CSE328 Fundamentals of Computer Graphics (Theory, Algorithms, and Applications)

Hong Qin Department of Computer Science Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.stonybrook.edu http://www.cs.stonybrook.edu/~qin

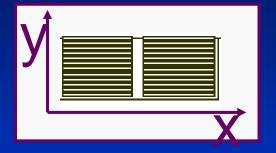
2D Transformations

• From local, model coordinates to global, world coordinates

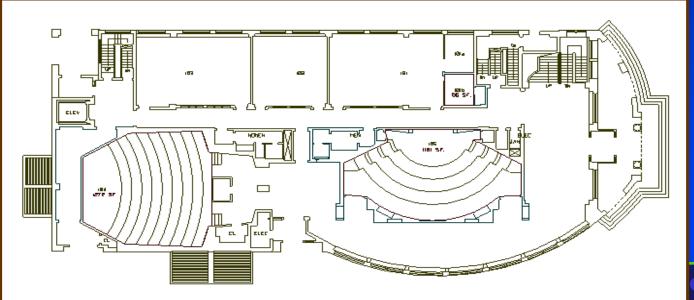
Department of Computer Science

From Model Coordinates to World Coordinates (Local to Global)

Model coordinates (local)



World coordinates (global)



Department of Computer Science Center for Visual Computing K

Modeling Transformations

- 2D transformations
- Specify transformations for objects
 - Allows definitions of objects in their own coordinate systems
 - Allows use of object definition multiple times in a scene
 - Please pay attention to how OpenGL provides a transformation stack because they are so frequently reused

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- Generalizations to 3D Transformations
 - Basic 3D transformations
 - Same as 2D

Department of Computer Science

Basic 2D Transformations

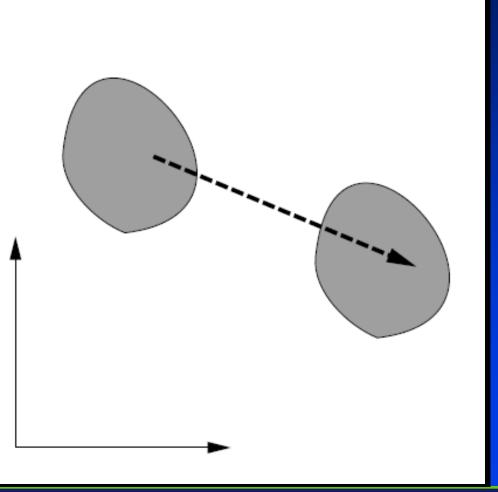
- Translation:
 - $x' = x + t_x \\ y' = y + t_y$
- Scale:

$$- x' = x * s_x - y' = y * s_y$$

- Shear:
 - $-x' = x + h_x * y$ $-y' = y + h_y * x$
- Rotation: $-x' = x^*\cos\Theta - y^*\sin\Theta$ $-y' = x^*\sin\Theta + y^*\cos\Theta$

Department of Computer Science

2D Translation



ST NY BR K

Department of Computer Science Center for Visual Computing

CSE328 Lectures

2D Translation

• Current position

$$\mathbf{p} = \left[\begin{array}{c} x \\ y \end{array} \right]$$

• Translation operation

$$T(\delta x, \delta y) = \begin{bmatrix} \delta x \\ \delta y \end{bmatrix}$$
$$\mathbf{p} + T(\delta x, \delta y) = \mathbf{p}'$$
$$x' = x + \delta x$$
$$y' = y + \delta y$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

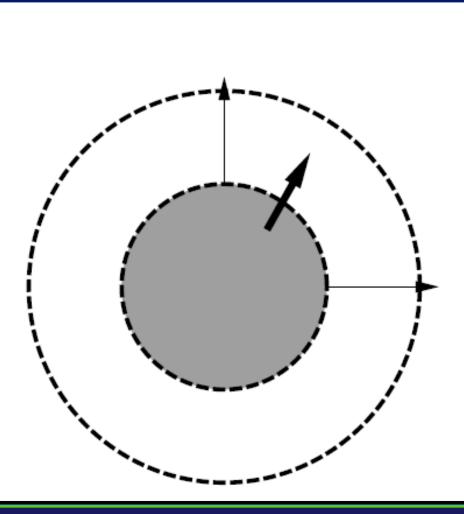
Department of Computer Science Center for Visual Computing CSE328 Lectures

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:
- Non-uniform scaling: different scalars per component:

• How can we represent scaling in matrix form?

