Product Orders

There are various ways in which partial orders can be extended to product sets (i.e., sets of tuples).

Let (A, \preceq_1) and (B, \preceq_2) be partially ordered sets. The corresponding *product order* is defined as follows:

$$(x,y) \preceq (x',y')$$
 if and only if $x \preceq_1 x'$ and $y \preceq_2 y'$.

For example, take $A = B = \mathbb{N}$ with the usual leq order. Then $(5,5) \le (7,5)$, since $5 \le 7$ and $5 \le 5$. But $(5,2) \not \le (100,1)$, because $2 \not \le 1$.

Theorem.

The product order of two partially ordered sets is a partial order.

Proof left as exercise.

Product orders can also be defined on n-fold cross products $A_1 \times A_2 \times \cdots \times A_n$:

$$(x_1, \ldots, x_n) \preceq (y_1, \ldots, y_n)$$
 iff $x_i \preceq_i y_i$ for $i = 1, \ldots, n$
where (A_i, \preceq_i) is a partially ordered set, for $i = 1, \ldots, n$.

Filing Orders

Note that a product order need not be a chain, even when its component orders are chains. There is a different way of combining orders so that the combination of chains will always result in a chain.

Let $(A_1, \preceq_1), \ldots, (A_n, \preceq_n)$ be partially ordered sets. We define a *filing relation* \prec on the n-fold cross product $A_1 \times A_2 \times \cdots \times A_n$ by:

$$(x_1,\ldots,x_n) \preceq (y_1,\ldots,y_n)$$
 iff $x_1=y_1,\ldots,x_{k-1}=y_{k-1}$ and $x_k \prec_k y_k$ for some k with $1 \leq k \leq n$

For example, we have $(5,5) \prec (5,7)$ and also $(5,5) \not\prec (4,100)$. Do we have $(4,100) \prec (5,5)$?

Another example of this relation is an arrangement of personal files by last name (first) and first name (last).

Theorem.

- 1. Each filing relation is a quasi-order.
- 2. If the component orders are chains, then the filing order is also a chain.

If the n partially ordered sets (A_i, \preceq_i) are all the same, say (A, \preceq) , the corresponding filing order is denoted by the symbol \prec^n .

Orders on Formal Languages

We next consider orders defined on formal languages Σ^* .

First note, again, that

$$\Sigma^* = \bigcup_{k \in \mathbb{N}} \Sigma^k.$$

We can define orders on each set Σ^k via the filing order. More specifically, let \preceq be a partial order on Σ . We define an order on Σ^k by:

$$a_1 \cdots a_k \preceq_k b_1 \cdots b_k$$
 iff $(a_1, \dots, a_k) \preceq^k (b_1, \dots, b_k)$

For example, if $\Sigma = \{a, b\}$ and $a \prec b$, then $aa \prec ab \prec ba \prec bb$.

The two orders \leq_k and \leq^k are evidently closely related and we will use the same symbol, \leq^k , to denote both of them.

The standard order on Σ^* is defined by:

$$v \preceq^* w$$
 if either $|v| < |w|$ or else $|v| = |w|$ and $v \preceq^{|v|} w$

For the example above we have,

$$\lambda \prec^* a \prec^* b \prec^* aa \prec^* \cdots bb \prec^* aaa \prec^* \cdots$$

Lexicographic Orders

The *lexicographic relation* on Σ^* is defined by:

$$a_1 \cdots a_m \prec_L b_1 \cdots b_n$$
 iff either $a_1 \cdots a_k \prec^k b_1 \cdots b_k$ or else $k = m < n$ and $a_1 \cdots a_k = b_1 \cdots b_k$

where k is the minimum of m and n.

The arrangement of words in a dictionary is one example of a lexicographic order.

Theorem.

Each lexicographic relation is a quasi-order.

Taking again $\Sigma = \{a, b\}$ with $a \prec b$, we have $\lambda \prec_L a \prec_L aaa \prec_L aaa \prec_L \cdots$

Theorem.

If (Σ, \preceq) is a chain, then (Σ^*, \preceq^*) is a well-ordered chain and (Σ^*, \preceq_L) is a chain.

The chain (Σ^*, \preceq_L) is not well-ordered, though. For instance, there is an infinite "decreasing" chain,

$$b \succ_L ab \succ_L aab \succ_L aaab \succ_L \cdots$$

where \succ_L denotes the inverse relation to \prec_L .