Free-Form Deformation and Other Deformation Techniques

ST NY BR K

Department of Computer Science

Deformation

Deformation

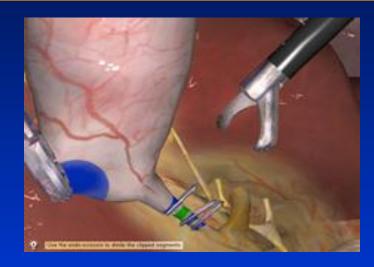
Basic Definition

- Deformation: A transformation/mapping of the positions of every particle in the original object to those in the deformed body
- Each particle represented by a point p is moved by $\phi(\cdot)$:

 $p \rightarrow \phi(t,p)$

where p represents the original position and $\phi(t, p)$ represents the position at time t

Deformation Applications



Department of Computer Science Center for Visual Computing

ST NY BR K STATE UNIVERSITY OF NEW YORK

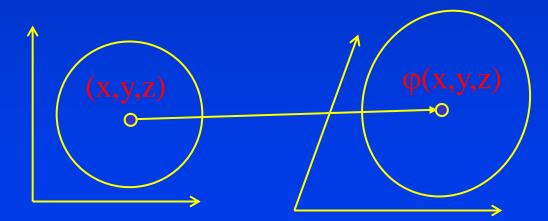
Deforming Objects

- Changing an object's shape
 - Usually refers to non-simulated algorithms
 - Usually relies on user guidance
- Easiest when the number of faces and vertices of a shape is preserved, and the shape topology is not changed either
 - Define the movements of vertices

Deformation

Modify Geometry

Space Transformation



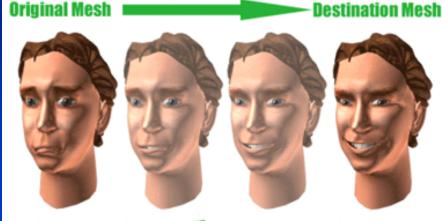
Department of Computer Science

Defining Vertex Functions

- If vertex *i* is displaced by (x, y, z) units
 - Displace each neighbor, j, of i by
 - (x, y, z) * f(i, j)
- f(i,j) is typically a function of distance
 - Euclidean distance
 - Number of edges from i to j
 - Distance along surface (i.e., geodesics)

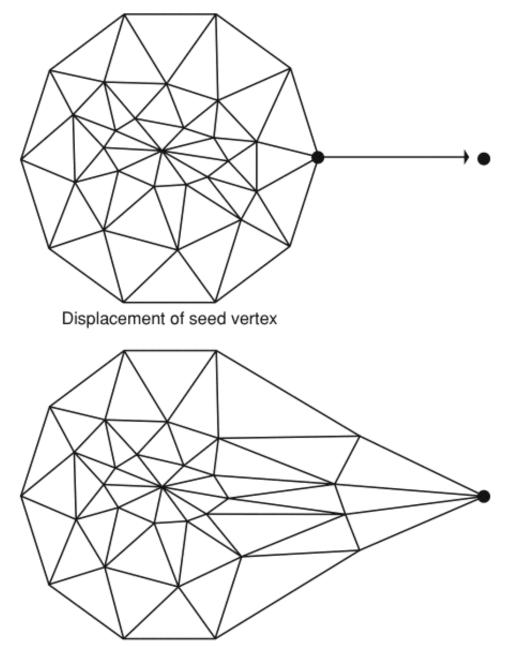
Moving Vertices

Time consuming to define the trajectory through space of all vertices



 Instead, control a few seed vertices which in turn affect nearby vertices

Warping



Attenuated displacement propagated to adjacent vertices

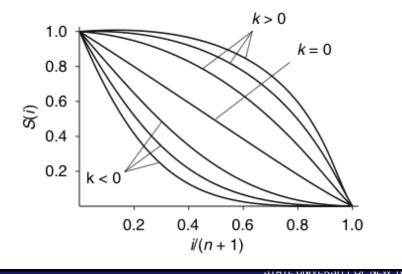
Vertex Displacement Function

- *i* is the (shortest) number of edges between *i* and *j*
- *n* is the max number of edges affected
- (k=0) = linear; (k<0) = rigid;
 (k>0) = elastic

$$f(i) = 1.0 - \left(\frac{i}{n+1}\right)^{k+1}; k \ge 0$$
$$f(i) = \left(1.0 - \left(\frac{i}{n+1}\right)\right)^{-k+1}; k < 0$$

Warping effects by using power functions

For attenuating warping effects

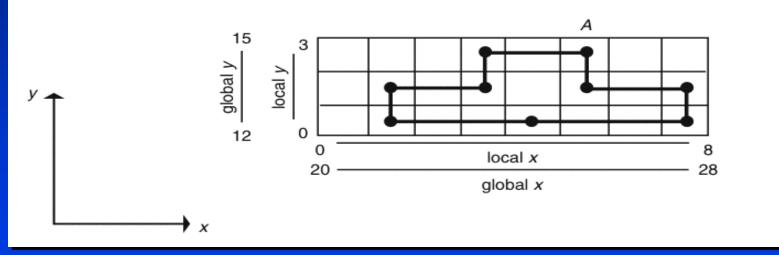


2-D Grid Deformation

- 1974 film "Hunger"
- Draw object on grid
- Deform grid points
- Use bilinear interpolation to re-compute vertex positions on deformed grid

Department of Computer Science

2D Grid-based Deformation

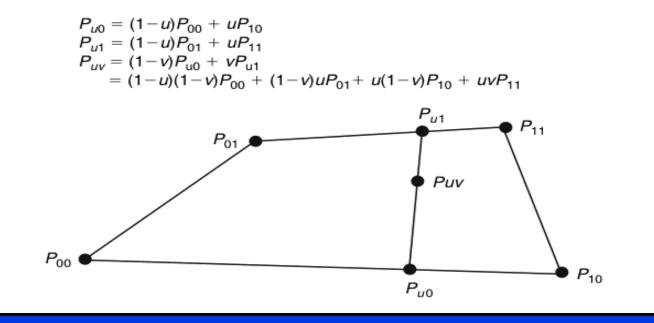


Assumption Easier to deform grid points than object vertices

ST NY BR K

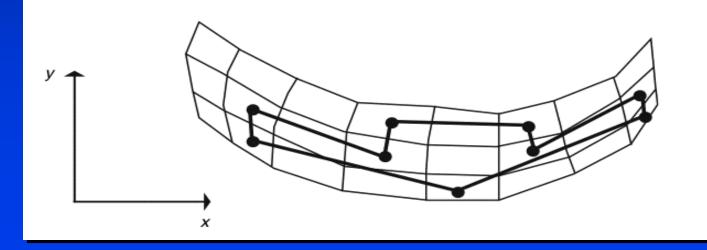
Department of Computer Science

2D Grid-based Deformation

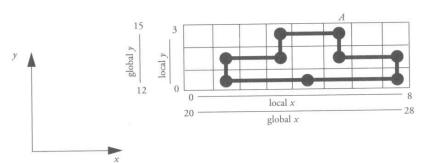


Inverse bilinear mapping (determine u,v from points)

2D Grid-based Deformation



Department of Computer Science



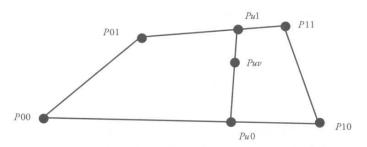


Figure 3.58 Bilinear interpolation

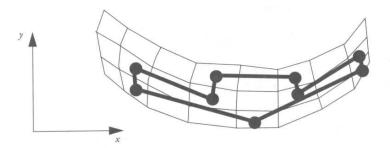
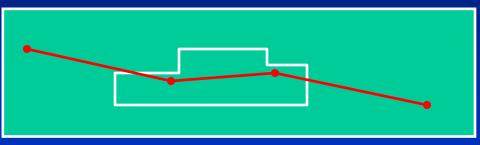


Figure 3.59 2D grid deformation

Polyline Deformation (Skeleton)

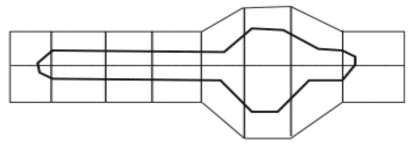
• Draw a piecewise linear line (polyline) passing through the geometry



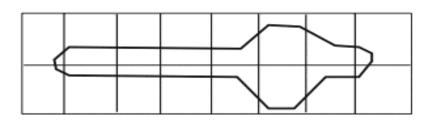
- For each vertex compute
 - Closest polyline segment
 - Distance to segment
 - Relative distance along this segment
- Deform polyline and re-compute vertex positions
- The earlier version of skeleton-based deformation

