CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

Hong Qin

Department of Computer Science
Stony Brook University (State University of New York)
Stony Brook, New York 11794-2424
Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu, qin@cs.sunysb.edu http:///www.cs.stonybrook.edu/~qin

Global Illumination

- Global Illumination
- A point is illuminated by more than light from local lights
- It is illuminated by all the emitters and reflectors in the global scene
- Ray Tracing
- Radiosity

Ray Tracing

Ray Tracing Fundamentals

- Represent specular global lighting
- Trace light backward (usually) from the eye, through the pixel, and into the scene
- Recursively bounce off objects in the scene, accumulating a color for that pixel
- Final output is single image of the scene

Recursive Ray Tracing

- Cast a ray from the viewer's eye through each pixel
- Compute intersection of this ray with objects from scene

- Closest intersecting
point object determines color

Recursive Ray Tracing

- For each ray cast from the eyepoint
- If surface is struck
- Cast ray to each light source (shadow ray)
- Cast reflected ray (feeeler ray))
- Cast transmitted ray (feeler ray)
- Perform Phong lighting on all incoming light
- Note that, diffuse component of Phong lighting is not pushed through the system

Recursive Ray Tracing

- Computing all shadow and feeler rays is slow
- Stop after fixed number of iterations
- Stop when energy contributed is below threshold
- Most work is spent testing ray/plane intersections
- Use bounding boxes to reduce comparisons
- Use bounding volumes to group objects
- Parallel computation (on shared-memory machines)

Recursive Ray Tracing

- Just a sampling method
- We'd like to cast infinite rays and combine illumination results to generate pixel values
- Instead, we use pixel locations to guide ray casting

-Problems?

Problems With Ray Tracing

- Aliasing
- Supersampling
- Stochastic sampling
- Works best on specular surfaces (not diffuse)
- For perfectly specular surfaces
- Ray tracing == rendering equation (subject to aliasing)

Ray Tracing - Pros

- Simple idea and nice results
- Inter-object interaction possible
- Shadows
- Reflections
- Refractions (light through glass, etc.)
- Based on real-world lighting

Ray Tracing - Cons

- Takes a long time
- Computation speed-ups are often highly scenedependent
- Lighting effects tend to be abnormally sharp, without soft edges, unless more advanced techniques are used
- Hard to put into hardware

Supersampling - I

- Problem: each pixel of the display represents one single ray
- Aliasing
- Unnaturally sharp images
- Solution: send multiple rays through each "pixel" and average the returned colors together

Supersampling - II

- Direct supersampling
- Split each pixel into a grid and send rays through each grid point
- Adaptive supersampling
- Split each pixel only if it's significantly different from its neighbors
- Jittering
- Send rays through randomly selected points within the pixel

Soft Shadow

- Basic shadow generation was an on/off choice per point
- "Real" shadows do not usually have sharp edges
- Instead of using a point light, use an object with area
- Shoot jittered shadow rays toward the light and count only those that hit it

Soft Shadow Example

Hard shadow
Soft shadow

Radiosity

- Ray tracing models specular reflection and refractive transparency, but still uses an ambient term to account for other lighting effects
- Radiosity is the rate at which energy is emitted or reflected by a surface
- By conserving light energy in a volume, these radiosity effects can be traced

Radiosity - Basic Concept

- Radiosity of a surface: rate at which energy leaves a surface - emitted by surface and reflected from other surfaces
- Represent diffuse global lighting
- Create a closed energy system where every polygon emits and/or bounces some light at every other polygon
- Calculate how light energy spreads through the system
- Solve a linear system for radiosity of each "surface"
- Dependent on emissive property of surface
- Dependent on relation to other surfaces (form factors))
- Final output is a polygon mesh with pre-calculated colons for each vertex

Radiosity

Radiosity

- Break environment up into a finite number n of discrete patches
- Patches are opaque Lambertian surfaces of finite size
- Patches emit and reflect light uniformly over their entire surface

