CSE 213 Fall 2007

Homework 3

HW3 is due in class on Monday, Oct 29, at the beginning.
Quiz-2: Friday, Nov 9, last 20 minutes. See announcement page for topics.
Exam-2: Monday Nov 19, whole class hour.
(1) Consider the set $A=\{1,2,3,4,5,6\}$ and relations R_{1} and R_{2} on A. List relations as sets of ordered pairs, find their domain and range (similar to function) and draw their graphs. Domain of a relation on A is a subset of A defined by $\operatorname{Domain}(R)=\{x \mid(x, y) \in R\}$.
Range (R) is a set $\{y \mid(x, y) \in R\}$.
(i) $R_{1}=\{(x, y) \mid(y$ is a multiple of $x)$ and $(x \neq y)\} \quad$ (ii) $R_{2}=\{(x, y) \mid x+y=6\}$
(2) For the following relations on X , determine if each relation is reflexive, symmetric, antisymmetric, and/or transitive. A relation could have more than one such property mentioned above. In that case state all properties. Explain your answers.
Let $\mathrm{P}=\{1,2,3,4,5,6,7, \ldots \ldots \ldots$.$\} \quad (set of all positive integers).$
$R_{1}=\{(x, y) \mid x \geq y$, where $x, y \in P\}$,
$R_{2}=\{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)\}$,
$R_{3}=\{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)\}$,
$R_{4}=\{(x, y) \mid$ the positive difference $|x-y|$ is evenly divisible by 4$\}$.
(3) Let $\mathrm{X}=\{1,2,3\}$. List a relation R on X (with at least 4 pairs) which is symmetric and transitive but not reflexive. Explain your answer.
(4) Let $X=\{1,2,3,4\}$. Let $R_{1}=\{(1,2),(1,3),(4,2)\} \quad$ and $\quad R_{2}=\{(2,3),(2,4)\}$.
(i) List all elements/pairs of $\left(R_{1} \circ R_{2}\right) \cap\left(R_{2} \circ R_{1}\right)$. Show all steps.
(ii) List all pairs for $\left(R_{1} \cup R_{2}\right)^{2}$.
(iii) Obtain transitive closure of $\left(R_{1} \cup R_{2}\right)$.
(5) If each of the following statements is true, explain why. If false, give a counter example. Assume that R and S are some relations on a nonempty set A .
(i) If R is transitive and S is transitive then $R \cup S$ is transitive.
(ii) If R is transitive and S is transitive then $R \cap S$ is transitive.
(iii) If R is symmetric then R^{c} (converse of R) is symmetric.
(iv) If R and S both are antisymmetric then so is $R \cup S$.

Let r, s, and t denote the closure operators as discussed in class.
(v) The relation $\mathrm{r}(\mathrm{s}(\mathrm{t}(\mathrm{R})))$) is always an equivalence relation for any R .
(vi) The relation $t(s(r(R)))$ is always an equivalence relation for any R.
(6) For $\mathrm{X}=\{1,2,3,4,5\}$, determine if each of the following relations is an equivalence relation. If yes, explain your answer and give equivalence classes. If no, explain why.
(i) $\mathrm{R}_{1}=\{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)(3,1),(3,2),(3,3),(4,4),(5,5)\}$
(ii) $\mathrm{R}_{2}=\{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(3,1),(3,3),(4,1),(4,4),(5,5)\}$