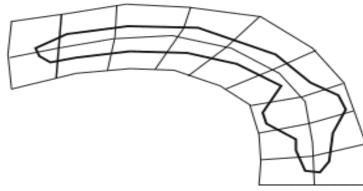
Bulging & Bending





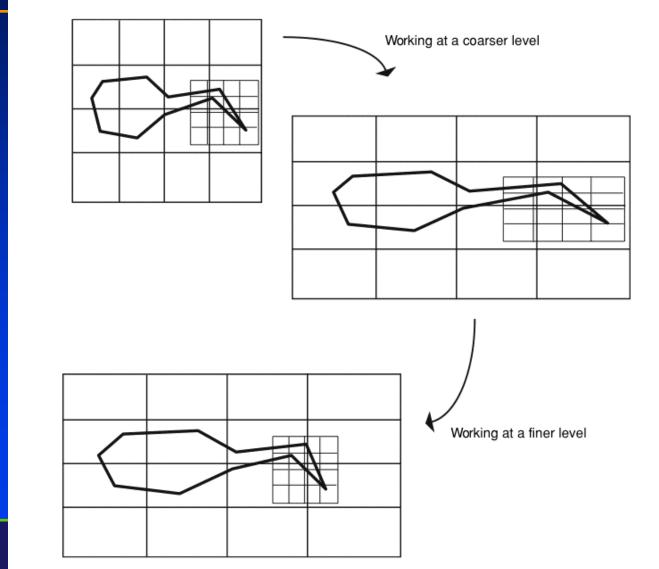
Bulging



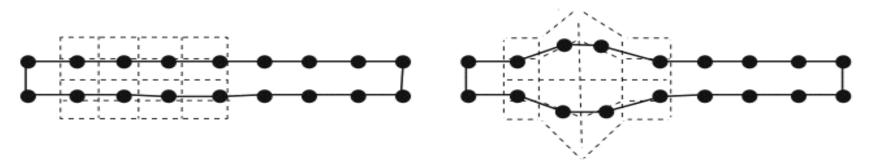


Bending

Hierarchical



FFDs – as tools to design shapes



Undeformed object

Deformed object

Department of Computer Science

Object Modification/Deformation

- Modify the vertices directly

 Vertex warping
- OR
- Modify the space the vertices lie in
 - 2D grid-based deformation
 - Skeletal bending
 - Global transformations
 - Free-form deformations

Global Deformations

- Alan Barr, SIGGRAPH '84
- A 3x3 transformation matrix affects all vertices
 P'=M(P).dot. P
- M(P) can taper, twist, bend....

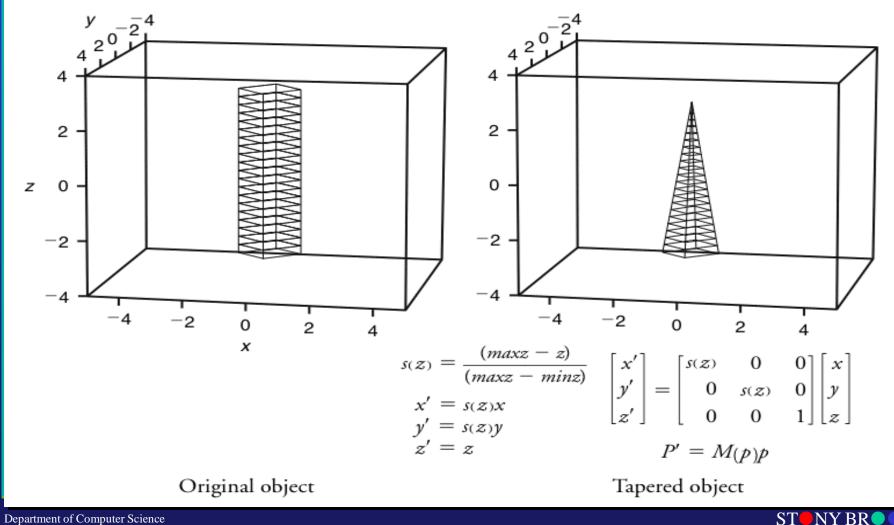
$$p' = Mp$$

Commonly-used linear transformation of space

$$p' = M(p)p$$

In Global Transformations, Transform is a function of where you are in space

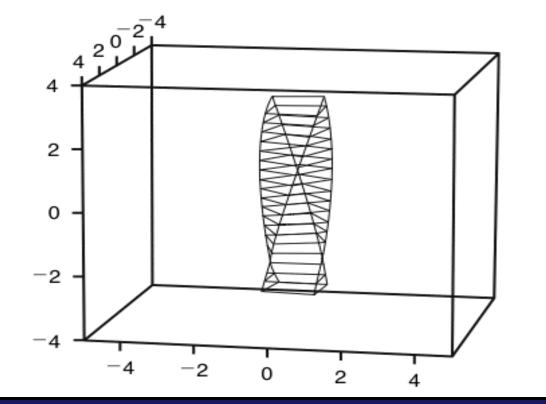
ST NY BR K



Κ

STATE UNIVERSITY OF NEW YORK

Separtment of Computer Science



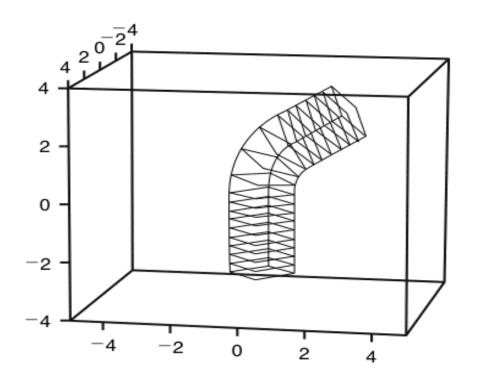
k = twist factor $x' = x\cos(kz) - y\sin(kz)$ $y' = x\sin(kz) + y\cos(kz)$ z' = z

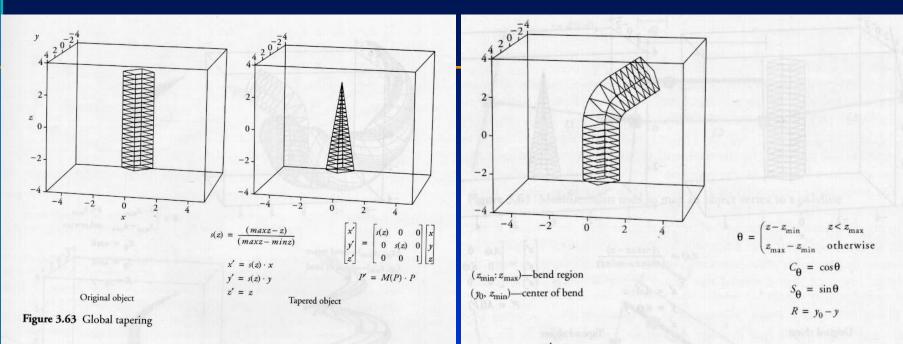
Department of Computer Science

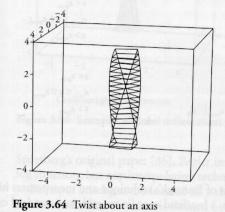
z above z_{min}: rotate

z between $z_{min} z_{max}$: Rotate from 0 to

z below z_{min}: no rotation





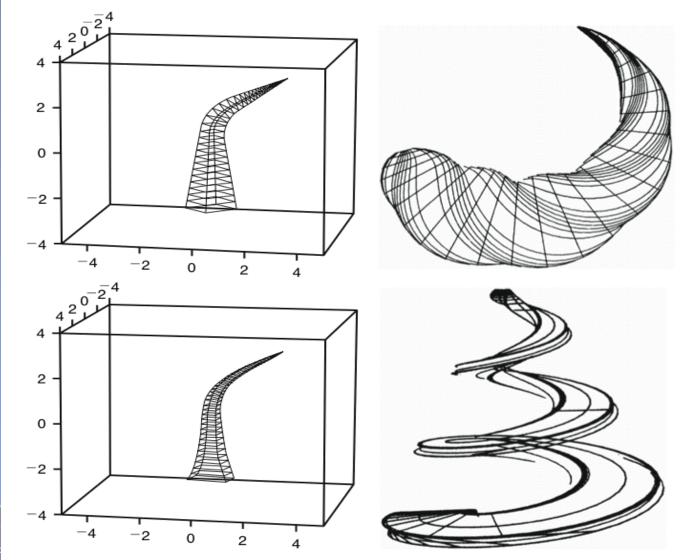


k = twist factor $x' = x \cdot \cos(k \cdot z) - y \cdot \sin(k \cdot z)$ $y' = x \cdot \sin(k \cdot z) + y \cdot \cos(k \cdot z)$ z' = z x' = x

$$y' = \begin{pmatrix} y & z < z_{\min} \\ y_0 - (R \cdot C_{\theta}) & z_{\min} \le z \le z_{\max} \\ y_0 - (R \cdot C_{\theta}) + (z - z_{\max}) \cdot S_{\theta} & z > z_{\max} \end{pmatrix}$$
$$z' = \begin{pmatrix} z & z < z_{\min} \\ z_{\min} + (R \cdot S_{\theta}) & z_{\min} \le z \le z_{\max} \\ z_{\min} + (R \cdot S_{\theta}) + (z - z_{\max}) \cdot C_{\theta} & z > z_{\max} \end{pmatrix}$$

