Congruence Modulo p

Let p be an integer greater than 1. Then we define a
corresponding binary relation on the integers as follows.

We say that m is congruent to n modulo p, and write
n = m(mod p), if m —n is an integer multiple of p.

For example, take p = 3. Then 1 is congruent to 4
modulo p, but not congruent to 3.

Let R, be the set
{(m,n) : m=n(mod p)}.
Is the relation R, reflexive?

Is it transitive?
Is it symmetric?

The answer to all three questions is yes, and hence each
relation R, is an equivalence relation on the integers.



An Equivalence Relation on
Strings

Let > be an alphabet. We define a binary relation ~ on
2_* as follows:

v~ w if and only if |v| = |w]|.

The relation ~ is an equivalence.

Reflexivity. We have |w| = |w|, and hence w ~ w, for all
strings w.

Symmetry. If v ~ w, then by definition |v| = |w|. By the

symmetry of equality we thus have |w| = |v|, and hence
w ~ V.

Transitivity. Suppose u ~ v and v ~ w. Then |u| = |v|
and |v| = |w| and therefore, by the transitivity of equality,
|lu| = |w|, which implies u ~ w.

Let % be the set of all strings of size k over X.

The collection of all sets %, k € N, is a partition of Z*.
In fact, the sets X* are the equivalence classes induced
by ~.



Equinumerous Sets

Two sets A and B are said to be equinumerous (or of
the same size) if, and only if, there is a bijection from
A to B. (Recall that a function is a bijection if it is
one-to-one and onto.)

We write A~ B if A and B are of the same size in this
sense. The relation ~ is also an equivalence.

Reflexivity. The identity function on A is a bijection
from A to A, thus A ~ A.

Symmetry. If there is a bijection f from A to B, then the
inverse function f~1 is a bijection from B to A. THus,
A~ B implies B ~ A.

Transitivity. Suppose A ~ B and B ~ (. Then there
are bijections f from A to B and g from B to C. The
composition of the two functions f and g is a bijection
from A to C and thus A ~ C.



Finite and Infinite Sets

We call a set finite if it is equinumerous with some set
{0,1,...,n— 1}, for some natural number n.

If A is equinumerous with n, then it is said to be of
cardinality n, written |A| = n.

If a set is not finite, it is called infinite.

Examples of infinite sets are the sets of natural numbers,
of integers, of rational numbers, of real numbers. But
not all of these sets are equinumerous, as we shall seel

A set is called countably infinite if it is equinumerous
with the set P of positive natural numbers.

The set of natural numbers is countably infinite as the
function f, defined by f(n) =n 4 1, is a bijection from
N to P.

A set is called countable if it is finite or countably infi-
nite; and uncountable otherwise.

Informally, one can list the elements of a countable set,
though the list may never end.



Examples of Countable Sets

The set of integers Z is countable. A suitable bijection
from Z to P is the function f, defined by:

_J2n4+1 ifn>0
f(n)_{—Qn ifn<O

Surprisingly, the set of rational numbers Q is also count-
able.



