CSE328: Fundamentals of Computer Graphics

Hong Qin Department of Computer Science State University of New York at Stony Brook (Stony **Brook University**) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 gin@cs.stonybrook.edu; or gin@cs.sunysb.edu http:///www.cs.sunysb.edu/~qin

Transformation and Viewing

ST NY BR K

Department of Computer Science

Center for Visual Computing

Cartesian Coordinate System

Department of Computer Science Center for Visual Computing ST NY BR K

3D Graphics Concepts

- 3D coordinate system
 - -x, y, and z values
 - Depth information
- Geometric modeling of various 3D objects
 - Point, line, polygon (residing on a 3D plane)
 - Curve, surface, solid

3D Graphics Concepts

Geometric transformation

• 3D viewing

- Parallel projection
- Perspective projection
- Display methods of 3D objects
 - Wireframe
 - Shaded objects
 - Visible object identification
 - Photo-realistic rendering techniques
 - 3D stereoscopic viewing

Department of Computer Science

Center for Visual Computing

Euclidean Space

- Scalar value
- Points: P = (x,y,z)
- Vectors: $\mathbf{V} = [\mathbf{x}, \mathbf{y}, \mathbf{z}]$
 - Magnitude or distance $||V|| = \sqrt{(x^2+y^2+z^2)}$
 - Direction
 - No position
- Position vector
 - Think of as magnitude and distance relative to a point, usually the origin of the coordinate system

Review of Common Vector Operations in 3D

- Addition of vectors
 - $V_1 + V_2 = [x_1, y_1, z_1] + [x_2, y_2, z_2] = [x_1 + x_2, y_1 + y_2, z_1 + z_2]$
- Multiply a scalar with a vector
 - sV = s[x,y,z] = [sx,sy,sz]
- Dot product
 - $V_1 \bullet V_2 = [x_1, y_1, z_1] \bullet [x_2, y_2, z_2] = [x_1 x_2 + y_1 y_2 + z_1 z_2]$
 - $V_1 \bullet V_2 = ||V_1|| ||v_2|| \cos\beta$ where β is the angle between V_1 and V_2
- Cross product of two vectors
 - $\mathbf{V_1} \times \mathbf{V_2} = [x_1, y_1, z_1] \times [x_2, y_2, z_2] = [y_1 z_2 y_2 z_1, x_2 z_1 x_1 z_2, x_1 y_2 x_2 y_1]$ = - V₂×V₁
 - Results in a vector that is orthogonal to the plane defined by V_1 and V_2

Department of Computer Science

Perspective Projection

Parallel lines converge

Distant objects appear smaller

Textured elements become smaller with distance

Department of Computer Science Center for Visual Computing ST NY BR K

ST NY BR K

Depth Cue via Occlusion

Depth Cue: Depth of Focus

ST NY BR K

Department of Computer Science

Center for Visual Computing

Depth Cue: Cast Shadows

ST NY BR K

Atmospheric Depth

Reduction in contrast of distant objects

K

Shape from Shading

Structure from Motion

ST NY BR K

Placement of virtual hand or object Need for head-coupled perspective

Eye Convergence

Better for relative depth than for absolute

Stereoscopic Depth

left

Center for Visual Computing

combined

Ξ

right

K

Center for Visual Computing

Texture Mapping

Environment Mapping

ST NY BR K

Interaction with Light

ST NY BR K

Shadowing Effects

Transparency

Surface Graphics

Department of Computer Science

Center for Visual Computing

Surface Graphics

Surface Graphics

Department of Computer Science

Center for Visual Computing

Volume Graphics

Visualization (Isosurfaces)

ST NY BR K

Visualization (Volume Rendering)

Volume Graphics

Graphics Hardware

ST NY BR K

Department of Computer Science

Center for Visual Computing

Virtual Reality Systems

Virtual Reality Systems

Virtual Reality Systems

Department of Computer Science Center for Visual Computing CSE528 Lectures

Trackball, Joystick, Touch Pad

Haptics Device (Phantom 1.0)

Department of Computer Science Center for Visual Computing CSE528 Lectures

3D Laser Range Scanner

ST NY BR K

3D Laser Range Scanner

3D Camera

Department of Computer Science

Plane Equation

ST NY BR K

Department of Computer Science

2D Geometric Transformations (A Quick Review)

- Translation
- Rotation
- Scaling
- Shear
- Homogenous Coordinates
- Matrix Representations
- Composite Transformations

Translation

- $x' = x + t_x$
- $y' = y + t_y$

Department of Computer Science

Rotation

Department of Computer Science

Scaling

• $x' = S_x \cdot x$

•
$$y' = S_y \cdot y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Department of Computer Science

Shear

- $x'=x+h_x\cdot y$
- *y*'=*y*

Homogenous Coordinates: Geometric Intuition

• Each position (x, y) is represented as (x, y, 1).

• All transformations can be represented as matrix multiplication.

Composite transformation becomes easier.