Figure 3.65 Global bend operation

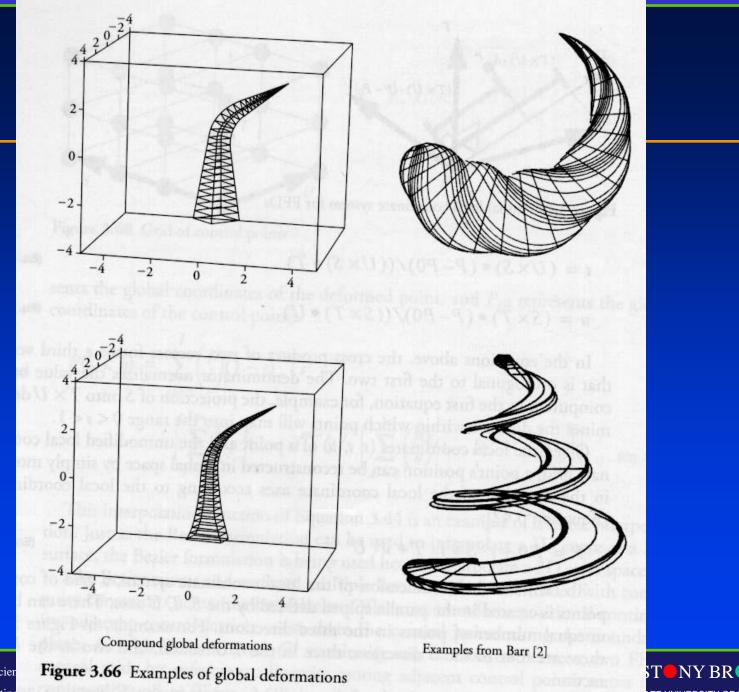
Compound Global Transformations



Y BR

SITY OF NEW YORK

Department of Compu Center for Visual Co

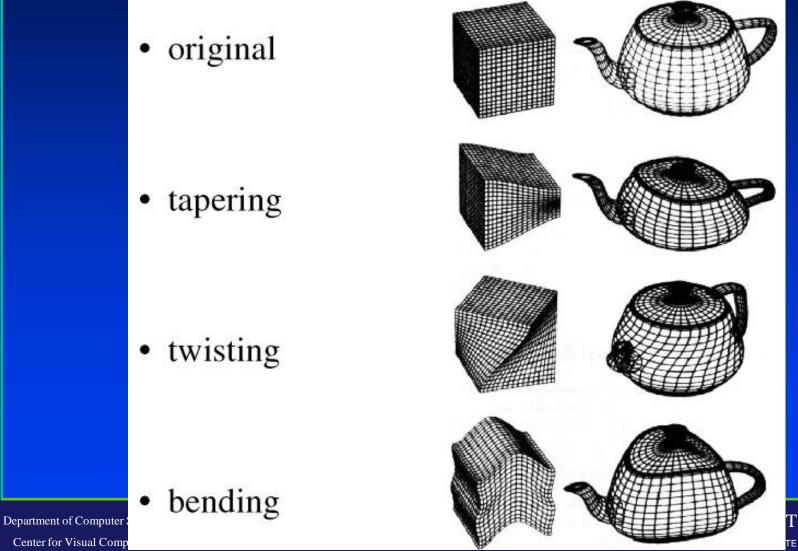


Department of Computer Scier Center for Visual Computing

ATE UNIVERSITY OF NEW YORK

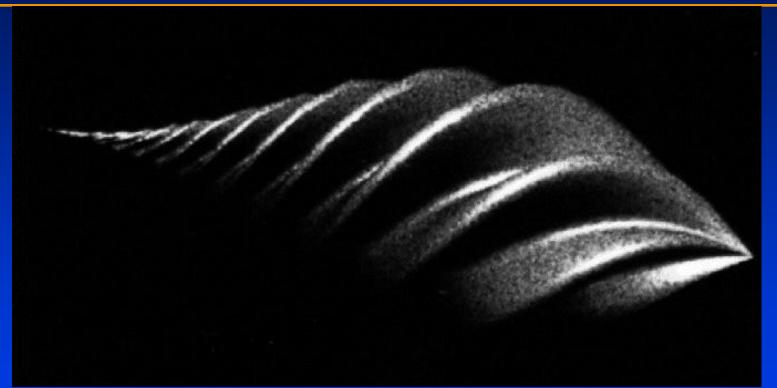
K

Nonlinear Global Deformation



T NY BR K TE UNIVERSITY OF NEW YORK

Nonlinear Global Deformation



Good for modeling [Barr 87]

Animation is harder

Space Warping

- Deformation the object by deforming the space it is residing in
- Two main techniques:
- Nonlinear deformation
- Free Form Deformation (FFD)

Independent of object representation

Nonlinear Global Deformation

- Objects are defined in a local object space
- Deform this space by using a combination of:
- Non-uniform scaling
- Tapering
- Twisting
- Bending

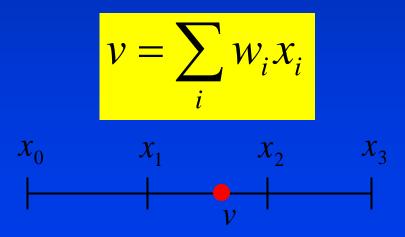
Department of Computer Science

What is "Free-Form"?

- Parametric surfaces are free-form surfaces.
- The flexibility in this technique of deformation allows us deform the model in a free-form manner.
 - ✓ Any surface patches
 - ✓ Global or local deformation
 - ✓ Continuity in local deformation
 - ✓ Volume preservation

Free-Form Deformations

- Embed object in uniform grid
- Represent each point in space as a weighted combination of grid vertices



Department of Computer Science

Free-Form Deformations

- Embed object in uniform grid
- Represent each point in space as a weighted combination of grid vertices
- Assume x_i are equally spaced and use Bernstein basis functions

$$v = \sum_{i} w_{i} x_{i} = \sum_{i} \binom{d}{i} (1-t)^{d-i} t^{i} x_{i}$$

$$x_{0} \qquad x_{1} \qquad x_{2} \qquad x_{3}$$

$$w$$

Department of Computer Science

Free-Form Deformations

- Embed object in uniform grid
- Represent each point in space as a weighted combination of grid vertices
- Assume x_i are equally spaced and use Bernstein basis functions

STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Free-Form Deformations

- Embed object in uniform grid
- Represent each point in space as a weighted combination of grid vertices
- Assume x_i are equally spaced and use Bernstein basis functions

$$w_{i} = \begin{pmatrix} d \\ i \end{pmatrix} (1 - v)^{d - i} v^{i}$$

$$x_{0} \qquad x_{1} \qquad x_{2} \qquad x_{3}$$

$$w_{i} = \begin{pmatrix} d \\ i \end{pmatrix} (1 - v)^{d - i} v^{i}$$

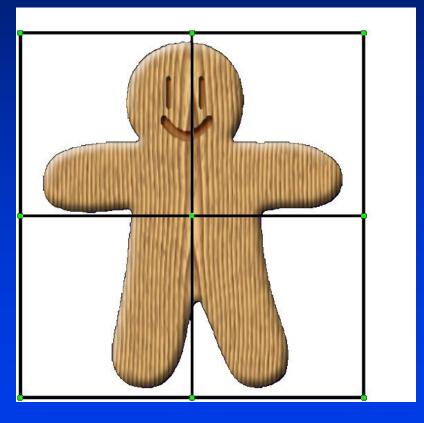
$$x_{0} \qquad x_{1} \qquad x_{2} \qquad x_{3}$$

