3D Graphics Concepts

3D coordinate system
$-x, y$, and z

- depth information

Geometric modeling of various objects

- point, line, polygon
- curve, surface, solid

Geometric transformation
3D Viewing

- parallel projection
- perspective projection

Display methods of 3D objects

- wireframe
- shaded objects
- visible object identification

- realistic rendering techniques - 3D stereoscopic viewing

3D Transformation

3D translation

$$
\mathbf{T}(\delta x, \delta y, \delta z)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
\delta x \\
\delta y \\
\delta z
\end{array}\right]
$$

3D scaling

$$
\mathbf{S}(a, b, c)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a x \\
b y \\
c z
\end{array}\right]
$$

- 3D rotation

$$
\mathbf{R}(z, \theta)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
x \cos (\theta)-y \sin (\theta) \\
x \sin (\theta)+y \cos (\theta) \\
z
\end{array}\right]
$$

Note that, a positive rotation about z-axis is defined as one rotation from positive x-axis to positive y-axis
the other two axes
About x-axis:
from positive y-axis to positive z-axis
About y-axis:
from positive z-axis to positive x-axis

One example:
One scaling operation $\mathrm{S}(a, b, c)$ followed by a translation $\mathbf{T}(d, e, f)$
Let's write the matrix formulation

$$
\left[\begin{array}{l}
x_{\text {new }} \\
y_{\text {new }} \\
z_{\text {new }}
\end{array}\right]=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]
$$

Our goal is to combine them into an integrated representation

We use homogeneous representation

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \Longleftrightarrow\left[\begin{array}{c}
x h \\
y h \\
z h \\
h
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Scaling operation in matrix form

$$
\left[\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Translation operation in matrix form

$$
\left[\begin{array}{llll}
1 & 0 & 0 & d \\
0 & 1 & 0 & e \\
0 & 0 & 1 & f \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The previous example (in matrix form)

$$
\left[\begin{array}{llll}
1 & 0 & 0 & d \\
0 & 1 & 0 & e \\
0 & 0 & 1 & f \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Rotation

W.r.t. z-axis

$$
\mathbf{R}(z, \theta)=\left[\begin{array}{cccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 \\
\sin (\theta) & \cos (\theta) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

W.r.t. x-axis

$$
\mathbf{R}(x, \theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) & 0 \\
0 & \sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

W.r.t. y-axis
$\mathbf{R}(y, \theta)=\left[\begin{array}{cccc}\cos (\theta) & 0 & \sin (\theta) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin (\theta) & 0 & \cos (\theta) & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Complex Operations

Shearing operation
Composition of transformations
Inversion of transformations
A series of transformations can be accumulated into a single transformation matrix

One example
Rotate along an axis (defined by $x=2$ and $y=3$) by -90°

The operation consists of three steps
(1) $\mathrm{A}=\mathrm{T}(-2,-3,0)$
(2) $\mathrm{B}=\mathbf{R}\left(z,-90^{\circ}\right)$
(3) $\mathrm{C}=\mathrm{T}(2,3,0)$

The new object after this transformation is

$$
O b j_{\text {new }}=\mathbf{C} \star \mathbf{B} \star \mathbf{A} \star O b j_{o l d}
$$

So, general form

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
1
\end{array}\right]=\left[\begin{array}{cccc}
X & X & X & t_{x} \\
X & X & X & t_{y} \\
X & X & X & t_{z} \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
$$

Composite transformations are non-commutative

Transformations can be inverted