Department of Computer Science

Translation in Homogenous Coordinates

- $x' = x + t_x$
- $y' = y + t_y$

Department of Computer Science

Scaling in Homogenous Coordinates

Department of Computer Science

Shear in Homogenous Coordinates

• $x'=x+h_x\cdot y$

• *y*'=*y*

$\mathbf{P'} = \mathbf{SH}_x \cdot \mathbf{P}$

2D Geometric Transformations

- Translation
- Rotation
- Scaling
- Shear
- Homogenous Coordinates
- Composite Transformations

2D Geometric Transformations

- Translation
- Rotation
- Scaling
- Shear
- Homogenous Coordinates
- Composite Transformations
 - Rotation about a fixed point

- **1.** Translate the object to the origin.
- 2. Rotate around the origin.
- 3. Translate the object back.

ST NY BR K

Department of Computer Science

ST NY BR K

Department of Computer Science

Department of Computer Science

Department of Computer Science

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

3D Geometric Transformations

- Basic 3D Transformations
 - Translation
 - Rotation
 - Scaling
 - Shear
- Composite 3D Transformations
- Change of Coordinate systems

Translation

ST NY BR K

Department of Computer Science

Rotation about z-axis

Department of Computer Science

Rotation about x-axis

ST NY BR K

Department of Computer Science

Rotation about y-axis

Department of Computer Science

- 1. Translate the object to the origin.
- 2. Rotate about the three axis, respectively.
- 3. Translate the object back.

 $\mathbf{P'} = \mathbf{T} (x_r, y_r, z_r) \bullet \mathbf{R1} * \mathbf{R2} * \mathbf{R3} \bullet \mathbf{T} (-x_r, -y_r, -z_r) \bullet \mathbf{P}$

 $\mathbf{Ri} = \mathbf{R}_{\mathbf{x}}(\theta_{\mathbf{x},\mathbf{i}}) \bullet \mathbf{R}_{\mathbf{y}}(\theta_{\mathbf{y},\mathbf{i}}) \bullet \mathbf{R}_{\mathbf{z}}(\theta_{\mathbf{z},\mathbf{i}})$

Department of Computer Science

Rotation with Arbitrary Direction

- 1. We will have to translate an arbitrary vector so that its starting point starts from the origin
- 2. We will have to rotate w.r.t. x-axis so that this vector stays on x-z plane
- 3. We will then rotate w.r.t. y-axis so that this vector aligns with z-axis
- 4. We will then rotate w.r.t. z-axis
- 5. Reverse (3), (2), and (1)

Department of Computer Science

Scaling

Department of Computer Science

Shear

ST NY BR K

Department of Computer Science

Change in Coordinate Systems

rotation and scaling.

Department of Computer Science

Taking a Picture with a Camera

- Geometric Coordinate Systems: Local, World, Viewing
- Graphics Rendering Pipeline
- ModelView
 - Matrix operations on models
- World coordinates to Viewing coordinates

 Matrix operations (models or cameras)
- Projection with a camera

Viewing in 3D

- Planar Geometric Projections
- Parallel Orthographic Projections
- Perspective Projections
- **Projections in OpenGL**
- Clipping

Department of Computer Science
Planar Geometric Projections

• Maps points from camera coordinate system to the screen (image plane of the virtual camera).

Planar Geometric Projections

STATE UNIVERSITY OF NEW YORK

Parallel Orthographic Projection

- Preserves X and Y coordinates.
- Preserves both distances and angles.

Department of Computer Science

Parallel Orthographic Projection

- $x_p x$
- $y_p = y$ $z_p = 0$

$$\begin{bmatrix} x_p \\ y_p \\ z_p \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Only preserves parallel lines that are parallel to the image plane.
- Line segments are shorten by distance.

Department of Computer Science

Parallel lines converge

Distant objects appear smaller

Textured elements become smaller with distance

Perspective Cues

Department of Computer Science Center for Visual Computing ST NY BR K

Perspective Cues

ST NY BR K

Perspective Cues

ST NY BR K

Department of Computer Science

- $z_p = d$ $x_p = (x \cdot d) / z$

Department of Computer Science

- $z_p = d$ $y_p = (y \cdot d) / z$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

- $x_p = (x \cdot d) / z = x/(z/d)$ $y_p = (y \cdot d) / z = y/(z/d)$ =z/(z/d)

Department of Computer Science

Viewing in 3D

- Planar Geometric Projections
- Parallel Orthographic Projections
- Perspective Projections
- Projections in OpenGL

Department of Computer Science

Viewing in 3D

- Planar Geometric Projections
- Parallel Orthographic Projections
- Perspective Projections
- Projections in OpenGL
 - Positioning of the Camera
 - Define the view volume

Department of Computer Science

Positioning the Camera

 By default, the camera is placed at the origin pointing towards the negative z-axis.

Department of Computer Science

Positioning the Camera

- OpenGL Look-At Function gluLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)
- View-reference point (VRP)
- View-plane normal (VPN)
- View-up vector (VUP)

Department of Computer Science

Defining the Parallel View Volume

glOrtho(xmin, xmax, ymin, ymax, near, far)

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Defining the Perspective View Volume

glFrustum(left, right, bottom, top, near, far)

ST NY BR K

Department of Computer Science

Defining the Perspective View Volume

gluPerspective(fovy, aspect, near, far)

Department of Computer Science