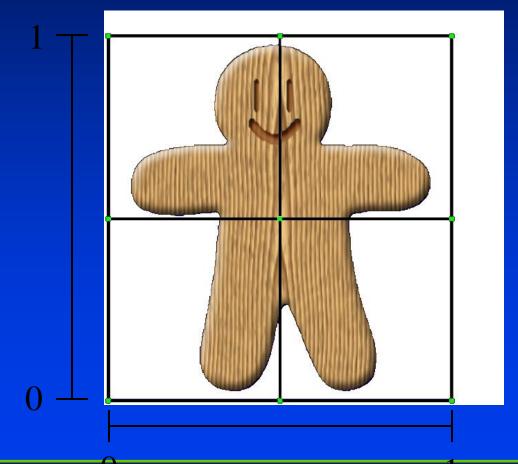
$$w_{i} = \begin{pmatrix} d \\ i \end{pmatrix} (1 - v)^{d - i} v^{i}$$

$$w_{i} = \begin{pmatrix} d \\ i \end{pmatrix} (1 - v)^{d - i} v^{i}$$

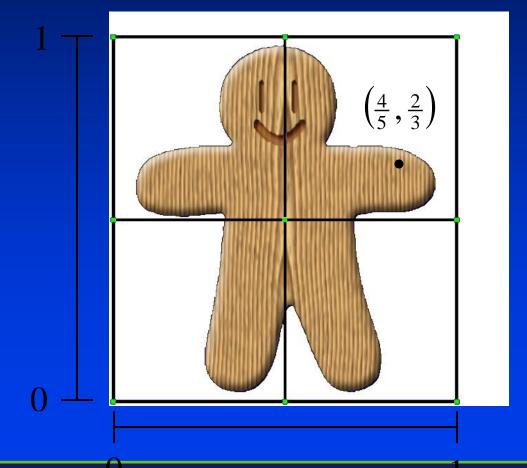
ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

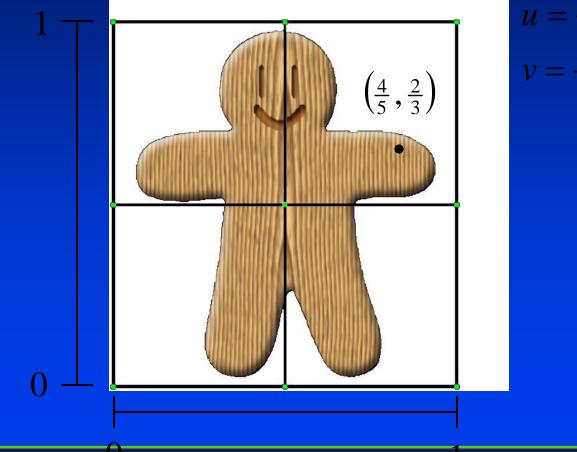




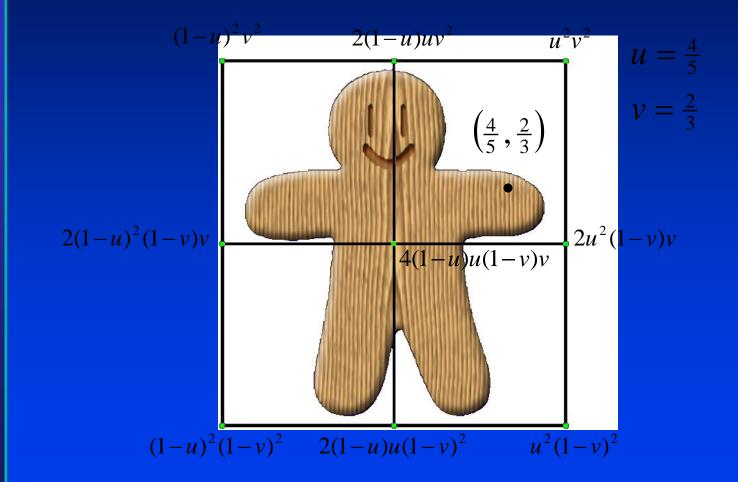
Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK



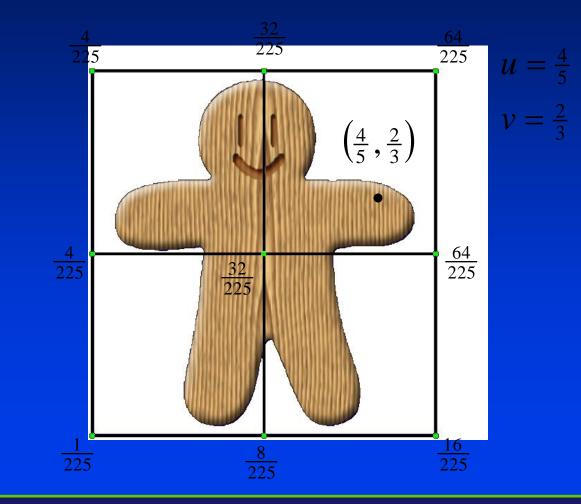
Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK



 $u = \frac{4}{5}$ $v = \frac{2}{5}$



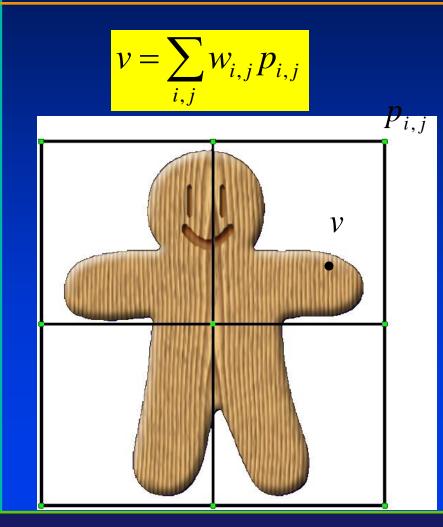
Department of Computer Science



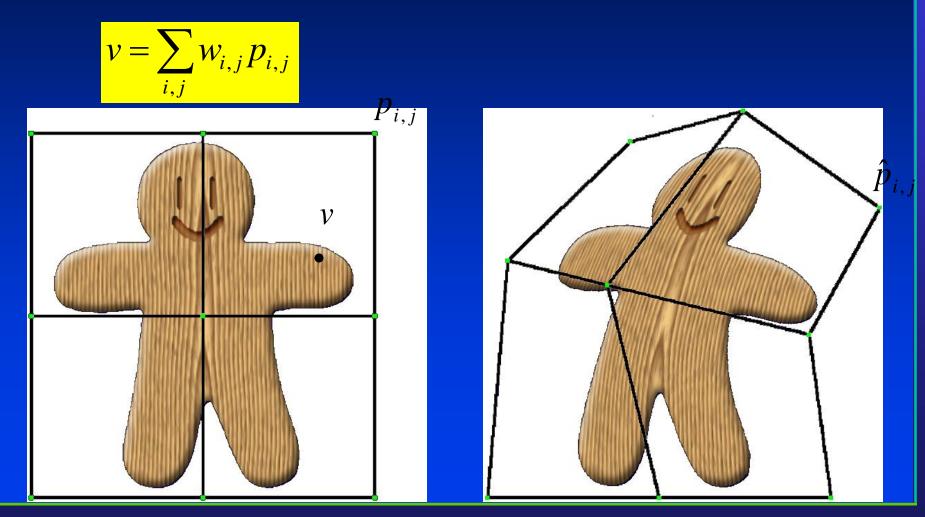
ST NY BR K

Department of Computer Science

Applying the Deformation

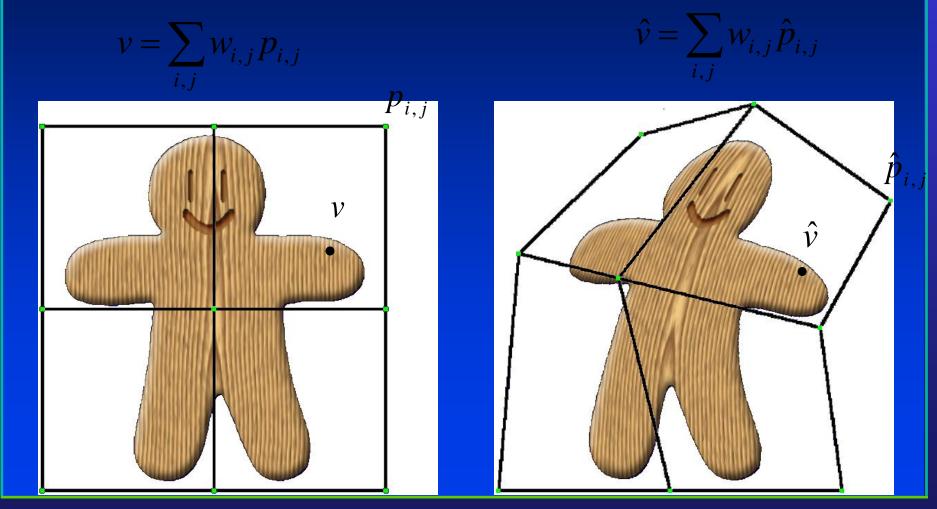


Applying the Deformation



Department of Computer Science Center for Visual Computing ST NY BR K

Applying the Deformation



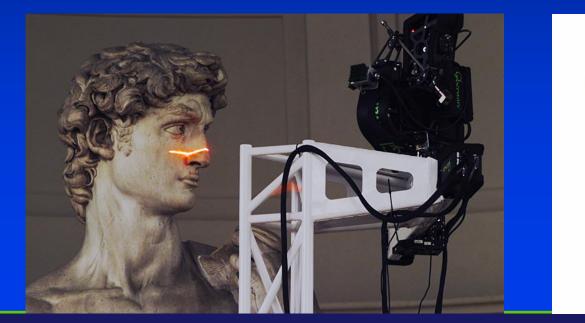
FFD Contributions

- Smooth deformations of arbitrary shapes
- Local control of deformation
- Performing deformation is fast

