CSE213

Fall2007

Solution: Quiz 1

(1)Not possible.

Since for the conditions, $|A_1| > |B_1|$ and $|A_2| > |B_2|$ to hold; $|A_1|$ must be at least $|B_1| + 1$ and $|A_2|$ must be at least $|B_2| + 1$. So, $|A_1| + |A_2|$ must be at least $|B_1| + |B_2| + 2$. Then, $|A_1| + |A_2|$ must be at least 7, since $|B_1| + |B_2| = 5$. In that case, there is no element for A_3 .

(2) (i) \wedge (ii) does not exists (iii) aa (iv) bbb (v) aaaa

(3)Basis: $(1,0) \in S$ Induction: if $(a,b) \in S$ then $(a+1,b), (a+1,b+1), (a-1,b-1), (a,b-1) \in S$.