## CSE213

## Solution: Homework 5

(1) (a) NO (b) YES. use truth table.
(2) (a) L.H.S. $\equiv \neg(p \leftrightarrow q)$
$\equiv \neg((p \rightarrow q) \wedge(q \rightarrow p))$
$\equiv \neg((\neg p \vee q) \wedge(\neg q \vee p))$
$\equiv \neg(\neg p \vee q) \vee \neg(\neg q \vee p)$
$\equiv(p \wedge \neg q) \vee(q \wedge \neg p))$
R.H.S. $\equiv p \leftrightarrow \neg q)$
$\equiv(p \rightarrow \neg q) \wedge(\neg q \rightarrow p))$
$\equiv(\neg p \vee \neg q) \wedge(q \vee p)$
$\equiv((\neg p \vee \neg q) \wedge q) \vee((\neg p \vee \neg q) \wedge p)$
$\equiv((\neg p \wedge q) \vee(\neg q \wedge q)) \vee((\neg p \wedge p) \vee(\neg q \wedge p))$
$\equiv((\neg p \wedge q) \vee$ false $) \vee($ false $\vee(\neg q \wedge p))$
$\equiv(\neg p \wedge q) \vee(\neg q \wedge p)$
$\equiv(p \wedge \neg q) \vee(q \wedge \neg p))$
So, L.H.S. $\equiv$ R.H.S.
(b)L.H.S. $\equiv \neg p \rightarrow(q \rightarrow r)$
$\equiv p \vee(q \rightarrow r)$
$\equiv p \vee \neg q \vee r$
R.H.S. $\equiv q \rightarrow(p \vee r)$
$\equiv \neg q \vee(p \vee r)$
$\equiv p \vee \neg q \vee r$
So, L.H.S. $\equiv$ R.H.S.
(3) (a) Tautology (b) Contingency (c) Contradiction

Solution of (b)
$W \equiv[(p \rightarrow q) \rightarrow(r \rightarrow s)] \leftrightarrow[(p \rightarrow r) \rightarrow(q \rightarrow s)]$
$W(p /$ false $) \equiv[(F \rightarrow q) \rightarrow(r \rightarrow s)] \leftrightarrow[(F \rightarrow r) \rightarrow(q \rightarrow s)]$.
$\equiv[T \rightarrow(r \rightarrow s)] \leftrightarrow[T \rightarrow(q \rightarrow s)]$.
$\equiv(r \rightarrow s) \leftrightarrow(q \rightarrow s)$.
Now, Let $X \equiv(r \rightarrow s) \leftrightarrow(q \rightarrow s)$.
$X(s /$ true $) \equiv(r \rightarrow T) \leftrightarrow(q \rightarrow T)$.
$\equiv T \leftrightarrow T$.
$\equiv T$.
$X(s / f a l s e) \equiv(r \rightarrow F) \leftrightarrow(q \rightarrow F)$.
$\equiv \neg r \leftrightarrow \neg q$.
When $r$ is false and $q$ is true, this is false. so, the statement is a contingency.
(4) It's satisfiable. For example, look at $p$ and $q$ in every clause. If we make $p=$ true and $\mathrm{q}=$ false then the formula evaluates to true and we don't need to look at r and s .
(5) (a) (i) $\exists_{x} N(x)$ (ii) $\neg \forall_{x} N(x)$
(b) (i) No student has visited North Dakota. (ii) Every student has visited North Dakota.
(6) (a) (i) $\forall_{x}((C(x) \wedge \neg D(x)) \vee(\neg C(x) \wedge D(x)))$
(ii) $\exists_{x}(\neg C(x) \wedge \neg D(x) \wedge \neg P(x))$
(b) (i) For every student if he/she has a cat or dog then he/she has a parrot.
(ii) No student has all three pets.
(7)(i) True (ii) False (iii) False (iv) False (v) False
(8) (i) $P(-5) \vee P(-3) \vee P(-1) \vee P(1) \vee P(3)$
$\exists_{x}$ becomes OR.
(ii) $P(-5) \wedge P(-3) \wedge P(-1) \wedge P(1) \wedge P(3)$
$\forall x$ becomes AND.
(iii) $P(-5) \wedge P(-3) \wedge P(-1) \wedge P(3)$

When x is 1 , ( x not equal to 1 ) $\rightarrow P(x)$ is True. So, it can be dropped from AND(ii).
(iv) $P(1) \vee P(3)$

When $x>0$ is false, $(x>0) \wedge P(x)$ is false. It can be dropped from $\operatorname{OR}(\mathrm{i})$.
(9) There are 4 interpretations. (i) $p(a)=$ True, $p(b)=$ True. (ii) $p(a)=$ False, $p(b)=$ False. (iii) $p(a)=$ True, $p(b)=$ False. (iv) $p(a)=$ False $p(b)=$ True.

