
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Fundamentals of
Computer Graphics

Hong Qin

Department of Computer Science

Stony Brook University (SUNY at Stony Brook)

Stony Brook, New York 11794-2424

Tel: (631)632-8450; Fax: (631)632-8334

qin@cs.stonybrook.edu

http://www.cs.stonybrook.edu/~qin

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Geometric Projections

• From 3D to 2D

• Transform points from camera coordinate system

to the screen (image plane of the virtual camera).
Planar Geometric Projections

Parallel Perspective

Oblique Orthographic

Image Plane

Center of Projection (COP)

Image Plane

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Parallel Orthographic Projection

• Preserves X and Y coordinates.

• Preserves both distances and angles.

Image Plane

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Parallel Orthographic Projection

11000

0000

0010

0001

1

z

y

x

z

y

x

p

p

p

x

(x, y, z)

z

y
• xp = x

• yp = y

• zp = 0

(xp, yp, 0)
z = 0

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perspective Projection

• Only preserves parallel lines that are parallel to

the image plane.

• Line segments are shorten by distance.

Image Plane

Center of Projection (COP)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perspective Projection

x

(x, y, z)

z

y

(xp, yp, zp)
z = d

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perspective Projection

x

(x, z)

z

(xp, d)
z = d

• zp = d

• xp = (x• d) / z

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perspective Projection

y

(y, z)

z

(yp, d)

z = d

• zp = d

• yp = (y• d) / z

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perspective Projection

• xp = (x• d) / z =x/(z/ d)

• yp = (y• d) / z =y/(z/ d)

• zp = d =z/(z/ d)

10/100

0100

0010

0001

z

y

x

dh

z

y

x

h

h

h

h

z

y

x

h

h

h

h

z

y

x

h

h

h

p

p

p

/1000

0/100

00/10

000/1

1

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Defining the Parallel View Volume

x

z

y

(xmax, ymax, -far)

(xmin, ymin, -near)

glOrtho(xmin, xmax, ymin, ymax, near, far)

View Volume

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Defining the Perspective View Volume

x

z

y

(xmax, ymax, -far)

(xmin, ymin, -near)

glFrustum(left, right, bottom, top, near, far)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Defining the Perspective View Volume

x

z

y
w

gluPerspective(fovy, aspect, near, far)

h

fov

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Basic Camera Attributes

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

3D Graphics Viewing Pipeline

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

3D Viewing (Revisit the Pipeline)
• We will need to revisit the concept and the

techniques for defining 3D viewing coordinate
system and specifying 3D view volume (view
frustum) for graphics pipeline

• We will need to convert 3D view volume (both
parallel projection and perspective projection) to
a canonical, normalized, device-independent
coordinate system, before we can display the
final picture in the specified viewport on the
display device!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Coordinate Systems (Computer
Graphics Pipeline)

1. Objects in model coordinates are transformed into

2. World coordinates, which are transformed into

3. View coordinates, which are transformed into

4. Normalized device coordinates, which are transformed

into

5. Display coordinates, which correspond to pixel

positions on the screen

6. Transformations from one coordinate system to

another take place via coordinate transformations,

which we have already discussed

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Coordinate
Systems

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Specify a View Volume
• Reduce degrees of freedom to make the operations

easier; four steps to specify a view volume

1. Position the camera (and therefore its view/image plane), the

center of projection

2. Orient the camera to point at what you want to see, the view

direction and the view-up direction

3. Define field of view:

perspective: aspect ratio of image and angle of view: between

wide angle, normal, and zoom

parallel: width and height

4. Choose perspective or parallel projection

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

View Volume (Parallel Projection)
• For example, orthographic parallel projection: truncated view

volume – Cuboid (not exactly a cube!)

• How about oblique projection???

Height

Width

Look

vectorNear distance

Position

Far
distance

Up vector
x

y

z

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

View Volume (Perspective Projection)

• Perspective projection: Truncated pyramid –

View frustum

• How about oblique projection???

