
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

CSE328 Fundamentals of
Computer Graphics: Theory,
Algorithms, and Applications

Hong Qin

Department of Computer Science

Stony Brook University (State University of New York)

Stony Brook, New York 11794-2424

Tel: (631)632-8450; Fax: (631)632-8334

qin@cs.stonybrook.edu, qin@cs.sunysb.edu

http://www.cs.stonybrook.edu/~qin

mailto:qin@cs.stonybrook.edu
mailto:qin@cs.sunysb.edu

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Global Illumination
• Global Illumination

– A point is illuminated by more than light from

local lights

– It is illuminated by all the emitters and reflectors

in the global scene

• Ray Tracing

• Radiosity

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ray Tracing

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ray Tracing Fundamentals
• Represent specular global lighting

• Trace light backward (usually) from the eye,
through the pixel, and into the scene

• Recursively bounce off objects in the scene,
accumulating a color for that pixel

• Final output is single image of the scene

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Recursive Ray Tracing
• Cast a ray from the

viewer’s eye through

each pixel

• Compute intersection

of this ray with objects

from scene

• Closest intersecting

object determines color

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Recursive Ray Tracing
• For each ray cast from the eyepoint

– If surface is struck

• Cast ray to each light source (shadow

ray)

• Cast reflected ray (feeler ray)

• Cast transmitted ray (feeler ray)

• Perform Phong lighting on all

incoming light

– Note that, diffuse component of

Phong lighting is not pushed

through the system

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Recursive Ray Tracing
• Computing all shadow and feeler rays is slow

– Stop after fixed number of iterations

– Stop when energy contributed is below threshold

• Most work is spent testing ray/plane

intersections

– Use bounding boxes to reduce comparisons

– Use bounding volumes to group objects

– Parallel computation (on shared-memory machines)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Recursive Ray Tracing
• Just a sampling method

– We’d like to cast infinite rays and combine

illumination results to generate pixel values

– Instead, we use pixel locations to guide ray casting

• Problems?

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Problems With Ray Tracing
• Aliasing

– Supersampling

– Stochastic sampling

• Works best on specular surfaces (not diffuse)

• For perfectly specular surfaces

– Ray tracing == rendering equation (subject to

aliasing)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ray Tracing - Pros

CSE328 Lectures

• Simple idea and nice results

• Inter-object interaction possible

– Shadows

– Reflections

– Refractions (light through glass, etc.)

• Based on real-world lighting

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ray Tracing - Cons

• Takes a long time

• Computation speed-ups are often highly scene-

dependent

• Lighting effects tend to be abnormally sharp,

without soft edges, unless more advanced

techniques are used

• Hard to put into hardware

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Supersampling - I

• Problem: each pixel of the display represents one

single ray

– Aliasing

– Unnaturally sharp images

• Solution: send multiple rays through each

“pixel” and average the returned colors together

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Supersampling - II
• Direct supersampling

– Split each pixel into a grid and send rays through
each grid point

• Adaptive supersampling

– Split each pixel only if it’s significantly different
from its neighbors

• Jittering

– Send rays through randomly selected points within
the pixel

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Soft Shadow

• Basic shadow generation was an on/off choice

per point

• “Real” shadows do not usually have sharp edges

• Instead of using a point light, use an object with

area

• Shoot jittered shadow rays toward the light and

count only those that hit it

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Soft Shadow Example

CSE328 Lectures

Hard shadow Soft shadow

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity

• Ray tracing models specular

reflection and refractive transparency, but

still uses an ambient term to account for

other lighting effects

• Radiosity is the rate at which energy is

emitted or reflected by a surface

• By conserving light energy in a volume,

these radiosity effects can be traced

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity – Basic Concept

CSE328 Lectures

• Radiosity of a surface: rate at which energy leaves a surface

– emitted by surface and reflected from other surfaces

• Represent diffuse global lighting

• Create a closed energy system where every polygon emits and/or
bounces some light at every other polygon

• Calculate how light energy spreads through the system

• Solve a linear system for radiosity of each “surface”

