Partial Orders

A binary relation on a set A is called a partial order if it
is reflexive, transitive, and anti-symmetric.

Examples of partial orders are the less-than-or-equal-to
relation (on the integers), the divisibility relation (on the
integers), and the subset relation (on a powerset).

The symbol < is often used to denote partial orders.

If R is a partial order on A, one also speaks of a partially
ordered set (A, R).

Note that a set, say the integers, can be partially ordered
in different ways, e.g., by the less-than-or-equal-to rela-
tion or the divisibility relation.

Exercise.

Is the empty set @ a partial order on a non-
empty set A7

Is the universal set A x A a partial order on A7



Quasi-Orders

The less-than relation on the integers and the proper
subset relation are not partial orders, but are so-called
“guasi-orders.”

An irreflexive and transitive relation is called a quasi-
order.

There is a natural correspondence between the two kinds
of orders in that for every partial order one can define
a corresponding quasi-order (by removing the “equality
part” of the relation) and vice versa.

Lemma.

If < is a partial order on a set A, then the
relation <, defined by:

r <y ifand only if z <y and =z # y,
is a quasi-order.

If < is a quasi-order on a set A, then the rela-
tion <, defined by:

x <y if and only if x <y or x =y,

is a partial order.



Hasse Diagrams

Partial orders, especially on finite sets, can often be
conveniently represented by graphs called “Hasse dia-
grams.”

If <is a partial order on A, we say that an elementy € A
covers an element x € A if, and only if x < y and there
is no element z € A, such that x < z and z < y. (Here
< denotes the quasi-order corresponding to <.)

By the Hasse diagram of a partially ordered set (A, <)
we mean the directed graph that has set of nodes A and
contains as edges all pairs (z,y), such that = covers v.

Hasse diagrams are usually drawn with their edges di-
rected downwards (and with arrow heads left off).
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Hasse Diagrams (cont.)

It can be proved (see the textbook, p. 550) that every
finite partially ordered set can be represented by a Hasse
diagram.

Infinite partially ordered sets may or may not be repre-
sentable by Hasse diagrams.

For example the set of integers with the usual < relation
can be represented by a (infinite) Hasse diagram.

But “dense” orders such as the set of rational numbers
with the < relation have no Hasse diagram, as no ra-
tional number covers any other rational number in the
sense defined above. (Density refers to the property of
an order that for all elements x and y with x < y, there
exists an element z with = < z < y.)



Minimal and Maximal Elements
Let (A, <) be a partially ordered set.

An element x € A is said to be maximal (with respect
to <) if there is no y € A such that = < y; and minimal
(with respect to <) if there is no y € A such that y < x.

For example, the set {a,b,c} is @ maximal element with
respect to the subset relation on P({a,b,c}), whereas
the empty set is a minimal element.

The natural number 0 is a minimal element in the set
of natural numbers with the < relation, but there is no
maximal element with respect to this partial order.

Maximal and minimal elements correspond to nodes at
the top and bottom, respectively, in a Hasse diagram.

Thus, every finite partially ordered set has minimal and
maximal elements. But infinite sets, such as the set of
integers with the < relation, may have neither minimal

nor maximal elements.



Minima and Maxima
Let again (A, <) be a partially ordered set.

We say that = is a maximum, or largest element, of A
if y <z, for all y € A.

Similarly, x is called a minimum, or smallest element, of
Aifz <y, for all y € A.

The empty set isa minimum, and the set A a maximum,
on the partially ordered set (P(A), C).

By definition, a minimum has to be a minimal element,
and a maximum a maximal element. But a minimal
element need not be a minimum, nor a maximal element
a maximum.

For example, consider the divisibility relation on the fi-
nite set {1,2,3,4,5,6}. There is a minimum, the num-
ber 1, but no maximum. (The corresponding Hasse
diagram has three top elements, 4, 5, and 6, which are
mutually incomparable, 4 /5, 5 /6 and 6 f4.)



Lower and Upper Bounds

Let (A, <) be a partially ordered set and S be a subset
of A.

If x <y, for all y € S, then « is called a lower bound of
S; and a greatest lower bound if w < x for every other
lower bound w of S.

If y <« for all y € S, then z is called an upper bound
of S; and a least upper bound if x < w for every other
upper bound w of S.

For example, take the partially ordered set (P,|), where
| denotes the divisibility relation. Then the least upper
bound of a two-element set {m,n} is simply the least
common multiple of the two integers m and n, whereas
the greatest lower bound of {m,n} is the greatest com-
mon divisor of m and n.

A lattice is a partially ordered set in which each sub-
set {x,y} has a least upper bound and a greatest lower
bound.



Linear Orders

A partial order < is said to be linear, or total, if for all
elements x and y in A, either x <y or y <z (or both).

The partial order < on the integers is linear, but the
subset relation on a P(A) is not linear for most sets A.

For which sets A is the subset relation on P(A)
linear?

Linear orders are also called chains.

A chain (A, <) is said to be well-ordered if every non-
empty subset of A has a smallest element with respect
to <.

For example, the set of natural numbers is well-ordered
under the < relation. This property is also known as the
well-ordering principle (of the natural numbers).

The set of integers is not well-ordered under the same
relation, though.



