Encoding the Natural Numbers
iIn Set Theory

If Ais a set, then the set AU{A} is called the successor
set of A. Sometimes the successor set of A is denoted
by A’.

The natural numbers can be encoded via successor sets:

0 = ]

1 =0 = = {0

> = 1 = ) = {0.1)

3 = 2 = .. = {0,1,2}
n-l—l: = n = ... = {0,1,...,n}

In other words, we can view each natural number as an
abbreviation for a certain set!

One of the postulates of formal set theory asserts that
there exists a set that contains the empty set and also
contains the successor of each of its elements. That is,
the existence of the set of natural numbers is assumed
as an axiom.



Ordered Pairs and Tuples

Sets are unordered collections of elements.

Pairs, or more generally tuples, are ordered collections
of elements.

Examples.
(1,2) # (2,1)
{1,2,3} = {1,3,2}
(1,2,3) # (1,3,2)
{1,2} = {1,2,2}
(1,2) # (1,2,2)

Surprisingly, (ordered) pairs can be defined in terms of
(unordered) sets.

In set theory, an ordered pair (x,y) is taken as an ab-
breviation for the set {{z},{z,y}}.

With this definition, do we indeed have
(z,y) = {z},{z,y}} # {y}:{y,z}} = (v, 2)7
What if x = y?

Tuples can be thought of as “nested” pairs. For exam-
ple, we may regard (1,2,3,4,5) as an abbreviation for

(1,(2,(3,(4,5)))) or ((((1,2),3),4),5).

Tuples of different length are never the same.



Number Sets

Common sets of numbers, such as the integers or the
rational numbers, can be defined in terms of the natural
numbers.

For instance, integers can be formally defined as pairs
(o,n) of a sign o and a natural number n. There are
two signs, usually written as + and — (and formally
represented by two different sets, say @ and {0}).

These pairs are usually written as +n (or simply n) and
—n. There is only one 0O, that is, +0 and —0 are con-
sidered equal.

The set of all integers is denoted by Z.

The set of rational numbers can be defined by

Q={(m,n) : meZ neZ and m #* 0}.

Rational numbers are usually written as ™ or m/n.

Integers can be identified with rational numbers of the

form %



Cartesian Products

Pairs and tuples provide us with a way of constructing
new sets from given ones. This will be useful when we
define “functions” and “relations.”

If A and B are sets, then by A x B (read “A cross B"),
we denote the set of all ordered pairs (a,b), where a € A
and b € B.

More formally,

Ax B={(a,b)|a€ ANbE B}

The set A x B is also called the Cartesian (or cross)
product of A and B.

For example, if A ={1,2} and B = {4,5}, then
Ax B={(1,4),(1,5),(2,4),(2,5)}.

Note that A and B may be the same set.

For instance, if A = {1,3}, then
AxA={(1,1),(1,3),(3,1),(3,3)}.

If A contains m elements and B contains n elements,
how many elements are there in A x B?



Properties of Cartesian
Products

Lemma.

If A is a set of m elements and B a set of n
elements, then A x B contains m xn elements.

If A= B, then Ax B=BxA=AXA.
But if A # B, then A x B # B x A.

For example, let A be the set {1} and B the set {2}.
Then Ax B=4{(1,2)} and Bx A= {(2,1)}.

Also note that
AXDP=0x A=40.

Lemma. For all sets A, B, and C we have
Ax (BUC)=(AxB)U(AxC).

Proof. We need to show that Ax (BUC) and (Ax B)U
(A x C') have the same elements.

(z,y) € Ax (BUC)

iff x€ ANyEBUC

iff re AN(yeBvye(l)

iff (reAANyeB)V(zeAANye(C)
iff (x,y) € AXx BV (z,y) € AxC
iff (z,y) € (AXxB)U(AXxC)



Disjoint Sets

Two sets A and B are said to be disjoint if they have
no elements in common, i.e., AN B = .

Examples.

Is {0, {0}}n {0} = 07

No, {0,{0}} n{0} = {0}.

Is {0,{0}} N0 =07

Yes, the intersection AN@ of any set with the
empty set is the empty set.

A partition of a set A is a collection of pairwise disjoint
sets Ay,...,A,, such that

A=A UAU---UA,.

For example, at the end of the semester I will partition
the class into subsets with grades of A, A—, etc. It will
be a partition, since each student gets one, and only
one, grade.

Partitions are closely related to equivalence relations,
which we will discuss later in the semester.



Russell’'s Paradox

The barber of a small town agreed, for a handsome fee,
to shave all the (male) inhabitants of the town who did
not shave themselves, and never shave any inhabitant
who did shave himself. The fee was to be paid at the
end of each year.

But when the barber tried to collect the fee at the end
of the first year the mayor refused to make any pay-
ment, pointing out that the barber had shaved himself
and therefore violated the rule of never shaving any in-
habitant who did shave himself.

Therefore the next year the barber did not shave him-
self. But at year-end the mayor turned him down again,
pointing out that ...

this time he had failed to shave someone who did
not shave himself.

This paradox illuminates one of the pitfalls one has to
avoid when setting up a formal theory of sets. For in-
stance, allowing set operations that are too general may
result in inconsistencies or contradictions in the theory.



A Set Paradox

Consider the set of all sets that are not elements of
themselves:

S={A|AgA).

Is S an element of itself?

We have
SeSifandonly if S&€S,
which is a contradiction!

But note that the above definition of S is not covered
by the Comprehension Principle. By this principle we
can only define, for some given set U, the set

S={AcU|AgA}.

Now, if S € S, then by the (new) definition of S, we get
S &S, which would of course be a contradiction.

Therefore we may conclude that S € S, in which case
we may also infer S ¢ U. We obtain no contradiction,
though.

In short, contradictions are avoided by the additional
condition A € U required by comprehension.



