Solution: Homework 1

(1) $A-B=A \cap B^{c}$.

A-B is the set of elements in A that are not in B. B^{c} is the complement of B with respect to some universal set U . So, $B^{c}=U-B$. It contains all elements of U except B . So, its intersection with set A will give only those elements in A that are not in B. Hence $A-B=A \cap B^{c}$.
(2) $A-(B \cap C)=(A-B) \cup(A-C)$
$x \in A-(B \cap C)$ iff $x \in A$ and $x \notin B \cap C$
iff $x \in A$, and either $x \notin B$ or $x \notin C$
iff either $(x \in A$ and $x \notin B)$ or $(x \in A$ and $x \notin C)$
iff $x \in(A-B) \cup(A-C)$
Hence, $A-(B \cap C)=(A-B) \cup(A-C)$
(3) (i) and (iv) are partitions of A.
(4) (i) $\{a, b, c, d\}$
(ii) $\{\{a\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{d}\}\}$
(iii) $\{\{\mathrm{a}\},\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}\},\{\{\mathrm{b}\},\{\mathrm{a}, \mathrm{c}, \mathrm{d}\}\},\{\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}\},\{\{\mathrm{d}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\},\{\{\mathrm{a}, \mathrm{b}\},\{\mathrm{c}, \mathrm{d}\}\},\{\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{d}\}\},\{\{\mathrm{a}, \mathrm{d}\},\{\mathrm{b}, \mathrm{c}\}\}$
(5) Total number of subsets of a set with k elements $=2^{k}$. Number of subsets excluding
both 1 and 2 is 2^{k-2}. Now if we include 1 to every subset then total number of subsets will remain same, 2^{k-2}.

So, if $k=1$ then 1 ; if $k>1$, then 2^{k-2}.
(6) A truth table for k variables has 2^{k} entries. Since each k variable function can map to either True or False, then total number of k -variable Boolean functions is $2^{2^{k}}$
(7) $f(x)=(-1)^{x} \cdot 3 x$; where $x \in N$.
(8)(i) aaa, aab, aba, abb, baa, bab, bba, bbb.
(ii) a, b, ab, ba, aa, aba, baa, abaa
(iii) prefixes: ababbba, ababbb, ababb, abab, aba, ab, a, \wedge
suffixes: \wedge, a, ba, bba, bbba, abbba, babbba, ababbba
(9)Basis: $b b \in S$

Induction: If $x \in S$ and $w \in X^{*}$, then $x w \in S$.
(10)Basis: $0 \in S$

Induction: If $x \in S$ and $x / 14 \in Z$, then $x+14, x-14 \in S$.
If $x \in S$ and $x / 23 \in Z$, then $x+23, x-23 \in S$.

