CSE 213 Fall '07: Midterm 2 Solutions

1a) Every function from a set A to a se B is also a relation from A to B (Yes)
1b) Every reflexive relation on a set A, is also a function from A to A itself (No, because it canhave more pairs)
1c) The power se of every finite set is countable (Yes)
1d) The poset $(\mathrm{Z},<)$ is not well-founded with respect to $<$ (Yes)
1e) Every totally ordered finite set has the least element and the greatest element (Yes)
2) $\mathrm{N}=\{0,1,2,3, \ldots\}$
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y}) \mid$ the positive difference $|\mathrm{x}-\mathrm{y}|$ is odd $\}$
2a)Any 4 elements of R: $(1,2),(1,4),(4,1),(2,1),(5,2), \ldots$
2b) R is not an equivalence relation
2c) R is not reflexive $(1,1) \notin R$
R is not transitive, for instance $(1,4),(4,5) \in R$ but $(1,5) \notin R$
3) $X=\{1,2,3\}$ and $R=\{(1,1),(1,3),(2,1),(2,2),(3,1),(3,3)\}$ be a relation on X

3a) This relation is not a partial order because it is not anti-symmetric $(1,3),(3,1)$ are in the relation and $1 \neq 3$. Also, it is not transitive; $(2,1)$ and $(1,3)$ are in R but $(2,3)$ isn't.
$3 b)$ To make it partial order, remove $(1,3)$
3c) Remove symmetric pair so that it makes R anti-symmetric and also makes it satisfy transitivity by default.
4) Give a relation R on N such that for relation R, it's the diagonal set D and its complement set are both countably infinite.
4a) $\mathrm{R}=\{(1,1),(3,3),(5,5),(7,7), \ldots\}$
$R=\{(x, x) \mid x$ is odd numbers $\}$
4b) Diagonal set $\mathrm{D}=\{1,3,5, \ldots\}$
Its complement $=\{0,2,4,6,8, \ldots\}$
4c) Set D has all odd numbers. It is infinite and it is subset of a countably in infinite set N. The complement of D has all even numbers.
5)

5a)	8	12	15
	I	1	\|
	I	6	\|
	\1/ \} /		
5a)			

5b) Greatest: None Maximal: 8,12, 15
Least: None Minimal: 2,3
5c) $\mathrm{LUB}=120$ because it is the least common multiple $8,12,15$
6) Standard Order:

00, 11, 012, 021, 210, 0221, 1112, 2021, 10201
7) Suppose we define a relation R on $N x N$ such that (a, b) is related to (c, d) as follows. Hear a, b, c, d are in N
$(a, b) R(c, d)$ if $a>c$ or $[a=c]$ and [$b>d]$
$7 \mathrm{a})(4,2)$ is not related to $(4,3)$
$7 \mathrm{~b})(0,0)$ is successor of all pairs. It is also the maximal element(greatest)
We have descending chains that are infinitely long; therefore, R is not well founded
8) $n>0$
$1 \cdot 2+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+n \cdot 2^{n}=(n-1) 2^{n+1}+2$
Base case: $\mathrm{n}=1$
LHS $=1.2=2$
RHS $=(0) \cdot 2^{2}+2=2$
LHS=RHS
Base case holds

Induction Hypothesis:

Assume that the above statement is true for arbitrary but fixed n
To prove it for $\mathrm{n}+1$:
LHS for $\mathrm{n}+1$
$=1.2+2 \cdot 2^{2}+3 \cdot 2^{3}+\ldots+n .2^{n}+(n+1) 2^{n+1}$
$=(n+1) \cdot 2^{n+1}+2+(n+1) \cdot 2^{n+1}$
$=2^{\mathrm{n}+1}(\mathrm{n}-1+\mathrm{n}+1)+2$
$=2^{\mathrm{n}+1}(2 \mathrm{n})+2$
$=n, 2^{\mathrm{n}+2}+2$
$=(n+1-1)(2)^{n+2}+2--$ RHS \quad QED

