Solution: Homework 3

(1) (i) $R_{1}=\{(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,6),(3,6)\}$.
$\operatorname{Domain}\left(R_{1}\right)=\{1,2,3\}$
Range $\left(R_{1}\right)=\{2,3,4,5,6\}$
(ii) $R_{2}=\{(1,5),(2,4),(3,3),(5,1),(4,2)\}$.

Domain $\left(R_{2}\right)=\{1,2,3,4,5\}$
Range $\left(R_{2}\right)=\{1,2,3,4,5\}$

Graph: R1

Graph: R2
(2) (i) R_{1} is reflexive, transitive and anti-symmetric.
(ii) R_{2} is transitive and anti-symmetric.
(iii) R_{3} is symmetric and transitive.
(iv) R_{4} is reflexive, symmetric and transitive.
(3) $R=\{(1,2),(2,1),(1,1),(2,2)\}$.

It's symmetric because $x R y$ and $y R x$ both belongs to R. Its also transitive because whenever there are pairs like $x R y$ and $y R z$, then $x R z$. But it's not reflexive because (3,3) is not in R .
(4) (i) $\left(R_{1} \circ R_{2}\right)=\{(1,3),(1,4),(4,3),(4,4)\}$.
$\left(R_{2} \circ R_{1}\right)=\{(2,2)\}$.
$\left(R_{1} \circ R_{2}\right) \cap\left(R_{2} \circ R_{1}\right)=\varnothing$
(ii) $\left(R_{1} \cup R_{2}\right)=\{(1,2),(1,3),(2,3),(2,4),(4,2)\}$.
$\left(R_{2} \cup R_{1}\right)^{2}=\left(R_{1} \cup R_{2}\right) \circ\left(R_{1} \cup R_{2}\right)$.
$\left(R_{2} \cup R_{1}\right)^{2}=\{(1,3),(1,4),(2,2),(4,3),(4,4)\}$
(iii) $\left(R_{1} \cup R_{2}\right)=\{(1,2),(1,3),(2,3),(2,4),(4,2)\}$.
$t\left(R_{1} \cup R_{2}\right)=\{(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(4,2),(4,3),(4,4)\}$.
(5) (i)False. Let, $R=\{(1,2),(2,3),(1,3)\}$ and $S=\{(3,4),(4,5),(3,5)\}$. Then $R \cup S=$ $\{(1,2),(2,3),(1,3),(3,4),(4,5),(3,5)\}$. But $R \cup S$ is not transitive. Because it doesn't contain $\{(1,4),(1,5),(2,4),(2,5)\}$
(ii) True. Intersection of transitive relations will create another transitive relation.
(iii)True. If R is symmetric, then since converse preserves symmetry, R^{c} is also symmetric.
(iv)False. Let, $R=\{(1,2)\}$ and $S=\{(2,1)\}$. Then $R \cup S=\{(1,2),(2,1)\}$. But $R \cup S$ is not anti-symmetric.
(v)False. Because transitive property may not hold for $\mathrm{r}(\mathrm{s}(\mathrm{t}(\mathrm{R})))$. For example, if $R=$ $\{(1,2),(1,3),(2,2)\}$ then $r(s(t(R)))=\{(1,1),(1,2),(1,3),(2,2),(2,1),(3,1),(3,3)\}$, which contains both $(2,1)$ and (1,3), but it doesn't contain (2,3). So it's not transitive.
(vi)True. $t(s(r(R)))$ is reflexive, symmetric and transitive. $r(R)$ is always reflexive. Then $s(r(R))$ is symmetric and $t(R)$ is always transitive. Hence its an equivalence relation.
(6) (i) R_{1} is Equivalence Relation. Because it's reflexive, symmetric and transitive. [1] = $[2]=[3]=\{1,2,3\},[4]=\{4\},[5]=\{5\}$.
(ii) R_{2} is not Equivalence Relation. Because it's reflexive, symmetric but it's not transitive. For example, $(2,4)$ is missing.