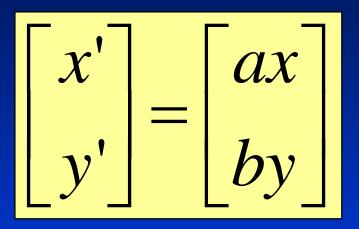
2D Scaling

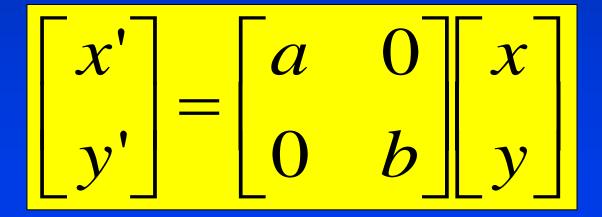


Department of Computer Science Center for Visual Computing

CSE228 Lecture

Scaling Operation in Matrix Form





Department of Computer Science

Scaling

• Matrix multiplication

Scaling operation:

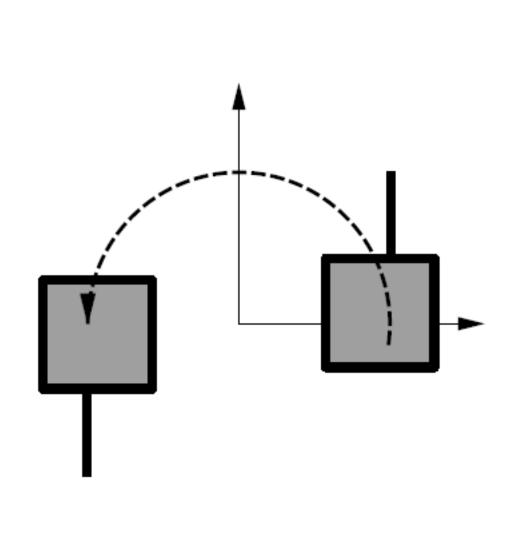
$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$$

• Or, in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Note any difference from Tscaling matrix

2D Rotation



2-D Rotation

$$x' = x \cos(\theta) - y \sin(\theta)$$
$$y' = x \sin(\theta) + y \cos(\theta)$$

$$R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$R(\theta)\mathbf{p} = \mathbf{p}'$$

Positive angles are "counter-clockwise"!

Derivation of 2D Rotation

- $x = r \cos(\phi)$
- $y = r \sin(\phi)$
- $x' = r \cos(\phi + \theta)$
- $y' = r \sin(\phi + \theta)$
- $x' = r \cos(\phi) \cos(\theta) r \sin(\phi) \sin(\theta)$
- $y' = r \sin(\phi) \sin(\theta) + r \cos(\phi) \cos(\theta)$
- $x' = x \cos(\theta) y \sin(\theta)$
- $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

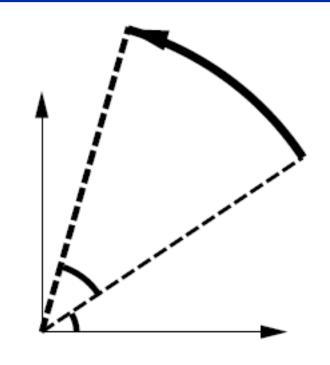
• It is straightforward to see this procedure in matrix form: $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

• Important results from trigonometry!

