Powersets

There are various operations that allow one to construct new sets from given ones.

If A is a set, we denote by $\mathcal{P}(A)$ the set whose elements are the subsets of A.

Example. If A is the set $\{1, 2, 3\}$, then

$$\mathcal{P}(A) = \{\emptyset, \\ \{1\}, \{2\}, \{3\}, \\ \{1, 2\}, \{1, 3\}, \{2, 3\}, \\ \{1, 2, 3\} \\ \}$$

Do we have $1 \in \mathcal{P}(A)$, or $2 \in \mathcal{P}(A)$, or $3 \in \mathcal{P}(A)$?

No, because $1 \neq \{1\}$, etc.

In formal set theory, the existence of these sets requires another axiom, the *Powerset Axiom*:

For every set A there exists a set B, such that

$$\forall x \, (x \in B \Leftrightarrow x \subseteq A).$$

The Size of Powersets

If $A = \emptyset$, then

$$\mathcal{P}(A) = \{\emptyset\} \neq \emptyset.$$

Observation.

$$\mathcal{P}(A) \neq \emptyset$$
, for all sets A.

If
$$A = \{x\}$$
, then $\mathcal{P}(A) = \{\emptyset, A\}$.

If
$$A = \{x, y\}$$
, then $\mathcal{P}(A) = \{\emptyset, \{x\}, \{y\}, A\}$.

If A has n elements, how many elements are there in its powerset?

Lemma.

If A is a set with n elements, then $\mathcal{P}(A)$ has 2^n elements.

Proof. By mathematical induction on the number of elements in A.

Further Set Operations

Other operations for constructing sets include

- set union
- set intersection
- relative complementation (or set difference)
- complementation

They are defined as follows.

Let A and B be subsets of some set S. We define:

$$A \cup B = \{x \in S \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \in S \mid x \in A \land x \in B\}$$

$$B - A = \{x \in S \mid x \in B \land x \not\in A\}$$

$$A^{c} = \{x \in S \mid x \not\in A\}$$

For example, let

$$S$$
 be the set of real numbers, A the set $\{x \in \mathbf{R} \mid -1 < x \le 0\}$, B the set $\{x \in \mathbf{R} \mid 0 \le x < 1\}$.

What are $A \cup B$, $A \cap B$, B - A, and A^c ?

Note that set difference can be defined as follows:

$$A - B = A \cap B^c.$$

Properties of Set Operations

Theorem.

- 1. $A \cap B \subset A$ and $A \cap B \subset B$
- 2. $A \subset A \cup B$ and $B \subset A \cup B$
- 3. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof (of first property).

Let A and B be arbitrary sets. We prove that $A \cap B$ is a subset of A. By the definition of the subset relation, it suffices to show that every element of $A \cap B$ is an element of A. Let x be an arbitrary element of $A \cap B$. By the definition of intersection, we have $x \in A$ and $x \in B$. Thus x is an element of A.

Set Identities

Review the following identities between sets and observe their similarity to equivalences in propositional logic.

- 1. Set union and intersection are commutative.
- 2. Set union and intersection are associative.
- 3. Distributivity: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- 4. Double complement: $(A^c)^c = A$.
- 5. Idempotency: $A \cap A = A \cup A = A$.
- 6. De Morgan's Laws:

$$(A \cup B)^c = A^c \cap B^c$$

and

$$(A \cap B)^c = A^c \cup B^c.$$

7. Absorption: $A \cup (A \cap B) = A$ and $A \cap (A \cup B) = A$.

Distributivity

Theorem. For all sets A, B, and C,

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Proof. Let A, B, and C be arbitrary sets. We show that the two sets $A \cap (B \cup C)$ and $(A \cap B) \cup (A \cap C)$ have the same elements:

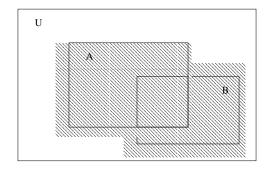
```
x \in A \cap (B \cup C)
\text{iff} \quad x \in A \text{ and } x \in B \cup C
\text{iff} \quad x \in A \text{ and } (x \in B \text{ or } x \in C)
\text{iff} \quad (x \in A \text{ and } x \in B)
\text{or } (x \in A \text{ and } x \in C)
\text{iff} \quad x \in A \cap B \text{ or } x \in A \cap C
\text{iff} \quad x \in (A \cap B) \cup (A \cap C)
```

Note the close connection between the "algebra of sets" and the "algebra of propositions" (Boolean algebra).

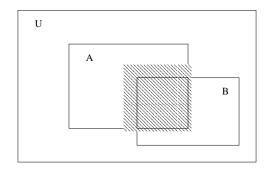
Venn Diagrams

Sets can often be conveniently represented by *Venn diagrams*.

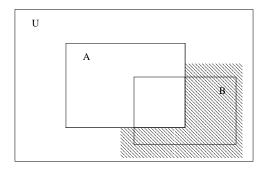
The union $A \cup B$ of A and B is represented by:



The intersection $A \cap B$ is represented by:



The set difference B - A is represented by:



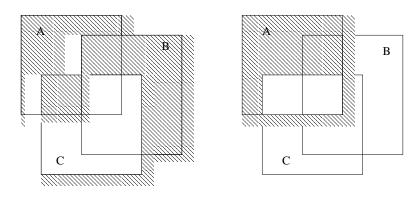
Counterexamples for Set Identities

Claim. For all sets A, B, and C,

$$(A-B) \cup (B-C) = A-C.$$

Is this claim true?

Consider the two Venn Diagrams:



The diagram on the left represents $(A - B) \cup (B - C)$, the one on the right, A - C.

The difference in the diagrams suggests a counterexample to the claim.

Take $A = \{x,y\}$, $B = \{y,z\}$, and $C = \{x,w\}$. Then $(A-B) \cup (B-C) = \{x,y,z\}$, whereas $A-C = \{y\}$.