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Specifying Arbitrary 3D Views
• Definition of view volume (the visible part of the virtual world) specified by

camera’s position and orientation

– Position (a point)

– Look and Up vectors

• Shape of view volume specified by

– Horizontal and vertical view angles

– Front and back clipping planes

• Coordinate Systems

– World coordinates – standard right-handed xyz 3-space

– Camera coordinates – camera-space right-handed coordinate system
(u, v, n); origin at Position
and axes rotated by
orientation; used for
transforming arbitrary
view into canonical view

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Canonical View Volume

• This is the key for today’s lecture

– parallel projection
– sits at origin:

Position = (0, 0, 0)
– looks along negative z-axis:

Look vector = (0, 0, –1)
– oriented upright:

Up vector = (0, 1, 0)
– film plane extending from –1 to 1 in x and y

z

Up

Look

Up

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Normalizing to the Device
Independent View Volume

• Goal: transform arbitrary view coordinate system to the canonical
view volume (device independent), maintaining relationship
between view volume and the normalized, device independent
coordinate system, then take picture
– For parallel view volume, transformation is affine : consisting of linear

transformations (rotations and scales) and translation/shift

– In case of a perspective view volume, it also contains a non-affine perspective
transformation that turns a frustum into a parallel view volume, a cuboid

– Composite transformation to transform arbitrary view volume to the canonical
view volume, named the normalizing transformation, is still a 4x4
homogeneous matrix that typically has an inverse

– Easy to clip against this canonical view volume; clipping planes are axis-
aligned!

– Projection using canonical view volume is even easier: just omit z-coordinates

– For oblique parallel projection, a shearing transform is part of composite
transform, to “de-oblique” view volume FIRST!!!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Viewing Coordinate System
• We have specified arbitrary view with viewing

parameters

• Problem: map arbitrary view specification to 2D

image of scene. This is hard, both for clipping

and for projection

• Solution: reduce to a simpler problem and solve
it step-by-step

• Note: Look vector along negative (not positive)
z-axis is arbitrary but makes math easier!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Specify Arbitrary 3D Viewing
Coordinate System

• The original of coordinate system

• Three independent directions (mutually

perpendicular with each other)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Viewing in Three Dimension
• The key: Mathematics of projections and its matrix

operations

• How to produce 2D image from view specification?

• It is relatively easy to specify

– Canonical view volume (3D parallel projection cuboid)

– Canonical view position (camera at the origin, looking
along the negative z-axis)

• A step-by-step approach

1.Get all parameters for view specification

2.Transform from the specified view volume into canonical
view volume (This is the key step)

3.Using canonical view, clip, project, and rasterize scene to
make 2D image

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

From World Coordinate System to
View Coordinate System

• We now know the view specification: Position, Look vector, and Up vector

• Need to derive an affine transformation from these parameters to translate and
rotate the canonical view into our arbitrary view

– The scaling of the image (i.e., the cross-section of the view volume) to make a
square cross-section will happen at a later stage, as will the clipping operation

• Translation is easy to find: we want to translate the origin to the point Position;
therefore, the translation matrix is

• Rotation is much harder: how do we generate a rotation matrix from the viewing
specifications to turn x, y, z, into u, v, n?

1000

100

010

001

)(
z

y

x

Pos

Pos

Pos

PositionT

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Rotation Components

• We have already known how to conduct rotation

operations with respects to arbitrary axis

• Also, we have already discussed the

transformations between two coordinate systems

earlier in our lectures

• Those techniques should be employed to define

three mutually independent axes in 3D and take

care of the transformation between the two

coordinate systems

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

• Want to build a rotation matrix to normalize the camera-space unit

vector axes (u, v, n) into the world-space axes (x, y, z).

– Rotation matrix M will turn (x, y, z) into (u, v, n) and has

columns (u, v, n) viewing matrix

– Conversely, M-1=MT turns (u, v, n) into (x, y, z). MT has rows (u,

v, n) normalization matrix

• Reduces the problem of finding the correct rotation matrix into

finding the correct perpendicular unit vectors u, v, and n

• Using Position, Look vector, and Up vector, compute viewing

rotation matrix M with columns u, v, and n, then use its inverse, the

transpose MT, with row vectors u, v, n to get the normalization

rotation matrix

Rotation Matrix

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Canonical View
• Given a parallel view specification and vertices of a

bunch of objects, we use the normalizing transformation,
i.e., the inverse viewing transformation, to normalize
the view volume to a cuboid at the origin, then clip, and
then project those vertices by ignoring their z values

• How about Perspective Projection???