– Dependent on emissive property of surface

– Dependent on relation to other surfaces (form factors)

• Final output is a polygon mesh with pre-calculated colors for
each vertex

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity

• Break environment up into a finite number n of

discrete patches

– Patches are opaque Lambertian surfaces of finite size

– Patches emit and reflect light uniformly over their

entire surface

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity

• Model light transfer between patches as a system

of linear equations

• Solving this system gives the intensity at each

patch

• Solve for R, G, B intensities and get color at

each patch

• Render patches as colored polygons in OpenGL

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity

• All surfaces are assumed perfectly diffuse

– What does that mean about property of lighting in

scene?

– Light is reflected equally in all directions

– Same lighting independent of viewing angle / location

– Only a subset of the Rendering Equation

Diffuse-diffuse surface lighting effects possible

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

The “Rendering Equation”
• Jim Kajiya (current head of Microsoft Research) developed this in

1986

• I(x, x’) is the total intensity from point x’ to x

• g(x, x’) = 0 when x/x’ are occluded and 1/d2 otherwise (d = distance
between x and x’)

 e(x, x’) is the intensity emitted by x’ to x

 r(x, x’,x’’) is the intensity of light reflected from x’’ to x through x’

• S is all points on all surfaces

          







 

S

dxxxIxxxxxxxgxxI '''',''',',',',', re

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity Equation
• Then for each surface i:

Bi = Ei + ri  Bj Fji (Aj / Ai)

where

Bi, Bj = radiosity of patch i, j

Ai, Aj = area of patch i, j

Ei = energy/area/time emitted by i

ri = reflectivity of patch i

Fji = Form factor from j to i

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Form Factors

• Form factor: fraction of energy leaving the

entirety of patch i that arrives at patch j,

accounting for:

– The shape of both patches

– The relative orientation of both patches

– Occlusion by other patches

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Form Factors
• Compute n-by-n matrix of form factors to store

radiosity relationships between each light patch

and every other light patch

jij

ji

djdi dAH
r

dF
2,

coscos






STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Form Factor – Another Example
• Spherical projections to model form factor

– Project polygon Aj on unit hemisphere centered at (and tangent
to) Ai

• Contributes cosj / r2

– Project this projection to
base of hemisphere

• Contributes cosi

– Divide this area by area
of circle base

• Contributes 12

jij

ji

djdi dAH
r

dF
2,

coscos






Hij = 1 or 0 depending on

occlusion

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Form Factor – Another Model
• Hemicube allows faster computations

– Analytic solution of hemisphere is expensive

– Use rectangular approximation, Hemicube

– Cosine terms for top and sides

are simplified

– Dimension of 50 – 200 squares

is good

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Form Factors Properties

• In diffuse environments, form factors obey a

simple reciprocity relationship:

Ai Fij = Ai Fji

• Which simplifies our equation:

Bi = Ei + ri  Bj Fij

• Rearranging to:

Bi - ri  Bj Fij = Ei

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity Equation
• So…light exchange between all patches

becomes a matrix:

• What do the various terms mean?

























































rrr

rrr

rrr

nnnnnnnnn

n

n

E

E

E

B

B

B

FFF

FFF

FFF











2

1

2

1

21

22222212

11121111

1

1

1

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Solving Radiosity Equation

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

34

Goal

• Find efficient ways to solve the radiosity

equation

– Jacobi Iteration

– Gauss-Seidel

– Southwell or Shooting

– Progressive Radiosity

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity

• Q: How many form factors must be computed?

• A: O(n2)

• Q: What primarily limits the accuracy of the

solution?

• A: The number of patches

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity

• Now “just” need to solve the matrix!

– Matrix is “diagonally dominant”

– Thus Guass-Siedel must converge

• End result: radiosities for all patches

• Solve RGB radiosities separately, color each

patch, and render!

• Caveat: actually, color vertices, not patches

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity Equation

CSE328 Lectures



























































































nnnnnnn

nnnnn

n

n

E

E

E

B

B

B

FF

FF

FFF

FF

.

.

.

.