Radiosity

- Model light transfer between patches as a system of linear equations
- Solving this system gives the intensity at each patch
- Solve for R, G, B intensities and get color at each patch
- Render patches as colored polygons in OpenGL

Radiosity

- All surfaces are assumed perfectly diffuse
- What does that mean about property of lighting in scene?
- Light is refilected equally in all directions
- Same lighting independent of viewing angle / location
- Only a subset of the Rendering Equation

Diffuse-aliffuse surface lighting effects possible

The "Rendering Equation"

- Jim Kajiya (current head of Microsoft Research) developed this in 1986

$$
I\left(x, x^{\prime}\right)=g\left(x, x^{\prime}\right)\left[\varepsilon\left(x, x^{\prime}\right)+\int_{S} \rho\left(x, x^{\prime}, x^{\prime \prime}\right) I\left(x^{\prime}, x^{\prime \prime}\right) d x^{\prime \prime}\right]
$$

- $I\left(x, x^{3}\right)$ is the total intensity from point x^{\prime} to x
- $g\left(x, x^{\prime}\right)=0$ when x / x^{\prime} are occluded and $1 / d^{2}$ otherwise $(d=$ distance between x and x)
$\square \delta\left(x, x^{\prime}\right)$ is the intensity emitted by x^{\prime} to x
$\rho\left(x, x^{\prime}, x^{\prime \prime}\right)$ is the intensity of light reflected from $x "$ to x througin x "
- 3 is all points on all surfaces

Radiosity Equation

- Then for each surface i :
$B_{i}=E_{i}+\rho_{i} \sum_{i} B_{j} F_{i j i}\left(A_{j} / / A_{i}\right)$
where
$B_{i j} B_{j}=$ radiosity of patch i, j
$\mathbb{1}_{i}, \mathcal{I}_{j}=$ area of patch i, j
$E_{i}=$ energy/area/time emitted by i
$\rho_{i}=$ reflectivity of patch i
$F_{j i}=$ Form factor from j to i

Form Factors

- Form factor: fraction of energy leaving the entirety of patch i that arrives at patch j, accounting for:
- The shape of both patches
- The relative orientation of both patches
- Occlusion by other patches

Form Factors

- Compute n-by-n matrix of form factors to store radiosity relationships between each light patch and every other light patch

$$
d F_{d i, d j}=\frac{\cos \theta_{i} \cos \theta_{j}}{\pi r^{2}} H_{i j} d A_{j}
$$

Form Factor - Another Example

- Spherical projections to model form factor
- Project polygon A_{j} on unit hemisphere centered at (and tangent to) A_{i}
- Contributes $\cos \theta_{\mathrm{j}} / / \mathrm{r}^{2}$

$$
H_{i j}=1 \text { or } 0 \text { depending on }
$$ occlusion

- Project this projection to base of hemisphere
- Contributes $\cos \theta_{\mathrm{i}}$
- Divide this area by area of circle base
- Contributes $\pi\left(1^{2}\right)$

$$
d F_{d i, d j}=\frac{\cos \theta_{i} \cos \theta_{j}}{\pi r^{2}} H_{i j} d A_{j}
$$

Form Factor - Another Model

- Hemicube allows faster computations
- Analytic solution of hemisphere is expensive
- Use rectangular approximation, Hemicube
- Cosine terms for top and sides are simplified
- Dimension of $50-200$ squares is good

Form Factors Properties

- In diffuse environments, form factors obey a simple reciprocity relationship:

- Which simplifies our equation:

$$
B_{i}=\boldsymbol{E}_{i}+\rho_{i} \Sigma_{1}^{\prime} \boldsymbol{B}_{j} \boldsymbol{F}_{i j}
$$

- Rearranging to:

$$
B_{i}-\rho_{i} \Sigma_{1}^{\prime} B_{j} F_{i j}=E_{i}
$$

Radiosity Equation

- So...light exchange between all patches becomes a matrix:
$\left[\begin{array}{cccc}1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\ -\rho_{2} F_{21} & 1-\rho_{2} F_{22} & \cdots & -\rho_{2} F_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{n} F_{n 1} & -\rho_{n} F_{n 2} & \cdots & 1-\rho_{n} F_{n n}\end{array}\right]\left[\begin{array}{c}B_{1} \\ B_{2} \\ \vdots \\ B_{n}\end{array}\right]=\left[\begin{array}{c}E_{1} \\ E_{2} \\ \vdots \\ E_{n}\end{array}\right]$
- What do the various terms mean?