Truth value of W in those interpretations: (i) True, (ii) True, (iii) False, (iv) False.
(10) (i) Let domain, D is the set of positive integers.
$p(x)=\mathrm{x}$ is divisible by 2 and $q(x)=\mathrm{x}$ is divisible by 3 .
$\exists_{x} p(x)$ is true, $x=2$.
$\exists_{x} q(x)$ is true, $x=3$.
$\exists_{x}(p(x) \wedge q(x))$ is true, $x=6$.
So, the implication is true and this is a model.
(ii) Let domain, D is the set of positive integers.
$f(1)=1$. when x is 1 .
$f(x)=x-1$. otherwise.
and $p(x, y)=(x>=y)$.
Now when y is 1 , we get,
$\forall_{x} p(x, x-1) \rightarrow p(x, 1)$ which is always true.
So, the implication is true and this is a model.
(11) (i) $p(x)=\mathrm{x}$ is odd. where domain is the set of positive integers.
$\exists_{x} p(x)$ is true since there are some integers which are odd e.g., $x=1$.
$\forall_{x} p(x)$ is false since all integers are not odd. e.g., $x=2$.
(ii) $p(x)=\mathrm{x}$ is odd and $q(x)=\mathrm{x}$ is even, where domain is the set of positive integers.
(12) $\exists_{x} p(x) \rightarrow \forall_{x} p(x)$ is not valid when $p(x)=\mathrm{x}$ is odd. But it is true for any singleton set $\mathrm{D}=\mathrm{a}$. Since $\mathrm{p}(\mathrm{a})$ can be either true or false, the implication becomes for singleton set $T \rightarrow T$ or $F \rightarrow F$. So, for singleton set this is true.
(13) (i) $\forall_{m} \exists_{n} E V E N(m+n)$ is True. If m is odd, find odd n and if m is even find even n , and then ( $\mathrm{m}+\mathrm{n}$ ) will be even.
$\neg \forall_{m} \exists_{n} E V E N(m+n)$
$\equiv \exists_{m} \forall_{n} \neg E V E N(m+n)$
There exists m , such that for all $\mathrm{n},(\mathrm{m}+\mathrm{n})$ is not even. This statement is false because there is no such m . This is consistent, so the original statement is true.
(ii) $\forall_{m} \forall_{n}[E V E N(m+n) \rightarrow E V E N(m) \vee E V E N(n)]$ is False.
$\neg \forall_{m} \forall_{n}[E V E N(m+n) \rightarrow E V E N(m) \vee E V E N(n)]$.
$\equiv \exists_{m} \exists_{n} \neg(\neg E V E N(m+n) \vee E V E N(m) \vee E V E N(n))$.
$\equiv \exists_{m} \exists_{n}(E V E N(m+n) \wedge \neg E V E N(m) \wedge \neg E V E N(n))$.
There is some $m$ and some $n$ such that $(m+n)$ is even and $m$ is not even and $n$ is not even. This is true for odd m and n . So, the original statement is false.
(14)(i) If the L.H.S is false, then the whole implication becomes true. Now consider any interpretation that makes L.H.S true. So, there is some x , which makes $\mathrm{p}(\mathrm{x}, \mathrm{y})$ true for all y . If we choose the same x , then for all $\mathrm{y} \exists_{x} p(x, y)$ would also be true. So, the given statement is valid.
(ii) Let, domain, $D=\{1,2,3\}$ and $\mathrm{p}(\mathrm{x}, \mathrm{y})$ is $x=y$.
$\forall y \exists_{x} p(x, y)$ means for every y there exist some x such that x equals y . This is true because you can choose $x=y$ for every y.

Now, $\exists_{x} \forall_{y} p(x, y)$ means there is some x such that for all y , x is equal to y . So, here x is fixed first and there is no such $x$. So, it is false.

These two statements are not logically equivalent since for this interpretation one of them is true and other is false.