Observation - Even though sin(θ) and cos(θ) are nonlinear functions of θ,
- x² is a linear combination of x and y
- y² is a linear combination of x and y

2D Rotation's Geometric Understanding

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$



 $x' = r\cos(\theta_1)\cos(\theta_2) - r\sin(\theta_1)\sin(\theta_2)$

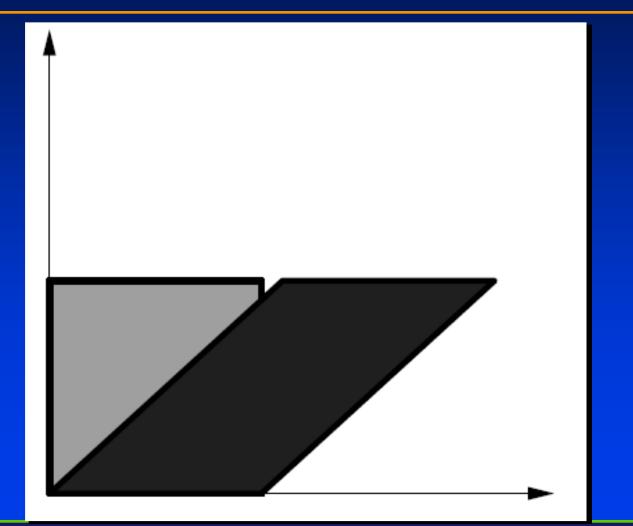
 $y' = r\cos(\theta_1)\sin(\theta_2) + r\sin(\theta_1)\cos(\theta_2)$

Basic 2D Transformations

- Translation:
 - $x' = x + t_x$
 - $y' = y + t_{y_y}$
- Scale:
 - $x' = x * s_{x}$
 - $y' = y * s_{y}$
- Shear:
 - $x' = x + h_x * y$
 - $y' = y + h_{y} * x$
- Rotation:
 - $x' = x \cos \Theta y \sin \Theta$
 - $y' = x^* \sin \Theta + y^* \cos \Theta$

Department of Computer Science

2D Shear



Department of Computer Science Center for Visual Computing

CSE328 Lectures

2D Shear and Geometric Meaning

• Shear operation along the x-axis

$$\mathbf{p} = \begin{bmatrix} x \\ y \end{bmatrix}$$
$$\mathbf{p}' = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x + ay \\ y \end{bmatrix}$$

 $Sh_x(a) = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$

 $\mathbf{p}' = Sh_x(a)\mathbf{p}$

$$Sh_y(b) = \begin{bmatrix} 1 & 0 \\ b & 1 \end{bmatrix}$$

$$Sn_y(b) = \begin{bmatrix} b & 1 \end{bmatrix}$$

$$\mathbf{p}' = Sh_y(b)\mathbf{p} = \begin{bmatrix} x\\bx+y \end{bmatrix}$$

Shear operation along the y-axis

Department of Computer Science Center for Visual Computing CSE328 Lectures

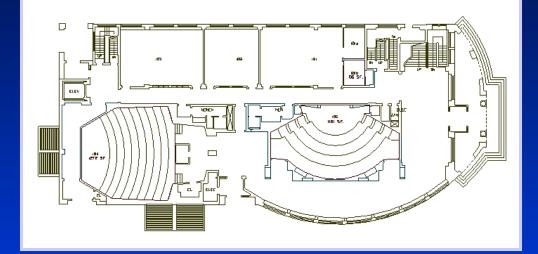
ST NY BR K STATE UNIVERSITY OF NEW YORK

2D Shear

- Consider more complicated cases!
- Various examples are shown in the class!

Basic 2D Transformations

- Translation:
 - $-\mathbf{x}' = \mathbf{x} + \mathbf{t}_{\mathbf{x}}$
 - $y' = y_{y_{y_{y_{y}}}} + t_{y_{y_{y}}}$
- Scale:
 - $x' = x * \overline{s_x}$ $y' = y * s_y$
- Shear:
 - $x' = x + h_x * y_y$ $- y' = y + h_y * x_y$
- Rotation: $- x' = x*\cos\Theta - y*\sin\Theta$ $- y' = x*\sin\Theta + y*\cos\Theta$



Transformations can be combined (with simple algebra)

Department of Computer Science

Combining Transformations

Transformations can be combined (with simple algebra)

Department of Computer Science