CSE 213 Fall 2007

Homework 1

Due in class on Friday, Sept 28, at the beginning.
(1) Informally explain that $A-B=A \cap B^{c}$, where B^{c} is a complement of B with respect to some universal set U .
(2) For sets A, B, and C, prove that $\mathrm{A}-(\mathrm{B} \cap \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A}-\mathrm{C})$.

Note that a partition of a set S has subsets of S as members. These members/subsets follow some restrictions. A member of a partition of S is actually a subset of S. Let P_{1} denote a partition of set $S=\{1,2,3,4\}$ such that it has 3 members. For example $P_{1}=\{\{1,2\},\{3\},\{4\}\}$ could be one such partition.
(3) Let $\mathrm{A}=\{1,2,3,4,5,6,7,8,9,10\}$ and $\mathrm{A}_{1}=\{1,2,3,4\}, \mathrm{A}_{2}=\{5,6,7\}, \mathrm{A}_{3}=\{4,5,7,9\}$, $\mathrm{A}_{4}=\{4,8,10\}, \mathrm{A}_{5}=\{8,910\}, \mathrm{A}_{6}=\{1,2,3,6,8,10\}$. Which of the following are partitions of A ?
(i) $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{5}\right\}$ (ii) $\left\{\mathrm{A}_{1}, \mathrm{~A}_{3}, \mathrm{~A}_{5}\right\} \quad$ (iii) $\left\{\mathrm{A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{4}\right\} \quad$ (iv) $\left\{\mathrm{A}_{3}, \mathrm{~A}_{6}\right\}$
(4) Let $S=\{a, b, c, d\}$. (i) What partition of S has the fewest members? (ii) The most members? (iii) List all partitions of S with exactly 2 members. Name them $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots$ etc.
(5) Let $\mathrm{A}=\{1,2,3, \ldots . . \mathrm{k}\}$ where $\mathrm{k}>0$. How many subsets of A are there such that they all have element 1 but not 2 ? Express your answer in terms of k. Give an informal proof supporting your answer.
(6) Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$..., be k logical variables or propositions that assume values true or false (T or F). Consider k-variable boolean functions that map to a set $\{T, F\}$. How many different k-variable boolean functions that can be defined? Explain your answer. (Hint: Think about a truth table for k variables.)
(7) Consider a sequence $(0,-3,6,-9,12,-15, \ldots .$.$) . Give a function that creates this sequence.$
(8) (i) List all strings over $\mathrm{X}=\{\mathrm{a}, \mathrm{b}\}$ that are of length 3. (ii) Write all substrings of the string 'abaa'.
(iii) Write all prefix and suffix strings for string 'ababbba'.
(9) Let $X=\{a, b\}$, and let X^{*} denote set of all string over X. Give an inductive definition for a set of strings over X such that each string begins with bb .
(10) Give an inductive definition of a set of all integers from Z, such that they are divisible by 14 or 23 or both. (For a, b in Z , we say a is divisible by b if a / b is in Z . Here b is not zero.)

