Subsets of Countable Sets

A function f: A — B is called a one-to-one correspon-
dence (between A and B) if it is one-to-one and onto.

Theorem.
Every subset of a countable set is countable.

Proof. It is sufficient to show that subsets of P are
countable. Let A be a subset of P.

If A is finite it is countable by definition.

Suppose A is infinite. We define a one-to-one corre-
spondence f from P to A by recursion:

1. Let f(1) be the smallest element of A.

2. If n > 1, then f(n) is defined to be the smallest
element of A\ {f(1),...,f(n—1)}.

It can easily be verified that f is one-to-one and onto. j

Note that the above proof uses the so-called well-ordering
principle of the natural numbers:

Every non-empty subset of N has a smallest
element.



Cartesian Products of
Countable Sets

T heorem.
The set P x P is countable.

Sketch of proof. We define a one-to-one correspon-
dence between P and PxP by “enumerating” all ordered
pairs of positive natural numbers as follows:

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4)
(3,1) (3,2) (3,3) (3,4)

(4,1) (4,2) (4,3) (4,4)



Corollary

The Cartesian product of two countable sets is
countable.

Proof. Let A and B be countable sets. Thus there
are one-to-one correspondences f between A and P and
g between B and P. But then the function h defined
by h(xz,y) = (f(x),g(y)) is a one-to-one correspondence
between A x B and P x P.

It follows immediately from the definition of countability
that if there is a one-to-one correspondence between
two sets X and Y, then one set is countable if and only
if the other is countable.

We already know that P x P is countable. Consequently
A x B is also countable. j



Examples of Countable Sets

The set of integers Z is countable. A suitable bijection
from Z to P is the function f, defined by:

_J2n4+1 ifn>0
f(n)_{—Qn ifn<O

Surprisingly, the set of rational numbers Q is also count-
able.

Proof. The set of integers Z is countable. Hence by the
above theorem, the set Z x Z is also countable.

But the set of rational numbers Q is a subset of Z x Z,
and therefore is also countable.



Countability of Formal
Languages

T heorem.

The set >* of all strings over an alphabet X is
countable.

Proof. We use the fact that
=) =
keN

where % denotes the set of all strings of length k.

Since all sets X% are countable, there are corresponding
one-to-one functions f; : =% — N.

We define a function f: 2* — N x N by:

fw) = (flw/(w), |w]).

The function f is one-to-one. (If f(w) = f(v), then
|w| = |v| and f|w|(w) = f|v|(v) = f|w|(v) But since f|w| is
one-to-one, we may conclude that w = v.)

By the theorems we proved previously, >* is countable.

Note that the proof does not depend on the assumption
that X is finite, but shows that the statement is valid
for infinite sets > as well.



he Diagonalization Principle

We next discuss a mathematical proof technique that
has important applicationsin the theory of computation.

The Diagonalization Principle.

Let R be a binary relation on a set A, and let D,
the diagonal set for R, be {a € A : (a,a) € R}.
Furthermore, for each a € A, let R, be the set
{be A : (a,b) € R}.

Then the set D is distinct from each set R,.

We illustrate this principle by an example.



Example of Diagonalization
For example, let R be the binary relation

{(a,b), (a,d),(b,b), (b, ¢c),(c,c),(d,b),(d,c),(d,e), (e, e)}.

This relation can be represented by a table:

a|lblc|d]e
a X X
b X | X
C X
d X | X X
e X

We have

R, = {b,d}
Rb == {b,c}
R. = Ac}

Ry = {b,c,e}
R. = Ae}

and D = {a,d}.

Note that these sets correspond to the rows in the above
table. The set D is represented by a sequence of boxes

X X

that is different from each row in the above table.



Application of Diagonalization:
Uncountable Sets

T heorem.
The powerset of N is uncountable.

Proof. We prove the theorem by contradiction. Sup-
pose P(INN) is countable. Then there is a one-to-one
correspondence f between N and P(N).

We first define a binary relation
R={(,7) e NxN : je€ f(:)}

The set R;, as defined in the statement of the diagonal-
ization principle, is equal to the set f(i). In other words,
each subset of N is equal to one of the sets R,;.

Now consider the diagonal set for R,
D={neN : n&R,}.

By the diagonalization principle, the set D is distinct
from each set R;.

But D is a subset of N, and since f is a one-to-one
correspondence between N and P(N), we must have
D = R, for some k.

In short, the assumption that P(IN) is countable leads
to a contradiction. Thus we have proved that P(IN) is
not countable.