Solving Radiosity Equation

Goal

- Find efficient ways to solve the radiosity equation
- Jacobi Iteration
- Gauss-Seidel
- Southwell or Shooting
- Progressive Radiosity

Radiosity

- Q: How many form factors must be computed?
- $A: O\left(n^{2}\right)$
- 0): What primarily limits the accuracy of the solution?
- A: The number of patches

Radiosity

- Now "just" need to solve the matrix!
- Matrix is "diagonally dominant"
- Thus Guass-Siedel must converge
- End result: radiosities for all patches
- Solve RGB radiosities separately, color each patch, and render!
- Caveat: actually, color vertices, not patches

Radiosity Equation

$\left[\begin{array}{ccccc}1-\rho_{1} F_{1,1} & \cdot & \cdot & \cdot & -\rho_{1} F_{1, n} \\ -\rho_{2} F_{2,1} & 1-\rho_{2} F_{2,2} & \cdot & \cdot & -\rho_{2} F_{2, n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ -\rho_{n-1} F_{n-1,1} & \cdot & \cdot & \cdot & -\rho_{n-1} F_{n-1, n} \\ -\rho_{n} F_{n, 1} & \cdot & \cdot & \cdot & 1-\rho_{n} F_{n, n}\end{array}\right]\left[\begin{array}{c}B_{1} \\ B_{2} \\ \cdot \\ \cdot \\ \cdot \\ B_{n}\end{array}\right]=\left[\begin{array}{c}E_{1} \\ E_{2} \\ \cdot \\ \cdot \\ \cdot \\ E_{n}\end{array}\right]$

- We also need to compute the form factors, $F_{i j}$
- Problem is the size of matrices
($\mathbf{N} * \mathrm{~N}$ for N elements, N usually >50000)

Solving for All Patches

- Putting into matrix form

$$
\begin{aligned}
& -\mathrm{b}=\mathrm{e}-\mathrm{RFb} \\
& -\mathrm{b}=[\mathrm{I}-\mathrm{RF}]^{-1} \mathrm{e}
\end{aligned}
$$

- Use matrix algebra to solve for B_{i} 's
$\left[\begin{array}{cccc}1-\rho_{1} F_{1-1} & -\rho_{1} F_{1-2} & \cdots & -\rho_{1} F_{1-n} \\ -\rho_{2} F_{2-1} & 1-\rho_{2} F_{2-2} & \cdots & -\rho_{2} F_{2-n} \\ \cdot & \cdot & \cdots & \dot{ } \\ \cdot & \cdot & \cdots & \vdots \\ -\rho_{n} F_{n-1} & -\rho_{n} F_{n-2} & \cdots & 1-\rho_{n} F_{n-n}\end{array}\right]\left[\begin{array}{c}B_{1} \\ B_{2} \\ \cdot \\ \cdot \\ \cdot \\ B_{n}\end{array}\right]=\left[\begin{array}{c}E_{1} \\ E_{2} \\ \cdot \\ \cdot \\ \cdot \\ E_{n}\end{array}\right]$.

