
WebVAT: Web Page Visualization and Analysis
Tool

Yevgen Borodin, Jalal Mahmud, Asad Ahmed, and I.V. Ramakrishnan

Dept. of Computer Science
Stony Brook University

Stony Brook, NY 11794, USA
{borodin, jmahmud, asada, ram}@cs.sunysb.edu

Abstract. WebVAT is an open-source platform-independent visualiza-
tion tool designed to facilitate Web page analysis. The tool, built on top
of the Mozilla Web browser, exposes Mozilla’s internal representation of
Web pages, Frame Tree, reflecting HTML rendering information. Com-
pared to HTML DOM analyzers, WebVAT provides access to a cleaner,
fuller, and more accurate data structure, which contains layout infor-
mation, CSS, and some types of dynamic content. WebVAT provides a
framework for experiments and evaluations of algorithms over the Frame
Tree. WebVAT also captures user interaction with the browser and can
be used for data collection. WebVAT is a working tool actively used in
the HearSay [10] project. This paper describes the architecture, design,
and some of the applications of WebVAT.

1 Introduction

The expansion of the Web created a large venue for research. A big niche is
taken by Web content analysis, including Web page segmentation, classification,
summarization, etc. Like any other research area, Web content analysis requires
tools to help with experimentation and evaluation. A number of existing tools
allow viewing and editing Web pages, exploring their structure, etc.

Web page analysis often involves examining the internal structure of Web
pages, usually represented by HTML DOM trees [2]. DOM trees are widely used
for Web information extraction [1]. A number of software tools enable DOM
inspection [9, 3]. However, a DOM tree does not specify how exactly to render
a Web page, leaving the implementation to Web browsers. HTML DOM trees
do not capture the layout information, unless it is explicitly specified in the
HTML code. They also do not reflect changes made by Java Script or Cascading
Style Sheets (CSS), limiting the information available to Web engineers and
researchers.

At the same time, Web browsers (e.g. FireFox, Internet Explorer, etc.), which
are perfect for rendering Web pages, do not easily expose the layout of Web pages.
Some Web page segmentation algorithms use Web browser API’s to obtain page
layout (e.g. VIPS [12]), but we are unaware of any open-source tools that make
use of visual layout.



In this paper we describe WebVAT, a tool developed specifically for Web
page visualization and analysis in the framework of the HearSay [10] project.
WebVAT, based on the Mozilla Web browser, provides visualization capabilities
and a flexible infrastructure for Web page analysis. WebVAT enables users to
analyze the structure and layout of Web pages as they would be rendered by
the browser. We are actively using WebVAT for visualization and evaluation of
our algorithms, data collection, capturing user interactions - all contributing to
the development of the state-of-the-art non-visual Web browser, HearSay. We
next present the architecture and design of WebVat in Sections 2 and Section 3,
followed by some of the applications of the tool in Section 4. We close the paper
with concluding remarks and future work in Section 5.

2 WebVAT Architecture

WebVAT, written in Java, is built on top of Mozilla, an open-source cross-
platform Web browser. Thus, WebVAT works on a variety of platforms including
Windows, Linux, and OsX. The architecture of WebVAT is shown in Figure 1.

Data Repository


Mozilla Engine


JREX Browser Manager


Browser GUI
 L

i

b

r

a

r

i

e

s


Controller


Fig. 1. WebVAT Architecture

Users interact with WebVAT
through an event-driven graphi-
cal user interface provided by the
Mozilla Web browser. Any user in-
teraction with the Browser GUI
is captured and can be processed,
modified, and recorded by the We-
bVAT Controller module. The Con-
troller also interfaces with a num-
ber of Libraries, containing various
Web content analysis modules. The
Browser GUI and the Controller
share a common Data Repository.
Besides using the already imple-
mented functionalities of WebVAT,
advanced users can easily extend the
Controller and Browser GUI, and
test their own algorithms.

WebVAT Controller interacts with Mozilla engine through the JREX Browser
Manager [4]. JREX provides Java interface to the Mozilla engine, allowing to call
the engine’s APIs, define custom event handlers, etc. Mozilla engine supports
standard browser functionalities, such as support of cookies, secure connection,
etc. We have extended the Mozilla engine and JREX to expose and extract a
Frame Tree, Mozilla’s internal representation of a Web page, after the Web
page has been rendered by the browser. This way, Mozilla takes care of any
dynamic content, cascading style-sheets, malformed HTML, and other rendering
problems. This relieves users from having to deal with heavy DOM-tree objects,
while giving them fuller and more accurate information about the style and



layout of Web pages. While we are using Mozilla for HTML rendering, other
browsers will produce a similar data structure after rendering the same HTML
pages.

When the user enters an address or navigates a link, the Controller extracts
the Frame Tree of the Web page from the Mozilla engine. Figure 2 (b) shows
a frame tree corresponding to the Amazon.com Web page. A Frame Tree as
a tree-like data structure that contains Web page content, along with its 2-D
coordinates and formatting information, that specifies how the Web page has to
be rendered on the screen. Frame coordinates refer to the upper-left corners of
the corresponding Web page segments displayed in the browser, independent of
the screen resolution or the size of the browser window.

A frame tree is composed of nested frames1, so that the entire page is a root
frame, containing other nested frames down to the smallest individual objects
on the page. The browser window in Figure 2 (a) shows the Amazon.com Web
page with some of the frames highlighted. The corresponding frame tree nodes
are selected in windows (b) and (c). The frame-trees are partially expanded to
demonstrate the types of frames. We distinguish between the following classes of
frames: text, links, images, image-links, form-elements, XHTML, and non-leaf
frames. We next describe the design of WebVAT.

