Implicit Quantification

Sometimes the formal representation of a statement requires quantifiers, even though none of the telltale words "all", "some", etc. is present.

For example,

If a number is an integer, then it is a rational number

looks like a conditional statement, but is more accurately formalized as a universal statement,

$$\forall x [Integer(x) \rightarrow Rational(x)]$$

Rephrasing the informal statement makes the use of a quantifier explicit.

Every integer is a rational number

Existential quantification can also be implicit.

The number 24 can be written as a sum of two even integers.

$$\exists m \exists n [Even(m) \land Even(n) \land 24 = m + n]$$

Domains and Predicates

There are different ways of specifying the domain of a predicate variable.

(1) Explicitly indicate the domain:

$$(\forall x \in D) Q(x)$$

(2) Represent the domain by a predicate:

$$\forall x[D_P(x) \to Q(x)]$$

where $D_P(x)$ is meant to be true if, and only if, x is an element of D.

A statement

$$\forall x [P(x) \to Q(x)]$$

is said to be vacuously true or true by default if P(x) is false for every x.

This implies that a statement

$$(\forall x \in D) \ Q(x)$$

is true whenever the domain D is empty.

Multiple Quantifiers

Quantifiers can be nested, with alternations between universal and existential quantifiers.

Everybody loves somebody. Somebody loves everybody.

These statements have similar structure, but with different order of quantifiers.

$$\forall x \exists y Loves(x, y)$$
$$\exists x \forall y Loves(x, y)$$

Such statements are often difficult to evaluate.

Are the two statements equivalent?

Does one of them imply the other?

Consider two similar statements,

$$(\forall m \in Z)(\exists n \in Z)n > m$$
$$(\exists m \in Z)(\forall n \in Z)n > m$$

where ${\it Z}$ denotes the domain of integers.

Limits and Nested Quantifiers

Informally, a number L is the limit of a sequence

$$a_1, a_2, \ldots, a_n, \ldots$$

if the values a_n become arbitrarily close to L as n gets larger.

This concept can be formally defined in predicate logic as follows.

$$(\forall \epsilon > 0)(\exists N)(\forall n)[n > N \to L - \epsilon < a_n < L + \epsilon]$$

The logical complexity of this formula (two alternations of quantifiers) explains why most students find it hard to understand the concept of a limit.

Note that a formula

$$(\forall \epsilon > 0)F$$

is just a shorthand for

$$\forall \epsilon \ [\epsilon > 0 \rightarrow F]$$

Evaluation of Complex Formulas

The truth value of complex formulas with quantifiers may be difficult to determine.

Every even number is the sum of two primes.

$$\forall k \left[Even(k) \to \left(\exists m \exists n \left[Prime(m) \land Prime(n) \land k = m + n \right] \right) \right]$$

$$\forall a \,\forall b \,\forall c \,\forall n \, [\quad (a > 0 \land b > 0 \land c > 0 \land n > 2)$$
$$\rightarrow a^n + b^n \neq c^n]$$

The difficulty with evaluation of quantified statements, and a key difference between predicate and propositional logic, is that variables denote elements of some domain, which may be infinite.

For instance, a universal statement $\forall x P(x)$ is true if P(x) is true for all possible values of x.

If the given domain is *infinite*, e.g., the set of the integers or the real numbers, there are infinitely many cases to consider!

Angels and Devils

Sometimes it's helpful to pit an *angel*, whose job it is to make a formula true, against a *devil*, who attempts to make a formula false.

The two opponents scan a given formula, the angel making a move on an existential quantifier, whereas the devil takes his turn on a universal quantifier.

Each move consists of choosing a value for the quantified variable in question, dropping the quantifier, and applying the chosen substitution to the remaining formula.

Example.

$$\forall x \; \exists y \; y > x$$

- 1. Faced with $\forall x \,\exists y \, y > x$, the devil chooses x = 1,000.
- 2. The angel gets $\exists y \, y > 1,000$ and chooses y = 1,001.
- 3. The game ends with the proposition 1,001 > 1,000, which is true. The angel wins.

The angel wins whenever the final proposition is true. Otherwise the devil wins.

More Challenging Game

Every integer has a (integer) square root.

$$\forall x \; \exists y \; (y \times y = x)$$

- 1. The devil begins and chooses x = 4.
- 2. The angel gets $\exists y (y \times y = 4)$ and chooses y = 2
- 3. The result is a true proposition, $2 \times 2 = 4$. The angel wins.

Poor strategy on the devil's part! Another try:

- 1. The devil begins by choosing x = 3.
- 2. The angel gets $\exists y(y \times y = 3)$ and chooses y = 1.
- 3. The result is a false proposition, $1 \times 1 = 3$. The devil wins.

This is a winning strategy for the devil! The angel has no chance (in this case).

It's the Strategy

If there is a winning strategy for the devil, the original formula is false.

$$\forall x \; \exists y \; (y \times y = x)$$

We have seen a winning strategy for the devil: choose x = 3 (or x = 5, or x = 19, etc).

If there is a winning strategy for the angel, the original formula is true.

$$\forall x \; \exists y \; y > x$$

A winning strategy for the angel is to choose the number n+1 for y, whenever the devil has initially chosen n for x.