• Normalize the perspective view specification to a unit
frustum at the origin looking down the –z axis; then
transform the perspective view volume into a parallel
(cuboid) view volume, simplifying both clipping and
projection

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Canonical View Volume

• Note: it’s a cuboid, not a cube

(transformation arithmetic and
clipping are easier)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Steps for Normalizing View
Volume (Parallel Projection)
• We need to decompose this process into multiple steps

(each step is a simple matrix)

• Each step defined by a matrix transformation

• The product of these matrices defines the entire
transformation in one large, composite matrix. The
steps comprise:

– Move the eye/camera to the origin

– Transform the view so that (u, v, n) is aligned with (x, y, z)

– Adjust the scales so that the view volume fits between –1 and
1 in x and y, the far clip plane lies at z = –1, the near plane at z
= 0

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Steps for Normalizing View
Volume (Perspective Projection)

• The earlier processes are the SAME AS that of

the parallel projection, but we need to add one

more step:

– distort pyramid to cuboid to achieve perspective

distortion to align the near clip plane with z = 0

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perspective Projection (Move the
Eye to the Origin)
• We want to have a matrix to

transform (Posx, Posy, Posz) to
(0, 0, 0)

• Solution: it’s just the inverse of
the viewing translation
transformation:

(tx, ty, tz) = (–Posx, –Posy, –
Posz)

• We will take the matrix as
follows, and we will multiply
all vertices explicitly (and the
camera implicitly) to preserve
the relationship between camera
and scene, i.e., for all vertices p

• This will move Position (the
“eye point”) to (0, 0, 0)

1000

100

010

001

z

y

x

trans
Pos

Pos

Pos

T

pTp trans'

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Axis Alignment

• Align orientation with respects to (x,y,z) world

coordinate system

• Normalize proportions of the view volume

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Orientation Alignment
Rotate the view volume and align with the world

coordinate system
• We notice that the view transformation matrix M with columns u,

v, and n would rotate the x, y, z axes into the u, v, and n axes

• We now apply the inverse (transpose) of that rotation, MT, to the
scene. That is, a matrix with rows u, v, and n will rotate the axes
u, v, and n into the axes x, y, and z

– Define Mrot to be this rotation matrix transpose

• Now every vertex in the scene (and the camera implicitly) is
multiplied by the composite matrix

We have translated and rotated, so that the Position is at the
origin, and the (u, v, n) axes and the (x, y, z) axes are aligned

transrotTM

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Axis Alignment

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scale the View Volume
• We have moved things more or less to the right position, but the

size of the view volume needs to be normalized…
– last affine transformation: scaling

• Need to be normalized to a square cross-section 2-by-2 units
– why is that preferable to the unit square?

• Adjust so that the corners of far clipping plane eventually lie at
(+1, +1, –1)

• One mathematical operation works for both parallel and
perspective view volumes

• Imagine vectors emanating from origin passing through corners
of far clipping plane. For perspective view volume, these are
edges of volume. For parallel view volume, these lie inside view
volume

• First step: force vectors into 45-degree angles with x and y axes

• Solution: We shall do this by scaling in x and y

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

View Volume Scaling

y

x

z

y

x

z

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scale Boundary Planes

• Scale independently in x and y:

• Want to scale in x to make angle 90
degrees

• Need to scale in x by

Similarly in y

 2
cot

2
tan

1 w

w

2

Wtan

1 0

2
,,tan w

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scaling Matrix
• The scale matrix we need looks like this:

• So our current composite transformation looks

like this:

1000

0100

00
2

cot0

000
2

cot

h

w

xyS

transrotxy TMS

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scaling Along z-axis
• Relative proportions of view volume planes are now correct, but

the back clipping plane is probably lying at some z –1, and we

want all points inside view volume to have 0 ≤ z ≤ -1

• Need to shrink the back plane to be at z = –1

• The z distance from the eye to that point has not changed: it’s still

far (distance to the far clipping plane)

• If we scale in z only, proportions of volume will change; instead

we scale uniformly:

1000

0
1

00

00
1

0

000
1

far

far

far

S far

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

• Far plane at z = –1.

• Near clip plane now at z = –k (note k > 0)

z

y

x

(-k,k,-k)

(-1,1,-1)

z = -1

At Present, We Are Here

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Now We Have
• Our near-final composite normalizing transformation for canonical

perspective view volume:

– Ttrans takes the camera’s Position and moves the camera to the

world origin

– Mrot takes the Look and Up vectors and orients the camera to

look down the –z axis

– Sxy takes and scales the clipping planes so that the

corners are at (±1, ±1)

– Sfar takes the far clipping plane and scales it to lie on the z=-1

plane

hw ,

transrotxyfar TMSS

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perspective Transformation
• We have put the perspective view volume into the RIGHT canonical position,

orientation and size

• Let’s look at a particular point on the original near clipping plane lying on the

Look vector:

It has been changed to a new location

on the negative z-axis, say

 kp 00

pTMSSp transrotxyfar

LooknearPositionp

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perspective Transformation
• What is the value of k? Trace through the steps.

p first gets moved to just

• This point is then rotated to (near)(–e3)

• The xy scaling has no effect, and the far

scaling changes this to , so

– but far is –1, so -near/far is simply near

3e
far

near

far

near
k

Looknear

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perspective Transformation
• Transform points in standard perspective view volume between –k and –1 to standard

parallel view volume

• “z-buffer,” used for visible surface calculation, needs z values to be [0 1], not [–1 0].