3 WebVAT Design

WebVAT is designed around the Mozilla Web browser interface, which displays
the browser window with a standard menu extended with Tools, Trees, and
Highlight (see Figure 2).

The Tree menu contains the list of all frame-tree windows that can be dis-
played on the screen. Different frame-tree windows can be used to visualize the
results of experimental algorithms. For example, Figure 2 (b) shows the original
frame tree produced by the Mozilla engine, while window (c) shows a frame tree
that was processed and segmented into blocks (3-D icons) by our geometrical
clustering algorithm [6].

With minimal code changes, WebVAT can support any reasonable number of
frame-tree windows, synchronized by the observer handler (part of Browser GUI
module). Selecting any node in any tree also selects the corresponding nodes in
all other active frame-tree windows, and highlights the corresponding frame in
the browser window, as can be seen in Figure 2 (a), (b), and (c). The Highlight
menu items give additional control over highlighting functionality by allowing to
clear highlighting, use different colors to highlight frames, etc. The experimental
algorithms executed by WebVAT can activate frame-tree windows and highlight
frames to visualize the results.

The Tools menu contains a growing number of useful tools. Among them
there are: search, Figure 2 (e), which allows to find frames by the contained
text, or can use other experimental search algorithms; console window that can

1 Note, this is different from HTML frames.



(a)

(b)
 (c)


(e)


(d)


Fig. 2. WebVAT in action

be used for any output, Figure 2 (d); evaluation tool to record questionnaire
answers, user-evaluation results, etc.; and, a data collection tool that allows to
save HTML pages and the corresponding XML frame trees with selected frames.
The data collection tool can also save sequence of pages, recording followed links,
and the action labels (e.g.: addToCart), which can be selected from the combo
box in the menu panel of the main window in Figure 2 (a).

4 WebVAT Application: The HearSay Experience

WebVAT can put to use in a number of applications. In this section, we describe
its role in the research and development of the HearSay non-visual Web browser
[10].

WebVAT was used to verify the correctness of the Frame Trees while we
were modifying the Mozilla engine code. The HearSay browser is also based on
Mozilla; HearSay uses a number of algorithms and techniques to clean the frame
trees, analyze their content, and convert them into audible dialogs. WebVAT
helped verify all of the algorithms used in HearSay.

The frame-tree window in Figure 2 (c) displays the results of our Web page
segmentation algorithm [6], which identifies geometrically aligned blocks as se-
mantic clusters of information (marked as 3-D blocks). We are currently working
on expanding our partitioning algorithm to find repeating patterns within the
blocks [8].

We also used WebVAT as a data collection tool. The participants were asked
to identify and select some links and the information pertaining to the same topic



around them in a number of Web pages. They were also asked to identify the
information relevant to the links on the pages, to which the links were pointing.
The data was, then, used to test our context collection algorithm. The same
data was used in training an SVM-based statistical model to identify relevant
information in Web pages while following links from one page to another [5, 6].
WebVAT helped us visualize and evaluate the results of the algorithms. We are
now using WebVAT to construct a process model for Web transactions [11].

5 Conclusion and Future Work

In this paper we described the architecture, design, and applications of our
Web content visualization and analysis tool, WebVAT. An open-source ver-
sion of WebVAT will be soon publicly released with the HearSay Web browser
(www.cs.sunysb.edu/∼hearsay). We identify several directions to further en-
hance this tool.

We used WebVAT to collect the data for off-line training of statistical models.
It may be possible to integrate different machine learning modules with WebVAT
to train statistical models online, while using the tool. For example, we plan to
use WebVAT to collect data to train Bayesian models for transactional concept
detection such taxonomy, search result etc. WebVAT can also be enhanced to
create ontologies – the knowledge underlying the semantic Web. Users will be
able to highlight sections of Web pages, or nodes of the frame tree, and specify
the corresponding concept name. This will facilitate learning ontologies from
examples.

References

1. S. Chakrabarti. Integrating the document object model with hyperlinks for en-
hanced topic distillation and information extraction. In In Proceedings of WWW
2001, 2001.

2. http://www.w3.org/DOM/DOMTR.
3. http://www.dubbeldam.com/DOMSpy.html.
4. http://jrex.mozdev.org/.
5. J. Mahmud, Y. Borodin, D. Das, and I. Ramakrishnan. Combating information

overload in non-visual web access using context. In IUI, 2007. Short paper.
6. J. Mahmud, Y. Borodin, and I. Ramakrishnan. Csurf: A context-driven non-visual

web-browser. In Proceedings of WWW (To Appear), 2007.
7. S. Mukherjee, G. Yang, and I. Ramakrishnan. Automatic annotation of content-

rich html documents: Structural and semantic analysis. In Intl. Semantic Web
Conf. (ISWC), 2003.

8. http://www.sharewareconnection.com/pagespy.htm.
9. I. Ramakrishnan, A. Stent, and G. Yang. Hearsay: Enabling audio browsing on

hypertext content. In WWW, 2004.
10. Z. Sun, J. Mahmud, S. Mukherjee, and I. V. Ramakrishnan. Model-directed web

transactions under constrained modalities. In WWW ’06: Proceedings of the 15th
international conference on World Wide Web, pages 447–456, 2006.

11. S. Yu, D. Cai, J.-R. Wen, and W.-Y. Ma. Improving pseudo-relevance feedback in
web information retrieval using web page segnmentation. In WWW, 2003.