- Widely used
 - Game/Movie industry
 - Part of nearly every 3D modeling package

Challenges in Deformation

- Large meshes millions of polygons
- Need efficient techniques for computing and specifying the deformation

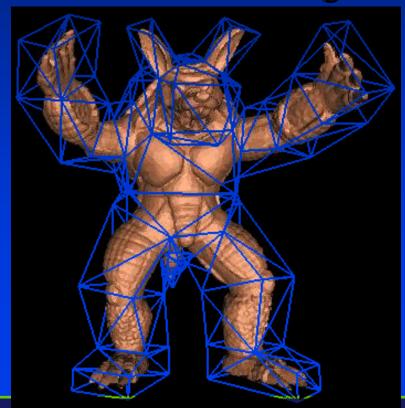


ST NY BR K

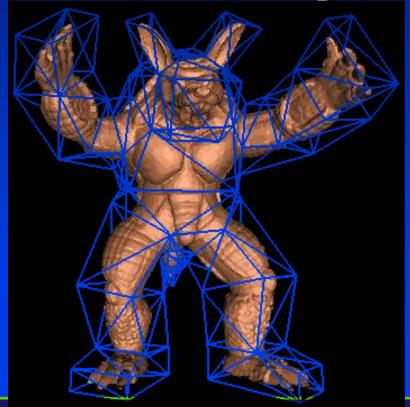
Department of Computer Science Center for Visual Computing

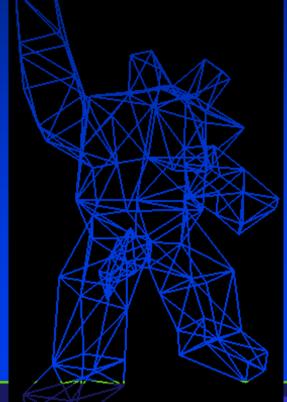
• Low-resolution auxiliary shape controls deformation of high-resolution model

• Low-resolution auxiliary shape controls deformation of high-resolution model

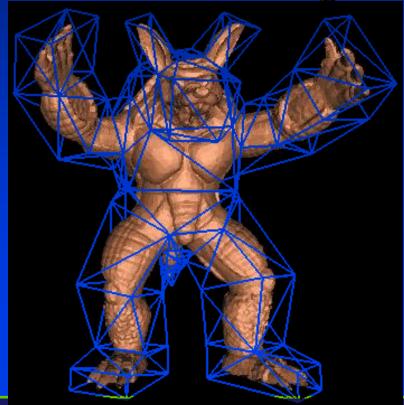


• Low-resolution auxiliary shape controls deformation of high-resolution model

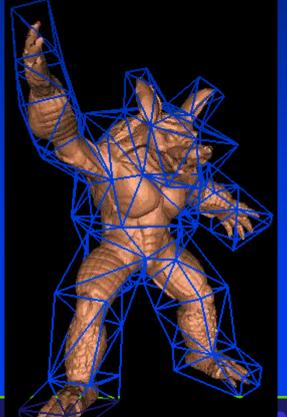




• Low-resolution auxiliary shape controls deformation of high-resolution model



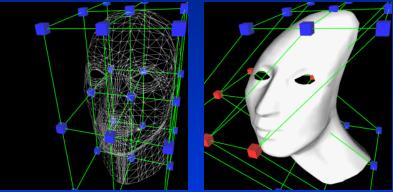
Department of Computer Science Center for Visual Computing



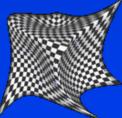
K

Free-Form Deformation (FFD)

- Sederberg, SIGGRAPH '86
- Place geometric object inside local coordinate space
- Build local coordinate representation



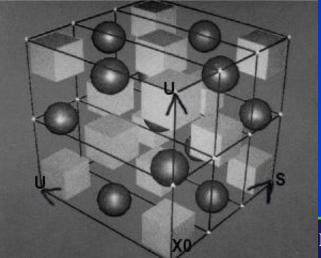
 Deform local coordinate space and thus deform geometry



Free-Form Deformation (FFD)

- Basic idea: deform space by deforming a lattice around an object
- The deformation is defined by moving the control points of the lattice
- Imagine it as if the object were enclosed by rubber
- The key is how to define

 Local coordinate system
 The mapping



Free-Form Deformation

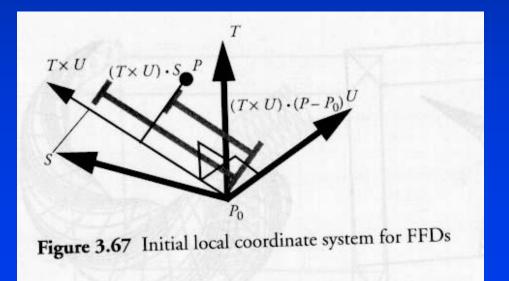
- Similar to 2-D grid deformation
- Define 3-D lattice surrounding geometry
- Move grid points of lattice and deform geometry accordingly
- Local coordinate system is initially defined by three (perhaps non orthogonal) vectors

Department of Computer Science

Trilinear Interpolation

- Let S, T, and U (with origin P₀ define local coordinate axes of bounding box that encloses geometry
- A vertex, P's, coordinates are:

$$s = (T \times U) \cdot \frac{P - P_0}{(T \times U) \cdot S}$$
$$t = (U \times S) \cdot \frac{P - P_0}{(U \times S) \cdot T}$$
$$u = (S \times T) \cdot \frac{P - P_0}{(S \times T) \cdot U}$$

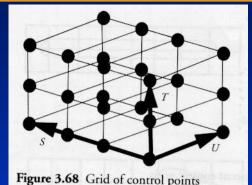


ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Volumetric Control Points

- Each of S, T, and U axes are subdivided by control points
- A lattice of control points is constructed



 Bezier interpolation of move control points define new vertex positions

$$P = P_0 + s \cdot S + t \cdot T + u \cdot U$$

$$P_{ijk} = P_0 + \frac{i}{l} \cdot S + \frac{j}{m} \cdot T + \frac{k}{n} \cdot U$$

$$P(s,t,u) = \sum_{i=0}^{l} \binom{l}{i} (1-s)^{l-i} s^i \cdot \left(\sum_{j=0}^{m} \binom{m}{j} (1-t)^{m-j} t^j \cdot \left(\sum_{k=0}^{n} \binom{n}{k} (1-u)^{n-k} u^k P_{ijk}\right)\right)$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

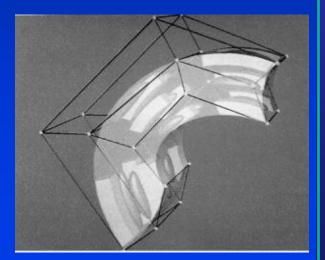
Free-Form Deformation (FFD)

The lattice defines a Bezier volume

$$\mathbf{Q}(u, v, w) = \sum_{ijk} \mathbf{p}_{ijk} B(u) B(v) B(w)$$

Compute lattice coordinates (u, v, w)

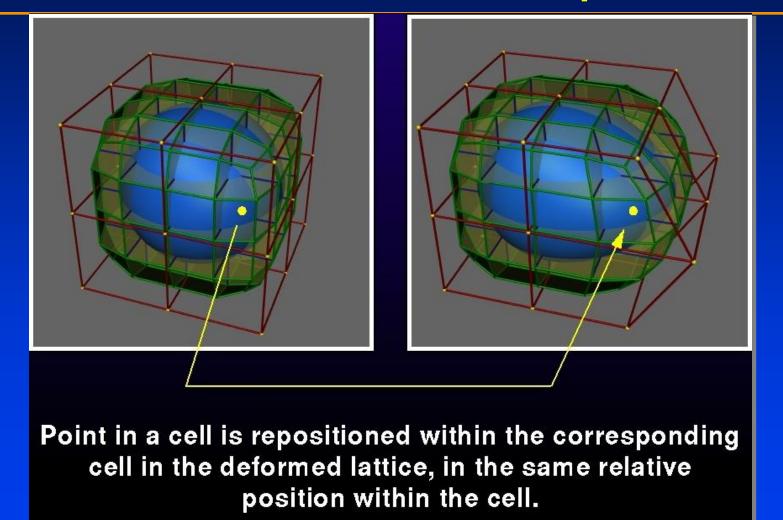
Move the control points p_{ijk} Compute the deformed points Q(u, v, w)