.

.

1...

...

.....

.....

..1

...1

2

1

2

1

,1,

,111,11

,222,221,22

,111,11

rr

rr

rrr

rr

• We also need to compute the form factors, Fij

• Problem is the size of matrices

(N*N for N elements, N usually > 50000)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Solving for All Patches

• Putting into matrix form

– b = e – RFb

– b = [I – RF]-1 e

• Use matrix algebra to solve for Bi’s

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Solving for All Patches
• One patch defined by:

• Symmetry: AiFi,j = AjFj,I

• Therefore:





nj i

j

ijjiii
A

A
FBB

1

,re





nj

jijiii FBB
1

,re





nj

ijijii FBB
1

, er

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Solving for All Patches

• Difficult to perform Gaussian Illumination and

solve for b (size of F is large but sparse – why?)

• Instead, iterate: bk+1 = e – RFbk

– Multiplication of sparse matrix is O(n), not O(n2)

– Stop when bk+1 = bk

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Solving for All Patches

• Alternative solution

– We know:

– Therfore:

– And solution for b is:






 
0

1)(][
i

iRFRFI







 01

1

i

ix
x








eRFeRFeRFeb

eRFb
i

i

32

0

)()()(

)(

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Convergence

• Gauss-Seidel known to converge for diagonally

dominant matrices



























































































nnnnnnn

nnnnn

n

n

E

E

E

B

B

B

FF

FF

FFF

FF

.

.

.

.

.

.

1...

...

.....

.....

..1

...1

2

1

2

1

,1,

,111,11

,222,221,22

,111,11

rr

rr

rrr

rr

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

43

Solve by Direct Methods?

• Not feasible to use something like Gaussian

elimination because of size of matrix

• We don’t even want to store the matrix

• Use iterative methods

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity

• Where we go from here:

– Evaluating form factors

– Progressive radiosity: viewing an approximate

solution early

– Hierarchical radiosity: increasing patch resolution on

an as-needed basis

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Iterative Approach

• Define a residual

• Iterate, computing B, to reduce residual

• Every iteration, compute new B and r

• Initial Condition

KBEr

)0()0(
KBEr

)()(kkr KBE

EB )0(

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Method 1: Jacobi Iteration
• Update each element to the next iteration

using the solution vector

from the previous iteration

• In other words, compute complete set of B and

use that for next iteration

)(k

iB
)1(k

B

)(k
B

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Details

• The i-th matrix row is

• Solve for Bi





n

j

ijij EBK
1





ij

jijiiii BKEBK

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Details

• Recall that

• So

• or

• and

)()(kkr KBE





n

j

k

jiji

k BKEr
1

)()(

)()()(k

iii

ij

k

jiji

k BKBKEr  


)()()(k

iii

k

ij

k

jiji BKrBKE 


STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Substitute

into

to get

or





ij

jijiiii BKEBK

)()()(k

iii

k

ij

k

jiji BKrBKE 


)()()1(k

iii

kk

iii BKrBK 

)(
)(

)1(k

i

ii

k
k

i B
K

r
B 

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Jacobi Iteration

• If we compute residual r each iteration, we can

compute updated B

• Works … but converges slowly

)(
)(

)1(k

i

ii

k
k

i B
K

r
B  




n

j

k

jiji

k BKEr
1

)()(

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Method 2: Gauss-Seidel

• At each step use the most current values in B

• Analogous formulation to get

• Now must update residuals at each step








 
n

ij

k

jij

i

j

k

jiji

k

iii BKBKEBK
1

)(
1

1

)1()1(

)(
)(

)1(k

i

ii

k
k

i B
K

r
B 

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Algorithm

Set all Bi to the Ei values

While (not converged) {

For (i = 1 to n)

Compute new Bi

}

A full iteration takes O(n2) – residual update costs

O(n) at each step

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Method 3: Gathering

• A physical analogy is to think of a node or

element as gathering light from all of the other

elements to arrive at a new estimate

• Each element j contributes some radiosity to the

radiosity of element i as follows

ijjii FBB r

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Gathering variant: Southwell

• Very similar, but instead of proceeding in order

from 1 to n, choose the row with the highest

residual and update it….

