Powersets

There are various operations that allow one to construct
new sets from given ones.

If A is a set, we denote by P(A) the set whose elements
are the subsets of A.

Example. If A is the set {1,2,3}, then

P(A) = {0,
{1},4{2},13},
{1,2},{1,3},{2,3},
{1,2,3}
}

Do we have 1 € P(A), or 2 € P(A), or 3€ P(A)?
No, because 1 # {1}, etc.

In formal set theory, the existence of these sets requires
another axiom, the Powerset Axiom:

For every set A there exists a set B, such that

Vz (z € B< z C A).



T he Size of Powersets

If A=0, then
P(A) = {0} £ 0.

Observation.
P(A) £ 0, for all sets A.

If A= {z}, then P(A) = {0, A}.
If A= {x,y}, then P(A) = {0,{z},{y}, A}.

If A has n elements, how many elements are there in its
powerset?

Lemma.

If Ais a set with n elements, then P(A) has 2"
elements.

Proof. By mathematical induction on the number of
elements in A.



Further Set Operations

Other operations for constructing sets include
e set union
e set intersection
e relative complementation (or set difference)
e complementation

They are defined as follows.
Let A and B be subsets of some set S. We define:
AUB = {zeS|lz€AVzxeE B}

ANB = {ze€S|lz€ ANz € B}
B—A = {z€eS|lzreBAxg&A}
A = {zeS|z¢g A}

For example, let

S be the set of real numbers,
A theset {reR| -1 <z <0},
B theset {reR|0<z < 1}.

What are AuUB, AnB, B— A, and A°?
Note that set difference can be defined as follows:

A— B = AnNB".



Properties of Set Operations

Theorem.

1. AnBCAand AnBCB

2. ACAuB and BCAUB

3. f ACBand BCC(C, then ACC(C.

Proof (of first property).

Let A and B be arbitrary sets. We prove that
ANB is a subset of A. By the definition of the
subset relation, it suffices to show that every
element of AN B is an element of A. Let = be
an arbitrary element of ANB. By the definition
of intersection, we have z € A and x € B. Thus
x IS an element of A. »



Set Identities

Review the following identities between sets and observe
their similarity to equivalences in propositional logic.

1. Set union and intersection are commutative.
2. Set union and intersection are associative.

3. Distributivity: AuU(BNC)=(AUB)N(AUC)
4. Double complement: (A°)¢ = A.

5. Idempotency: ANA=AUA = A.

6. De Morgan’'s Laws:

(AUB) = A°nN B¢
and
(AN B)" = A°U B“.

7. Absorption: AU(ANB)=Aand An(AUB) = A.



Distributivity
Theorem. For all sets A, B, and C,
AN(BUC)=(AnB)U(AN?QO).

Proof. Let A, B, and C be arbitrary sets. We show that
the two sets AN(BUC) and (ANB)U(ANC) have the
same elements:

r€AN(BUCQC)
iff € Aandxze BUC
iff xr€ Aand (ze Borze(l)
iff (r€ A and z € B)
or (x€ A and x € C)
iff re AnNnBorxe AnC
iff re(ANB)U(ANC)

Note the close connection between the “algebra of sets”
and the “algebra of propositions” (Boolean algebra).



Venn Diagrams

Sets can often be conveniently represented by Venn di-
agrams.

The union AUB of A and B is represented by:
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The set difference B — A is represented by:
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Counterexamples for Set
Identities

Claim. For all sets A, B, and C,
(A—-B)Uu(B-C)=A-C.

Is this claim true?

Consider the two Venn Diagrames:
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The diagram on the left represents (A — B) U (B — C),
the one on the right, A — C.

The difference in the diagrams suggests a counterexam-
ple to the claim.

Take A = {z,y}, B = {y,z}, and C = {z,w}. Then
(A-—B)u(B-C)={z,y,z}, whereas A — C = {y}.