Solving for All Patches

- One patch defined by:

$$
B_{i}=\varepsilon_{i}+\rho_{i} \sum_{1 \leq j \leq n} B_{j} F_{j, i} \frac{A_{j}}{A_{i}}
$$

- Symmetry: $\mathrm{A}_{\mathrm{i}} \mathrm{F}_{\mathrm{i}, \mathrm{j}}=\mathrm{A}_{\mathrm{j}} \mathrm{F}_{\mathrm{j}, \mathrm{I}}$

$$
B_{i}=\varepsilon_{i}+\rho_{i} \sum_{1 \leq j \leq n} B_{j} F_{i, j}
$$

- Therefore:

$$
B_{i}-\rho_{i} \sum_{1 \leq j \leq n} B_{j} F_{i, j}=\varepsilon_{i}
$$

Solving for All Patches

- Difficult to perform Gaussian Illumination and solve for b (size of F is large but sparse - why?)
- Instead, iterate: $\quad b^{k+1}=e-R F b^{k}$
- Multiplication of sparse matrix is $O(n)$, not $O\left(n_{2}\right)$
- Stop when $b^{k+1}=b^{k}$

Solving for All Patches

- Alternative solution
- We know:

$$
\frac{1}{1-x}=\sum_{i=0}^{\infty} x^{i}
$$

- Therfore:

$$
[I-R F]^{-1}=\sum_{i=0}^{\infty}(R F)^{i}
$$

- And solution for b is:

$$
\begin{aligned}
& b=\sum_{i=0}^{\infty}(R F)^{i} e \\
& b=e+(R F) e+(R F)^{2} e+(R F)^{3} e+\cdots
\end{aligned}
$$

Convergence

- Gauss-Seidel known to converge for diagonally dominant matrices

$$
\left[\begin{array}{ccccc}
1-\rho_{1} F_{1,1} & \cdot & \cdot & -\rho_{1} F_{1, n} \\
-\rho_{2} F_{2,1} & 1-\rho_{2} F_{2,2} & \cdot & \cdot & -\rho_{2} F_{2, n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
-\rho_{n-1} F_{n-1,1} & \cdot & \cdot & \cdot & -\rho_{n-1} F_{n-1, n} \\
-\rho_{n} F_{n, 1} & \cdot & \cdot & \cdot & 1-\rho_{n} F_{n, n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\cdot \\
\cdot \\
\cdot \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\cdot \\
\cdot \\
\cdot \\
E_{n}
\end{array}\right]
$$

Solve by Direct Methods?

- Not feasible to use something like Gaussian elimination because of size of matrix
- We don't even want to store the matrix
- Use iterative methods

Radiosity

- Where we go from here:
- Evaluating form factors
- Progresssive radiosity: viewing an approximate solution early
- Hierarchical radiosity: increasing patch resolution on an as-needed basis

Iterative Approach

- Define a residual $r=\mathbf{E}-\mathbf{K B}$
- Iterate, computing B, to reduce residual

$$
r^{(0)}=\mathbf{E}-\mathbf{K B} B^{(0)}
$$

- Every iteration, compute new \mathbf{B} and r

$$
r^{(k)}=\mathbf{E}-\mathbf{K B}^{(k)}
$$

- Initial Condition

$$
\mathbf{B}^{(0)}=\mathbf{E}
$$

Method 1: Jacobi Iteration

- Update each element $B_{i}^{(k)}$ to the next iteration using the solution vector $\mathbf{B}^{(k+1)}$ from the previous iteration $\mathbf{B}^{(k)}$
- In other words, compute complete set of B and use that for next iteration

