achieve robustness

throughput = 4/12

[Bender, Fineman, GIlbert, Young 14]



Throughput in the presence of failures

Constant throughput = waste at most O(1) fraction 
of slots.

wasted slots nonwasted slots

collision
(from high 

contention)

empty slot
(from low
contention)

failuresuccessful
broadcast

(Recall: contention = sum of broadcast probabilities.)



Resolving TBD

Theorem (for finite case): 
Let f be the number of failed slots. 
Let n be the number of (adversarially scheduled) packets. 
We can achieve
• Θ(1) throughput  in expectation,

i.e., algorithm runs in time O(n+f).
• O(log2(n+f)) broadcasts in expectation.

[Bender, Fineman, 
GIlbert, Young 14]



Resolving TBD

Theorem (for finite case): 
Let f be the number of failed slots. 
Let n be the number of (adversarially scheduled) packets. 
We can achieve
• Θ(1) throughput  in expectation,

i.e., algorithm runs in time O(n+f).
• O(log2(n+f)) broadcasts in expectation.

There’s a similar theorem for the infinite case. 

[Bender, Fineman, 
GIlbert, Young 14]



It’s all about contention

Constant throughput = waste O(1) fraction of slots.

Goal: achieve Θ(1) contention on a constant fraction 
of all slots. 

wasted slots nonwasted slots

collision
(from high 

contention)

empty slot
(from low
contention)

failuresuccessful
broadcast

(Recall: contention = sum of broadcast probabilities.)
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Group packets into synchronized batches.

packets arriving 
here stay silent 
until batch ends

Start a batch 
when there’s no 

busy signal. End a batch when 
the contention 
gets too low. 



Batches based upon contention

Group packets into synchronized batches.

packets arriving 
here stay silent 
until batch ends

Start a batch 
when there’s no 

busy signal. End a batch when 
the contention 
gets too low. 

Only now, we will be unable to 
avoid overlapping batches. 



Managing Contention depends on age structure 
of packets

How contention changes depends on the age 
structure of the packets.

young packets: 
• create a lot of contention,
• but their contention reduces quickly as they age.

1 → 1/2 → 1/3 → 1/4 → 1/5 ...

old packets: 
• create little contention,
• but their contention reduces slowly as they age.

1/1000 → 1/1001 → 1/1002 → 1/1003 → 1/1004 ...



Resolving TDB

For a request that has been active for s slots:
• Broadcast on the control channel with prob Θ(log s /s).
• Broadcast on the data channel with prob Θ(1 / s):

• If successful, terminate.

• If 7/8ths of the s slots are empty, then become inactive.

For an inactive request:
• Wait until the first “silent” slot on the control channel.

• Become active.
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Resolving TDB

For a request that has been active for s slots:
• Broadcast on the control channel with prob Θ(log s /s).
• Broadcast on the data channel with prob Θ(1 / s):

• If successful, terminate.

• If 7/8ths of the s slots are empty, then become inactive.

For an inactive request:
• Wait until the first “silent” slot on the control channel.

• Become active.

Cheap probabilistic 
busy signal. 

Just like exponential 
backoff. 

Fault-tolerant 
measure of low 

contention. 
A batch ends when 

O(1) fraction of 
packets finished. 

Start a new batch. 
(There may still be older 
batches in the system.)



What makes this analysis irritating fun irritating fun

Batches now overlap. 
• Many batches are running simultaneously with different 

start times.

We can’t use w.h.p. analysis on each batch. 
Contention is a slippery parameter. 
• How contention changes depends on the age structure 

of the packet. 
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Dynamic arrivals:
There is a backoff protocol that is 

robust for all TBD 
(throughput, # attempts, robustness).

Dynamic arrivals: 
Batched sawtooth is good for throughput 

(but lousy for other dillemmas).

Batches: 
Sawtooth is a robust algorithm 

(resolves TBD). 



Strive for backoff protocols that scale

Exponential backoff is broken (but ubiquitous)
• batch--backs off too quickly
• dynamic arrivals--doesn’t deal well with bursts.

TBD
• minimize throughput
• maximize # attempts to access channel
• achieve robustness

Fixing exp backoff 
• batch--sawtooth backoff resolves the TBDs.
• dynamic arrivals--sawtooth + busy tone has good throughput
• dynamic arrivals--cheap busytone + exponential backoff + delayed 

reset + lots of analysis resolves the TBDs.
‣ Not complicated algorithm. complicated analysis. 