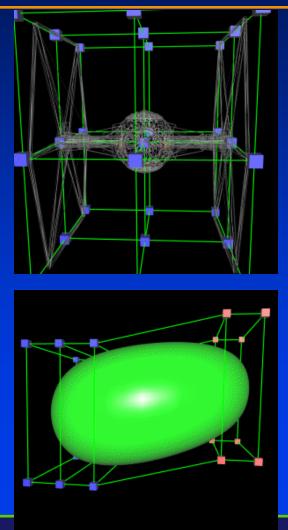
ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

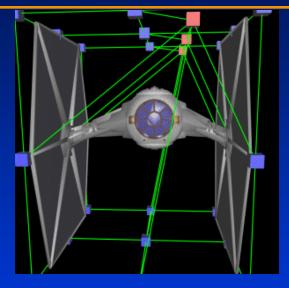
The FFD Process - Example

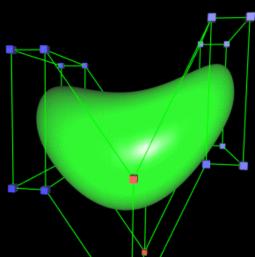


Examples



Department of Computer Scier Center for Visual Computing





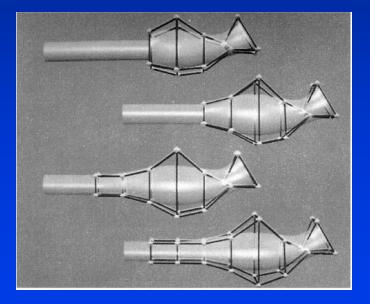
NY BR K STATE UNIVERSITY OF NEW YORK

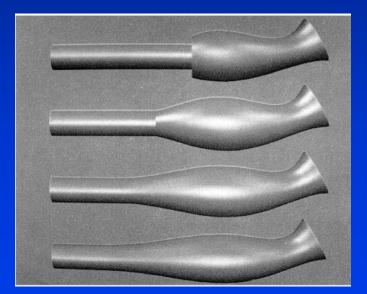
Smoothness of Deformation

Constraining Bezier control points controls smoothness

Smooth the deformed surface

Can be done by properly set the lattice position and (l, m, n) dimension



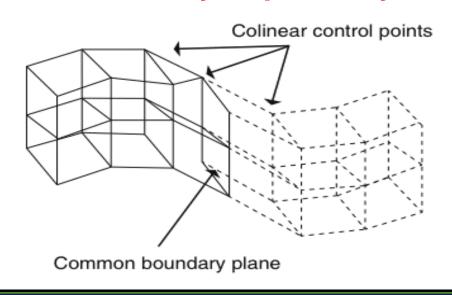


Free-Form Deformations

• Continuities

As in Bezier curve interpolation

Continuity controlled by coplanarity of control points

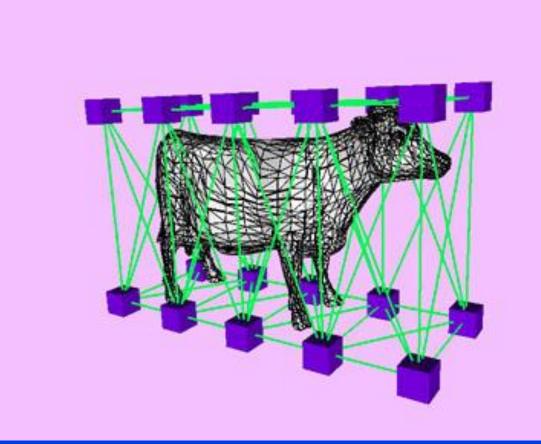


Volume Preservation

• Must ensure that the jacobian of the deformation is 1 everywhere $(\hat{x}, \hat{y}, \hat{z}) = (F(x, y, z), G(x, y, z), H(x, y, z))$

$\frac{\partial F}{\partial x}$	$\frac{\partial F}{\partial y}$	$\frac{\partial F}{\partial z}$	
$\frac{\partial G}{\partial x}$	$\frac{\partial G}{\partial y}$	<u>∂G</u> ∂z,	=1
$\frac{\partial H}{\partial x}$	<u>дН</u> ду	<u>ƏH</u> Əz	

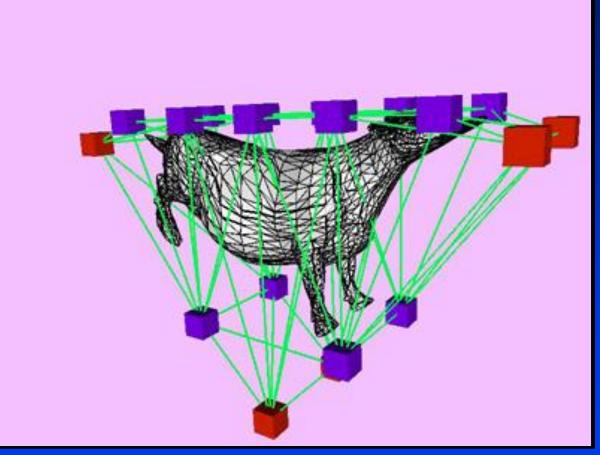
FFD: Examples



From "Fast Volume-Preserving Free Form Deformation Using Multi-Level Optimization" appeared in ACM Solid Modelling '99

Department of Computer Science

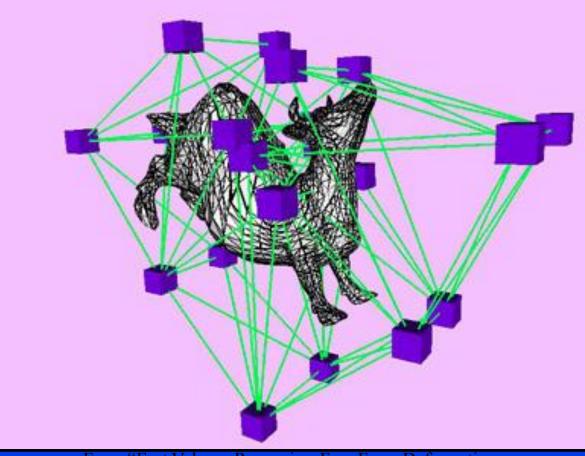
FFD: Examples



From "Fast Volume-Preserving Free Form Deformation Using Multi-Level Optimization" appeared in ACM Solid Modelling '99

Department of Computer Science

FFD: Examples

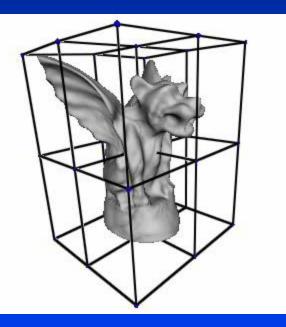


From "Fast Volume-Preserving Free Form Deformation Using Multi-Level Optimization" appeared in ACM Solid Modelling '99

Department of Computer Science

Advantages

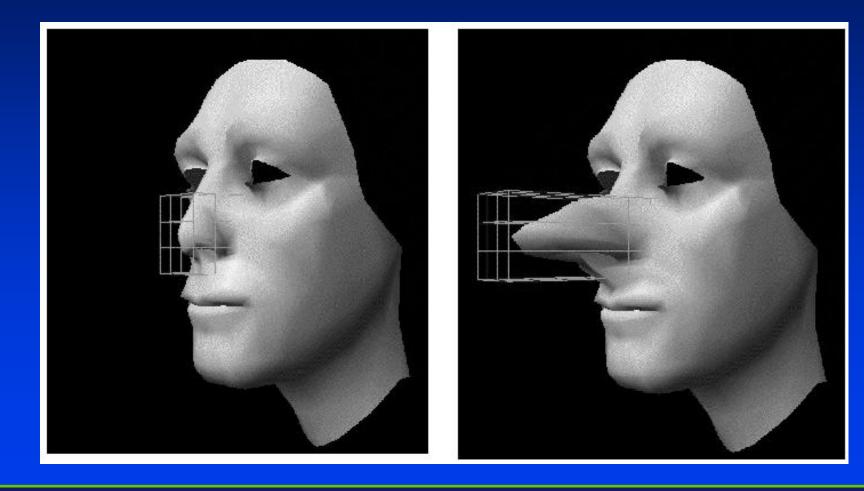
- Smooth deformation of arbitrary shapes
- Local control of deformations
- Computing the deformation is easy
- Deformations are very fast



