Review of ML

ML (“Meta Language”) is a functional programming
language based on the concept of evaluation via substi-
tution and replacement.

ML was originally introduced in the 1970’s as part of
a theorem proving system, intended for describing and
implementing proof strategies. Various versions of ML
are currently available, check out the "supplementary
material” on the course webpage for further information.

The primary mode of computation in ML, as in other
functional languages, is the use of the definition and
application of functions.

The basic cycle of ML activity consists of three parts:
e read input from the user,
e evaluate it, and

e print the computed value (or an error message).



Interacting with ML

A simple example illustrates this:

- val P1 = [2,3];
val P1 = [2,3] : int list

The first line contains the ML prompt, followed by an
expression (typed in by the user) and ended by a semi-
colon.

The second line is ML’'s response and shows the value
of the input expression and its type.

ML provides a number of built-in operators and data
structures such as integers and reals with the standard
arithmetic operators, or lists and associated list opera-
tions.

- 3+2;

val it = 5 : 1int

- 5.0/3.0;

val it = 1.66666666667 : real
5 div 3;

val it = 1 : int

- 5 mod 3;

val it = 2 : 1int



Values and Types

ML is a strongly typed language in that all (well-formed)
expressions have a (well-defined) type that can be de-
termined by examining the expression.

Types are determined as part of the evaluation process.
Some (built-in) operators are “overloaded” :

- 3.042.0;
val it = 5.0 : real

In other words, the symbol + may denote a function on
the integers or on the reals. But there is no implicit
conversion from values of one type to values of another
type, say between integers and reals:

- 342.0;

Error. operator and operand don’t agree
operator domain: int * int

operand: int * real

in expression: 3 + 2.0



Boolean Operations in ML

ML uses the constants true and false to denote the
Boolean values. The common logical operations can
be performed via the functions not (negation), andalso
(conjunction), and orelse (disjunction).

- not(true);

val it = false : Dbool
- true andalso false;
val it = false : Dbool

The conditional, or if-then-else, operator takes three
arguments, the first of which must yield a Boolean value:

- if 1>2 then 1 else 2;
val it = 2 : int

The second and the third argument, which follow then
and else, respectively, can be of any type, but they must
be of the same type.

- if 1>2 then 1 else 2.0;

Error: types of rules don’t agree
earlier rule(s): bool -> int

this rule: bool -> real

in rule: false => 2.0

(In ML if-then-else is actually a short-hand for a specific
instance of a more general so-called case expression.)



List Operations in ML

The basic list operations provided by ML are:

e a binary cons operator which takes a first argument
and adds it at the beginning of its second argument,

-1::[2,3,5];
val it = [1,2,3,5] : int list

e unary operators which return the first element of a
list and the list of all elements but the first, respec-
tively,

- hd[2,3,5];

val it = 2 : int

- tl1[2,3,5];

val it = [3,5] : int list

e and a binary operator for concatenation of lists,

- [2,3,5]@[7];
val it = [2,3,5,7] : int list

One of the basic operations characterizing arrays, namely
the extraction of the n-th term in the sequence, is not
provided for lists. Such a function can be defined, of
course, but requires traversing part of the list.



Defining Functions in ML

The general form of a function definition in ML is
fun (identifier) ({(parameters)) = (expression);
For example,

- fun square(x:real) = x*Xx;
val square = fn : real -> real

defines a function on reals:

- square(2.0);
val it = 4.0 : real

If no type is specified for , then ML will use the default
type, integer.

- fun square(x) = x*Xx;
val square = fn : int -> int

If a function is applied to an argument of the wrong
type, ML produces an error message:

- square[2];

Error: operator and operand don’t agree
operator domain: int

operand: int list

in expression: square (2 :: nil)



Recursive Definitions

The extensive use of recursive definitions is a distin-
guishing characteristic of functional programs as func-
tional languages strongly encourage recursion as a struc-
turing mechanism in preference to iterative constructs
such as while-loops.

To illustrate recursion we give a function that produces
the reverse of a given list.

- fun reverse(lL) =

= if L=nil then nil

= else reverse(tl(L))@[hd(L)];
val reverse = fn : ’a list -> ’a list

The else-part contains the general recursive case of the
definition, while the then-part provides the base case for
the recursion.

- reversel[1,2,3];
val it = [3,2,1] : int list

Be sure to define a base case (or cases) for a recur-
sive definition, as otherwise the evaluation of function
applications may not terminate.



Polymorphism

The function reverse is an example of a polymorphic
function: it can be applied to arguments of type ’a
list, that is, to lists of values of any arbitrary type;:
e.g., lists of integers, lists of reals, or lists of lists of
integers.

- reverse[[1],[2,2]1,[3,3,3]1];
val it = [[3,3,3],[2,2],[1]] : int list list

Another example of a polymorphic function is the iden-
tity function:

- fun identity(x) = x;
val identity = fn : ’a -> ’a

Here again ’a denotes a type variable which can be in-
stantiated in different ways when the identity function
is applied to specific arguments. The type ’a -> ’a can
be thought of as a type schema.

- identity(5);

val it = 5 : int

- identity(7.5);

val it = 7.5 : real

- identity(5)+floor(identity(7.5));
val it = 12 : int

Note that in the last example the function identity is
applied both to an integer and to a real number.



Restrictions to Polymorphism in
ML

The list operators and the equality operator = are ex-
amples of ML operators that allow polymorphism. But
ML also contains operators that restrict polymorphism.

Some operators require arguments, and produce results,
of a specific type. These include the Boolean operators
not, andalso, and orelse and some of the arithmetical
operators, such as /, div and mod.

There are also seen operators that may be applied to
values of different types, though the type of each argu-
ment must be known from inspection of the function.
(This may require that the type of an argument be ex-
plicitly specified.) These functions include +, * and <.

ML is a strongly typed language, in which it is possi-
ble to determine the type of each correct expression by
examining it. If a type cannot be determined, the ex-
pression is by definition incorrect. The algorithm used
by ML for deducing types is complex and beyond the
scope of this course.