Perspective transformation must also transform scene to positive range 0 ≤ z ≤ 1

• The matrix that does this:

• (Remember that 0< k < 1 …)

• Why not originally align camera to +z axis?

– Choice is perceptual, we think of looking through a display device into the scene that lies behind

window

0100
11

1
00

0010

0001

k

k

k

D

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Finally, We Have
• Final transformation is here:

• Note that, once the viewing parameters (Position, Up vector, Look

vector, Height angle, Aspect ratio, Near, and Far) are known, the

matrices

• Can all be computed and multiplied together to get a single 4x4

matrix that is applied to all points of all objects to get them from

“world space” to the standard parallel view volume!!!

• What are the rationales for homogeneous coordinates???

pTMSSDp transrotxyfarpersp

transrotxyfarpersp TMSSD ,,,,

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Clipping (A Quick Review)
• Remaining final steps are clipping and projecting onto the image plane to produce

graphical pictures

• Need to clip scene against sides of view volume

• However, we’ve normalized our view volume into an axis-aligned cuboid that extends

from –1 to 1 in x and y and from 0 to 1 in z

• Note that: This is the flipped (in z) version of the canonical view volume

• Clipping is easy! Test x and y components of vertices against +/-1. Test z components

against 0 and 1

Back clip plane
transforms to the z=1 plane

Front clip plane
transforms to here(1, -1, 1)

(-1, -1, 1)

(-1, 1, 0)

(1, 1, 1)

(-1, -1, 0)

(1, 1, 0)

(1, -1, 0)

(-1, 1, 1)

x

y

z

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Clipping in 3D (Generalizations)

• Cohen-Sutherland regions

• Clip before perspective

division

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Clipping (A Quick Review)
• Vertices falling within these values are saved, and vertices falling outside get clipped

away; edges get clipped by knowing x, y, or z value at an intersection plane. Substitute x,

y, or z = 1 in the corresponding parametric line equations to solve for t

• In 2D:

 101 xtxtx

 101 ytyty

 101 ztztz

10 t

(x0, y0, z0)

(x1, y1, z1)

t=0

t=1

(1, 1)

(-1, -1)

x

y

(x0, y0)

(x1, y1)

x=1

01

0

010

100

10

1

1

1

11

xx

x
t

xxtx

txtxx

txxt

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Projecting to the Screen (Device
Coordinates)

• Can make an image by taking each point and “ignoring z” to project it onto the xy-

plane

• A point (x,y,z) where

turns into the point (x’, y’) in screen space (assuming viewport is the entire screen)

with

by

- ignoring z

• If viewport is inside a Window Manager’s window, then we need to scale down

and translate to produce “window coordinates”

• Note: because it’s a parallel projection we could have projected onto the front

plane, the back plane, or any intermediate plane … the final pixmap would have

been the same

1024,0 yx

)1(512

)1(512

yy

xx

10 ,1,1 zyx

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

From World to Screen
• The entire problem can be reduced to a composite matrix multiplication of vertices,

clipping, and a final matrix multiplication to produce screen coordinates.

• Final composite transformation matrix (CTM) is composite of all modeling (instance)

transformation matrices (CMTM) accumulated during scene graph traversal from root to

leaf, composited with the final composite normalizing transformation N applied to the

root/world coordinate system:

Recap:

– 1) You will be computing the normalizing transformation matrix N in Camtrans

– 2) In Sceneview, you will extend your Camera with the ability to traverse and compute composite

modeling transformations (CMTMs) to produce a single CTM for each primitive in your scene

• Aren't homogeneous coordinates wonderfully powerful?

CMTMNCTM

transrotxyfarpersp TMSSDN 1)

2)

PCTMP 3)

)1(512 PPscreen4)

for every vertex P defined in its own
coordinate system

for all clipped P’

