CSE213

Fall2007

Solution: Homework 1

(1) $A - B = A \cap B^c$.

A-B is the set of elements in A that are not in B. B^c is the complement of B with respect to some universal set U. So, $B^c = U - B$. It contains all elements of U except B. So, its intersection with set A will give only those elements in A that are not in B. Hence $A - B = A \cap B^c$.

(2) $A - (B \cap C) = (A - B) \cup (A - C)$ $x \in A - (B \cap C)$ iff $x \in A$ and $x \notin B \cap C$ iff $x \in A$, and either $x \notin B$ or $x \notin C$ iff either $(x \in A \text{ and } x \notin B)$ or $(x \in A \text{ and } x \notin C)$ iff $x \in (A - B) \cup (A - C)$ Hence, $A - (B \cap C) = (A - B) \cup (A - C)$

(3) (i) and (iv) are partitions of A.

 $\begin{array}{l} (4) (i) \{a,b,c,d\} \\ (ii) \{\{a\},\{b\},\{c\},\{d\}\} \\ (iii) \{\{a\},\{b,c,d\}\}, \{\{b\},\{a,c,d\}\}, \{\{c\},\{a,b,d\}\}, \{\{d\},\{a,b,c\}\}, \{\{a,b\},\{c,d\}\}, \{\{a,c\},\{b,d\}\}, \{\{a,d\},\{b,c\}\} \\ \end{array}$

(5) Total number of subsets of a set with k elements $= 2^k$. Number of subsets excluding both 1 and 2 is 2^{k-2} . Now if we include 1 to every subset then total number of subsets will remain same, 2^{k-2} .

So, if k = 1 then 1; if k > 1, then 2^{k-2} .

(6) A truth table for k variables has 2^k entries. Since each k variable function can map to either True or False, then total number of k-variable Boolean functions is 2^{2^k}

(7) $f(x) = (-1)^x \cdot 3x$; where $x \in N$.

(8)(i) aaa, aab, aba, abb, baa, bab, bba, bbb.

(ii) a, b, ab, ba, aa, aba, baa, abaa

(iii) prefixes: ababbba, ababbb, ababb, abab, aba, ab
 , a, \wedge

suffixes: $\wedge,$ a, ba, bba, bbba, abbba, babbba, ababbba

(9)Basis: $bb \in S$ Induction: If $x \in S$ and $w \in X^*$, then $xw \in S$.

(10)Basis: $0 \in S$ Induction: If $x \in S$ and $x/14 \in Z$, then $x + 14, x - 14 \in S$. If $x \in S$ and $x/23 \in Z$, then $x + 23, x - 23 \in S$.