Subsets of Countable Sets

A function $f: A \rightarrow B$ is called a *one-to-one correspondence* (between A and B) if it is one-to-one and onto.

Theorem.

Every subset of a countable set is countable.

Proof. It is sufficient to show that subsets of P are countable. Let A be a subset of P.

If A is finite it is countable by definition.

Suppose A is infinite. We define a one-to-one correspondence f from ${\bf P}$ to A by recursion:

- 1. Let f(1) be the smallest element of A.
- 2. If n > 1, then f(n) is defined to be the smallest element of $A \setminus \{f(1), \dots, f(n-1)\}$.

It can easily be verified that f is one-to-one and onto. \blacksquare

Note that the above proof uses the so-called *well-ordering principle* of the natural numbers:

Every non-empty subset of N has a smallest element.

Cartesian Products of Countable Sets

Theorem.

The set $P \times P$ is countable.

Sketch of proof. We define a one-to-one correspondence between P and $P \times P$ by "enumerating" all ordered pairs of positive natural numbers as follows:

```
(1,1) (1,2) (1,3) (1,4) ... (2,1) (2,2) (2,3) (2,4) ... (3,1) (3,2) (3,3) (3,4) ... (4,1) (4,2) (4,3) (4,4) ...
```

-

Corollary

The Cartesian product of two countable sets is countable.

Proof. Let A and B be countable sets. Thus there are one-to-one correspondences f between A and P and g between B and P. But then the function h defined by h(x,y)=(f(x),g(y)) is a one-to-one correspondence between $A\times B$ and $P\times P$.

It follows immediately from the definition of countability that if there is a one-to-one correspondence between two sets X and Y, then one set is countable if and only if the other is countable.

We already know that $P \times P$ is countable. Consequently $A \times B$ is also countable. \blacksquare

Examples of Countable Sets

The set of integers \mathbf{Z} is countable. A suitable bijection from \mathbf{Z} to \mathbf{P} is the function f, defined by:

$$f(n) = \begin{cases} 2n+1 & \text{if } n \ge 0\\ -2n & \text{if } n < 0 \end{cases}$$

Surprisingly, the set of rational numbers ${f Q}$ is also countable.

Proof. The set of integers \mathbf{Z} is countable. Hence by the above theorem, the set $\mathbf{Z} \times \mathbf{Z}$ is also countable.

But the set of rational numbers \mathbf{Q} is a subset of $\mathbf{Z} \times \mathbf{Z}$, and therefore is also countable. \blacksquare

Countability of Formal Languages

Theorem.

The set Σ^* of all strings over an alphabet Σ is countable.

Proof. We use the fact that

$$\Sigma^* = \bigcup_{k \in \mathbb{N}} \Sigma^k,$$

where Σ^k denotes the set of all strings of length k.

Since all sets Σ^k are countable, there are corresponding one-to-one functions $f_k: \Sigma^k \to \mathbf{N}$.

We define a function $f: \Sigma^* \to \mathbb{N} \times \mathbb{N}$ by:

$$f(w) = (f_{|w|}(w), |w|).$$

The function f is one-to-one. (If f(w) = f(v), then |w| = |v| and $f_{|w|}(w) = f_{|v|}(v) = f_{|w|}(v)$. But since $f_{|w|}$ is one-to-one, we may conclude that w = v.)

By the theorems we proved previously, Σ^* is countable.

Note that the proof does not depend on the assumption that Σ is finite, but shows that the statement is valid for infinite sets Σ as well.

The Diagonalization Principle

We next discuss a mathematical proof technique that has important applications in the theory of computation.

The Diagonalization Principle.

Let R be a binary relation on a set A, and let D, the diagonal set for R, be $\{a \in A : (a,a) \notin R\}$. Furthermore, for each $a \in A$, let R_a be the set $\{b \in A : (a,b) \in R\}$.

Then the set D is distinct from each set R_a .

We illustrate this principle by an example.

Example of Diagonalization

For example, let R be the binary relation

$$\{(a,b),(a,d),(b,b),(b,c),(c,c),(d,b),(d,c),(d,e),(e,e)\}.$$

This relation can be represented by a table:

	а	b	С	d	е
а		X		X	
b		Х	Х		
С			Х		
d		Х	Х		X
е					Χ

We have

$$R_a = \{b, d\}$$
 $R_b = \{b, c\}$
 $R_c = \{c\}$
 $R_d = \{b, c, e\}$
 $R_e = \{e\}$

and $D = \{a, d\}.$

Note that these sets correspond to the rows in the above table. The set D is represented by a sequence of boxes

that is different from each row in the above table.

Application of Diagonalization: Uncountable Sets

Theorem.

The powerset of N is uncountable.

Proof. We prove the theorem by contradiction. Suppose $\mathcal{P}(\mathbf{N})$ is countable. Then there is a one-to-one correspondence f between \mathbf{N} and $\mathcal{P}(\mathbf{N})$.

We first define a binary relation

$$R = \{(i, j) \in \mathbf{N} \times \mathbf{N} : j \in f(i)\}.$$

The set R_i , as defined in the statement of the diagonalization principle, is equal to the set f(i). In other words, each subset of N is equal to one of the sets R_i .

Now consider the diagonal set for R,

$$D = \{ n \in \mathbf{N} : n \notin R_n \}.$$

By the diagonalization principle, the set D is distinct from each set R_i .

But D is a subset of \mathbb{N} , and since f is a one-to-one correspondence between \mathbb{N} and $\mathcal{P}(\mathbb{N})$, we must have $D = R_k$ for some k.

In short, the assumption that $\mathcal{P}(\mathbf{N})$ is countable leads to a contradiction. Thus we have proved that $\mathcal{P}(\mathbf{N})$ is not countable. \blacksquare