Details

- The i-th matrix row is

- Solve for B_{i}

$$
K_{i i} B_{i}=E_{i}-\sum_{j \neq i} K_{i j} B_{j}
$$

Details

- Recall that

$$
r^{(k)}=\mathbf{E}-\mathbf{K} \mathbf{B}^{(k)}
$$

- So

$$
r^{(k)}=E_{i}-\sum_{j=1}^{n} K_{i j} B_{j}^{(k)}
$$

- or

$$
r^{(k)}=E_{i}-\sum_{j \neq i} K_{i j} B_{j}^{(k)}-K_{i i} B_{i}^{(k)}
$$

- and

$$
E_{i}-\sum_{j \neq i} K_{i j} B_{j}^{(k)}=r^{(k)}+K_{i i} B_{i}^{(k)}
$$

Substitute

$$
E_{i}-\sum_{j \neq i} K_{i j} B_{j}^{(k)}=r^{(k)}+K_{i i} B_{i}^{(k)}
$$

into

$$
K_{i i} B_{i}=E_{i}-\sum_{j \neq i} K_{i j} B_{j}
$$

to get

$$
K_{i i} B_{i}^{(k+1)}=r^{(k)}+K_{i i} B_{i}^{(k)}
$$

or

$$
B_{i}^{(k+1)}=\frac{r^{(k)}}{K_{i i}}+B_{i}^{(k)}
$$

Jacobi Iteration

- If we compute residual r each iteration, we can compute updated B

$$
B_{i}^{(k+1)}=\frac{r^{(k)}}{K_{i i}}+B_{i}^{(k)}
$$

$$
r^{(k)}=E_{i}-\sum_{j=1}^{n} K_{i j} B_{j}^{(k)}
$$

- Works ... but converges slowly

Method 2: Gauss-Seidel

- At each step use the most current values in B

$$
K_{i i} B_{i}^{(k+1)}=E_{i}-\sum_{j=1}^{i-1} K_{i j} B_{j}^{(k+1)}-\sum_{j=i+1}^{n} K_{i j} B_{j}^{(k)}
$$

- Analogous formulation to get

$$
B_{i}^{(k+1)}=\frac{r^{(k)}}{K_{i i}}+B_{i}^{(k)}
$$

- Now must update residuals at each step

Algorithm

Set all B_{i} to the E_{i} values

 While (not converged) \{For ($\mathrm{i}=1$ to n)
Compute new B_{i}
\}

A full iteration takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ - residual update costs
$\mathrm{O}(\mathrm{n})$ at each step

Method 3: Gathering

- A physical analogy is to think of a node or element as gathering light from all of the other elements to arrive at a new estimate
- Each element j contributes some radiosity to the radiosity of element i as follows

$$
\Delta B_{i}=\rho_{i} B_{j} F_{i j}
$$

Gathering variant: Southwell

- Very similar, but instead of proceeding in order from I to n, choose the row with the highest residual and update it. ...
- ...that is, gather to the element which received the least light from what it should

Southwell Algorithm

- For i, such that $r_{i}=\operatorname{Max}(\mathbf{r})$, compute

$$
B_{i}^{(k+1)}=E_{i}-\sum_{j \neq i} \frac{K_{i j} B_{j}^{(k)}}{K_{i i}}
$$

- Note that, now the variable k is a step and not a complete iteration

Complexity

- In order to keep each step $O(n)$, you need to incrementally update the residuals

Computing Residual

- Define the difference in radiosity at each step as

$\Delta \mathbf{B}^{(p)}$

- Then

$$
\mathbf{B}^{(p+1)}=\mathbf{B}^{(p)}+\Delta \mathbf{B}^{(p)}
$$

so the residual can be computed as

$$
\mathbf{r}^{(p+1)}=\mathbf{E}-\mathbf{K}\left(\mathbf{B}^{(p)}+\Delta \mathbf{B}^{(p)}\right)=\mathbf{r}^{(p)}-\mathbf{K} \Delta \mathbf{B}^{(p)}
$$

Only One B Changes

- All of the changes in the \mathbf{B} vector are 0 , except for the one that was just updated at step I, so

$$
r_{j}^{(p+1)}=r_{j}^{(p)}-K_{j i} \Delta B_{i}, \forall j
$$

Initial Conditions

- Set $\mathbf{B}^{(0)}$ to all be zero, and $\mathbf{r}^{(0)}$ to be \mathbf{E}
- So at the first step, the element being the brightest emitter would have its radiosity set to the value of that emitter and its residual set to 0
- This leads to the interpretation of . . .