Disadvantages

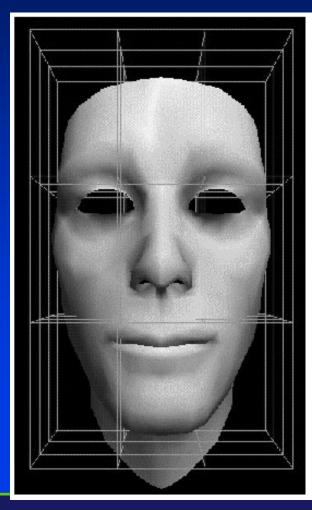
- Must use cubical cells for deformation
- Restricted to uniform grid
- Deformation warps space... not surface
 - Does not take into account geometry/topology of surface
- May need many FFD's to achieve a simple deformation

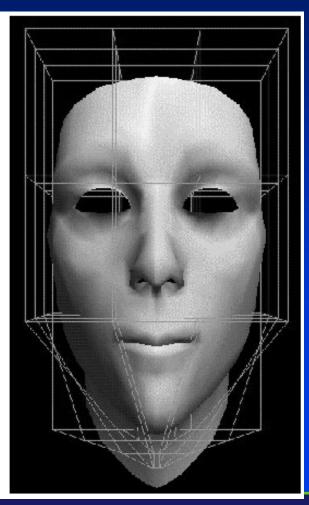
FFD Example



ST NY BR K

FFD Example





ST NY BR K

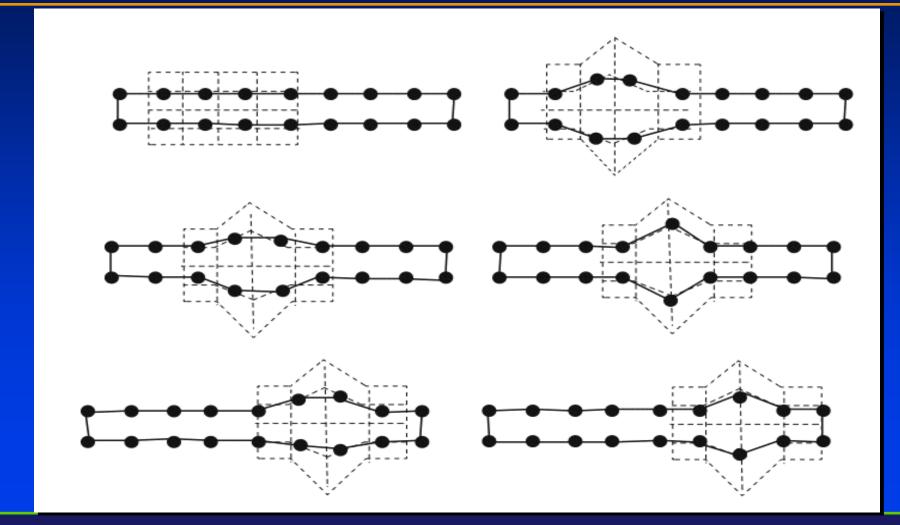
Free-Form Deformation

- Widely used deformation technique
- Fast, easy to compute
- Some control over volume preservation/smoothness

Uniform grids are restrictive

Department of Computer Science

FFD as a Animation Tool



ST NY BR K STATE UNIVERSITY OF NEW YORK

Use FFDs to Animate

- Build control point lattice that is smaller than geometry
- Move lattice through geometry so it affects different regions in sequence
- Animate mouse under the rug, or subdermals (alien under your skin), etc.

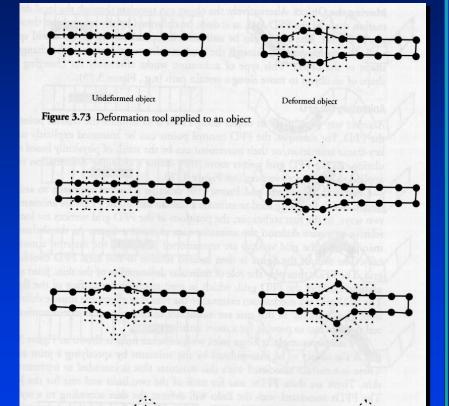
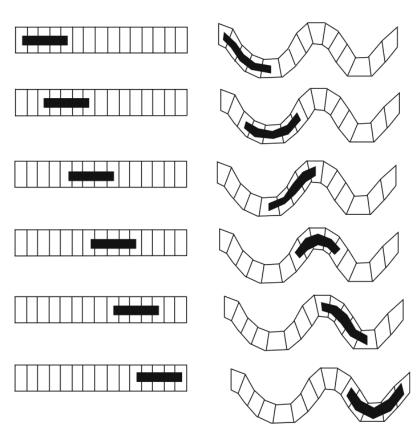


Figure 3.74 Deformation by translating the deformation tool relative to an object

ST NY BR K

Use FFDs to Animate

- Build FFD lattice that is larger than geometry
- Translate geometry within lattice so new deformations affect it with each move
- Change shape of object to move along a path

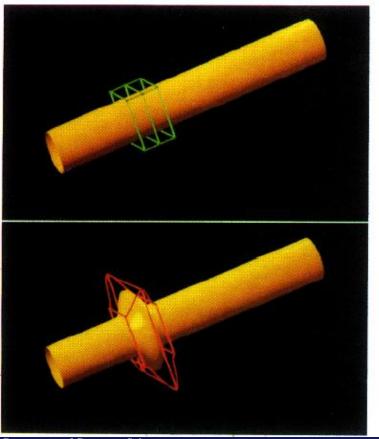


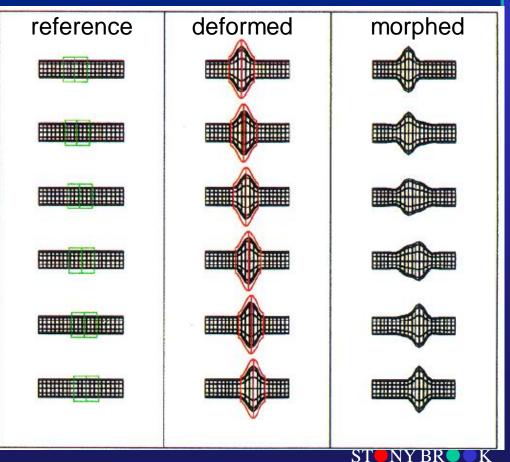
Object traversing the logical FFD coordinate space

Object traversing the distorted space

FFD Animation

Animate a reference and a deformed lattice



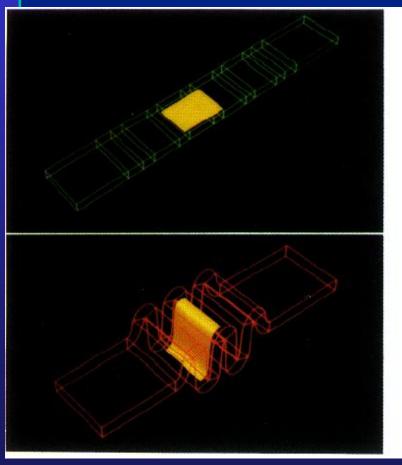


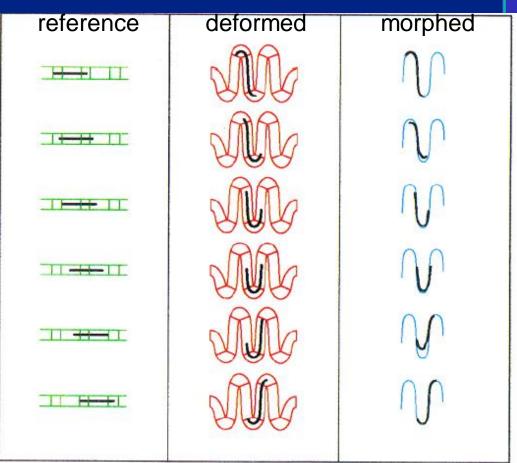
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

FFD Animation

Animate the object through the lattice



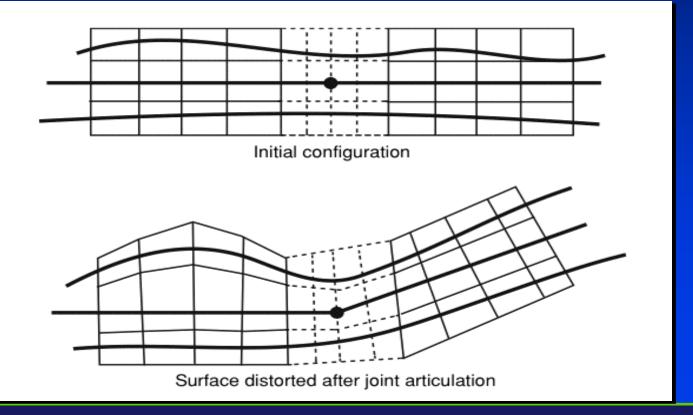


Animating the FFD

- Create interface for efficient manipulation of lattice control points over time
 - Connect lattices to rigid limbs of human skeleton
 - Physically simulate control points

