CSE 213 - Fall 2000 Solutions to Recommended Exercise Set 4

- 1. Give examples of strings in, and not in, the following sets, where Σ denotes the alphabet $\{a,b\}$ (and w^R denotes the reverse of w).
 - (a) $L_1 = \{w : \text{for some } u \text{ in } \Sigma\Sigma, w = u(u^R)u\}$

 $aaaaaa \in \Sigma, \ abbaab \in \Sigma, \ a \not\in \Sigma, \ bbbbbb \not\in \Sigma$

(b) $L_2 = \{w : ww = www\}$

$$e \in \Sigma, \ a \not\in \Sigma, \ bb \not\in \Sigma$$

where e denotes the empty string. Note that $L_2 = \{e\}$.

- (c) $L_3 = \{w : \text{for some } u, v \text{ in } \Sigma^*, uvw = wvu\}$ We have $L_3 = \Sigma^*$ as uvw = wvu whenever u = v = e.
- (d) $L_4 = \{w : \text{ for some u in } \Sigma^*, uu = www\}$

$$e \in \Sigma$$
, $aaaaaa \in \Sigma$, $a \notin \Sigma$, $ab \notin \Sigma$

- 2. Prove the following:
 - (a) For any alphabet Σ and language L over Σ , $(L^*)^* = L^*$.

Proof. First note that for any language L we have $L \subseteq L^*$. (This can easily be proved by using the definition of L^* .) Therefore we have $L^* \subseteq (L^*)^*$.

We also need to prove $(L^*)^* \subseteq L^*$. Let w be a string in $(L^*)^*$. By the definition of the Kleene star operation, there exist strings w_1, \ldots, w_k in L^* such that $w = w_1 \cdots w_k$. Since each string w_i is in L^* , it can be written as $w_i = w_i^1 \cdots w_i^{i_k}$, for some strings $w_i^1, \ldots, w_i^{i_k}$ in L. But this implies that w can be written as the concatenation,

$$w_1^1 \cdots w_1^{i_1} w_2^1 \cdots w_2^{k_2} \cdots w_n^1 \cdots w_n^{n_k},$$

of strings in L and hence is an element of L^* .

(b) For any language L, $L\emptyset = \emptyset L = \emptyset$.

Proof. Suppose $L\emptyset$ is not empty, but contains an element, say w. Then w=uv, for some string $u\in L$ and some string $v\in \emptyset$. This contradicts the fact that the empty set contains no elements.

The same argument applies to $\emptyset L$.

- 3. What language is represented by the regular expression $(((a^*a)b) \cup b)$? The set of strings that have a b at the end, preceded by zero or more a's.
- 4. Simplify the following regular expressions:
 - (a) $((a^*b^*)^*(b^*a^*)^*)^*$ The expression $(a \cup b)^*$ describes the same language, namely Σ^* .
 - (b) $(a \cup b)^*a(a \cup b)^*$ The expressions $b^*a(a \cup b)^*$ and $(a \cup b)^*ab^*$ describe the same language.
- 5. Describe the following sets by regular expressions:
 - (a) All strings over a, b with no more than three a's. One possible expression is $b^*(e \sqcup a)b^*(e \sqcup a)b^*(e \sqcup a)b^*$.
 - (b) All strings over a, b with exactly one occurrence of the substring aaa.
 One possible expression is (b ∪ ab ∪ aab)*aaa(b ∪ ba ∪ baa)*. The intuition is that the (single) occurrence of aaa can be (i) preceded by any string in which each occurrence of a or aa is followed by

by any string in which each occurrence of a or aa is followed by a b and (ii) followed by any string in which each occurrence of a or aa is preceded by a b.

- 6. Determine whether the following statements are true:
 - (a) The string baa is in $L(a^*b^*a^*b^*)$. Take $u=e,\ v=b,\ \text{and}\ w=aa.$ Then $u\in L(a^*),\ u\in L(b^*),\ v\in L(b^*),\ w\in L(a^*),\ \text{and hence}\ uvwu\in L(a^*b^*a^*b^*).$ Since uvwu=baa, the statement is true.
 - (b) The intersection of $L(a^*b^*)$ and $L(b^*c^*)$ is empty. This statement is false, as $L(a^*b^*) \cap L(b^*c^*) = L(b^*)$. For instance, $bb \in L(a^*b^*)$ and $bb \in L(b^*c^*)$.