Shooting

- The residual can be interpreted as the amount of energy left to be reflected (or emitted)
- At each step, one of the residuals (the one for row i) contributes - shoots - to all of the other residuals

Progressive Radiosity (Similar to Southwell)

- Shoot from the element having the most energy
- Compute the form factors as you shoot
- Update all of the radiosities
- Display the results every iteration

Initially

For all $i\{$ $B_{i}=E_{i ;} ;$ $\Delta B_{i}=E_{i ;}$
 \}

while (not converged) \{

Select i, such that $\Delta B_{i} A_{i}$ is greatest;
Project all other elements onto Hemicube at i to compute form factors;
For every element j \{

$$
\begin{aligned}
& \Delta \text { Rad }=\Delta B_{i}{ }^{*} \rho_{j} F_{j j} ; \\
& \Delta B_{j}+=\Delta \text { Rad ; } \\
& B_{j}+=\Delta \text { Rad } ;
\end{aligned}
$$

$\Delta B_{i}=0 ;$
Display image;

Advantages

- You see progresses
- You don't store a $O\left(n^{2}\right)$ matrix of form factors
- When the process starts out, all of the unshot energy is at lights
- As the process unfolds, the energy is spread around and the residuals become more even

Ambient Term

- An estimate of the average form factors can be made from their areas

$$
F_{*_{j}} \approx \frac{A_{j}}{\sum_{j=1}^{n} A_{j}}
$$

- We can also compute the area-weighted average of reflectivities

$$
\bar{\rho}=\frac{\sum \rho_{i} A_{i}}{\sum A_{i}}
$$

Ambient Term

- Just to make the images look better (less dark) at the beginning, Cohen, et. al. use an ambient term
- It's related to the reflected illumination not yet accounted for (or in other words the energy yet unshot)

Ambient Estimate

- Ambient term is total of the area-weighted unshot energy times the total reflectivity

$$
B_{\text {ambient }}=R_{\text {total }} \sum_{j=1}^{n}\left(\Delta B_{j} F_{*_{j}}\right)
$$

- Each element displays its own fraction

$$
\boldsymbol{B}_{i}^{d i s p l a y}=\boldsymbol{B}_{i}+\boldsymbol{\rho}_{i} \boldsymbol{B}_{\text {ambient }}
$$

Reflection

- The energy will be reflected over and over, so the total reflection can be expressed as

$$
R_{\text {total }}=1+\bar{\rho}+\bar{\rho}^{2}+\bar{\rho}^{3}+\ldots=\frac{1}{1-\bar{\rho}}
$$

- 30,000 patches divided into 50,000 elements.
- Solution run for only 2000 patches
- View-dependent post-process, computing radiosity at visible vertices, 190 hours

Displayed Image after 1,2,24, and 100 Steps

Magritte Studio Image

Radiosity - Cons

- Form factors need to be re-computed if anything moves
- Large computational and storage costs
- Non-diffuse light not represented
- Mirrors and shiny objects hard to include
- Lighting effects tend to be "blurry", not sharp without good subdivision
- Not applicable to procedurally defined surfàces

Radiosity - Pros

- Viewpoint independence means fast real-time display after initial calculation
- Inter-object interaction possible
- Soft shadows
- Indirect lighting
- Color bleeding
- Accurate simulation of energy transfer

View-dependent vs View-independent

- Ray-tracing models specular reflection well, but diffuse reflection is approximated
- Radiosity models diffuse reflection accurately, but specular reflection is ignored
- Advanced algorithms combine the two

Ray-Traced Room
Radiosity Room

Radiosity

- Radiosity is expensive to compute
- Some parts of illuminated world can change
-Emitted light
- Viewpoint
- Other things cannot
-Light angles
-Object positions and occlusions
-Computing form factors is expensive
- Specular reflection information is not modeled

Summary

- Now we know
- How to formulate the radiosity problem
- How to solve equations
- How to approximate form factors

References

- Cohen and Wallace, Radiosity and Realistic Image Synthesis, Chapter 5.