Application: Skin, Muscle, and Bone Animation

Exo-muscular system Skeleton -> changes FFD -> changes skin



ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science



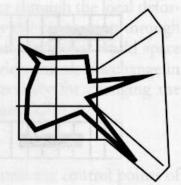
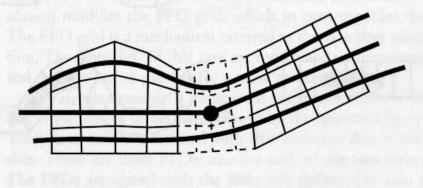


Figure 3.76 Using an FFD to animate a figure's head



Initial configuration

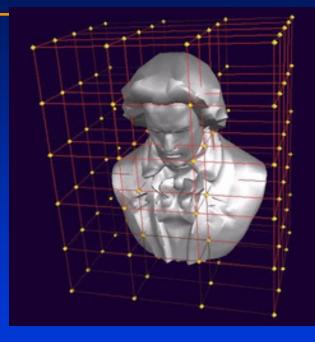


Surface distorted after joint articulation

Figure 3.77 Using FFD to deform a surface around an articulated joint

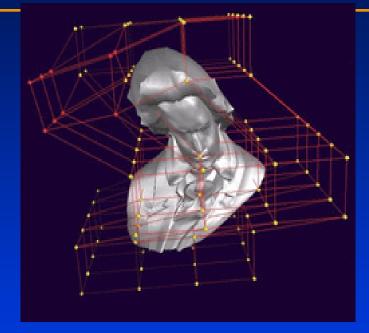
FFD for Human Animation

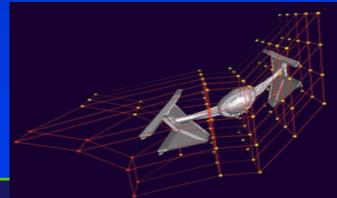
Free-Form Deformation



Department of Comp

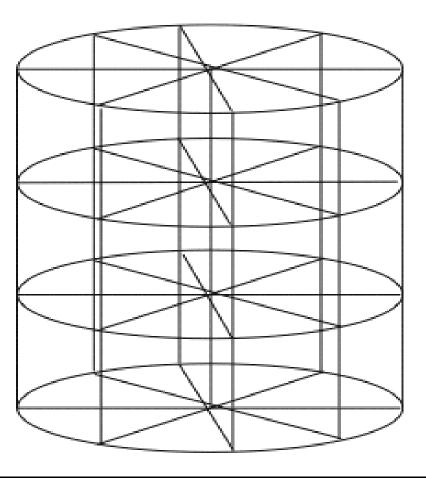
Center for Visual Computing





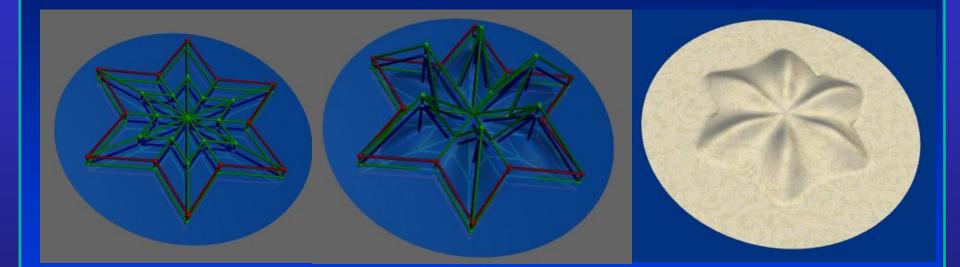
STATE UNIVERSITY OF NEW YORK

Non-Tensor-Product Grid Structure



ST NY BR K

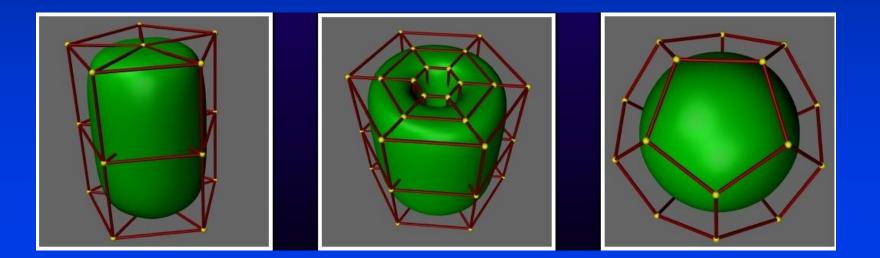
Arbitrary Grid Structure (Star-Shape)



Department of Computer Science

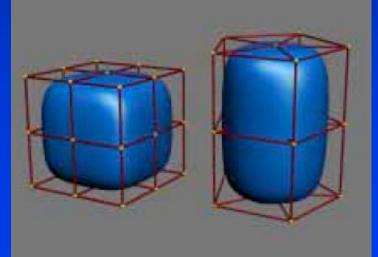
Volume defined by Arbitrary Lattices

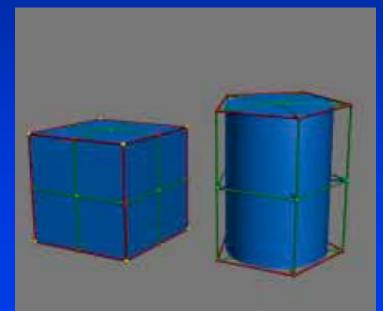
• The volumetric regions of space results from Catmull-Clark subdivision method.



Modified Refinement Rules

- Green: boundary edges.
- Red: sharp edges.
- Yellow: corner vertices





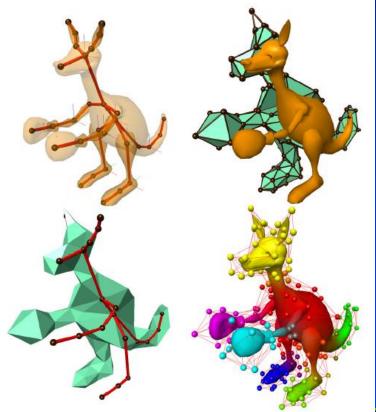
Department of Compu

Arbitrary Topology

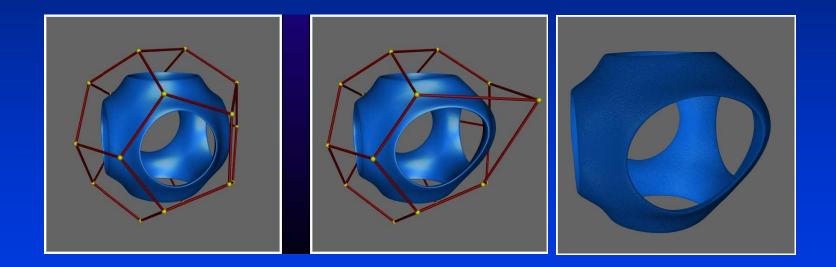
- Previous method can only handle a parallelepiped lattice.
- A new method allows lattices of arbitrary topology.

Arbitrary Topology FFDs

 The concept of FFDs was later extended to allow an arbitrary topology control volume to be used



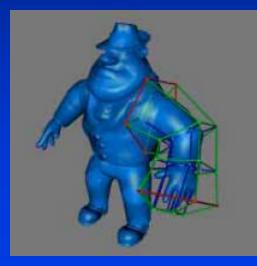
Results

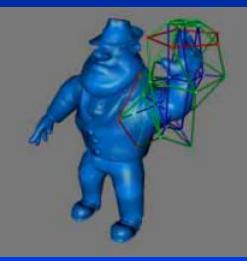


Department of Computer Science

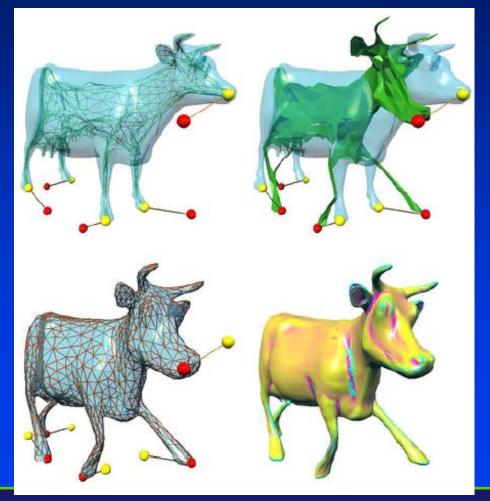
Results

• Deform a monster's arm





Direct Manipulation



Department of Computer Science Center for Visual Computing

STATE UNIVERSITY OF NEW YORK