• …that is, gather to the element which

received the least light from what it should

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Southwell Algorithm

• For i, such that ri = Max(r), compute

• Note that, now the variable k is a step and not a

complete iteration




 
ij ii

k

jij

i

k

i
K

BK
EB

)(

)1(

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Complexity

• In order to keep each step O(n), you need to

incrementally update the residuals

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Residual

• Define the difference in radiosity at each step as

• Then

so the residual can be computed as

)(p
B

)()()1(ppp
BBB 

)()()()()1()(ppppp
BKrBBKEr 

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Only One B Changes

• All of the changes in the B vector are 0, except

for the one that was just updated at step I, so

jBKrr iji

p

j

p

j  ,)()1(

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Initial Conditions

• Set B(0) to all be zero, and r(0) to be E

• So at the first step, the element being the brightest

emitter would have its radiosity set to the value of

that emitter and its residual set to 0

• This leads to the interpretation of . . .

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Shooting

• The residual can be interpreted as the amount of

energy left to be reflected (or emitted)

• At each step, one of the residuals (the one for

row i) contributes – shoots – to all of the other

residuals

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Progressive Radiosity
(Similar to Southwell)

• Shoot from the element having the most energy

• Compute the form factors as you shoot

• Update all of the radiosities

• Display the results every iteration

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Initially

For all i {

Bi = Ei;

Bi = Ei;

}

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

while (not converged) {

Select i, such that Bi Ai is greatest;

Project all other elements onto Hemicube at i to
compute form factors;

For every element j {

Rad = Bi * rj Fji ;

Bj += Rad ;

Bj += Rad ;

}

Bi = 0;

Display image;

}

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Advantages

• You see progresses

• You don’t store a O(n2) matrix of form factors

• When the process starts out, all of the unshot

energy is at lights

• As the process unfolds, the energy is spread

around and the residuals become more even

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

• An estimate of the average form factors can be

made from their areas

• We can also compute the area-weighted average

of reflectivities

 


n

j j

j

j

A

A
F

1

*

i

ii

A

A





r

r

Ambient Term

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ambient Term

• Just to make the images look better (less dark) at

the beginning, Cohen, et. al. use an ambient term

• It’s related to the reflected illumination not yet

accounted for (or in other words the energy yet

unshot)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ambient Estimate

• Ambient term is total of the area-weighted

unshot energy times the total reflectivity

• Each element displays its own fraction





n

j

jjtotalambient FBRB
1

*)(

ambientii

display

i BBB r

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Reflection

• The energy will be reflected over and over, so

the total reflection can be expressed as

r
rrr




1

1
1 32 totalR

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

70

• 30,000 patches divided into 50,000 elements.

• Solution run for only 2000 patches

• View-dependent post-process, computing radiosity at
visible vertices, 190 hours

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

71

Example

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Magritte Studio Image

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity - Cons

CSE328 Lectures

• Form factors need to be re-computed if anything
moves

• Large computational and storage costs

• Non-diffuse light not represented

– Mirrors and shiny objects hard to include

• Lighting effects tend to be “blurry”, not sharp
without good subdivision

• Not applicable to procedurally defined surfaces

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity - Pros

• Viewpoint independence means fast real-time

display after initial calculation

• Inter-object interaction possible

– Soft shadows

– Indirect lighting

– Color bleeding

• Accurate simulation of energy transfer

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

View-dependent vs
View-independent
• Ray-tracing models specular reflection well, but

diffuse reflection is approximated

• Radiosity models diffuse reflection accurately,

but specular reflection is

ignored

• Advanced algorithms

combine the two

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity
• Radiosity is expensive to compute

• Some parts of illuminated world can change

–Emitted light

–Viewpoint

• Other things cannot

–Light angles

–Object positions and occlusions

–Computing form factors is expensive

• Specular reflection information is not modeled

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

78

Summary

• Now we know

– How to formulate the radiosity problem

– How to solve equations

– How to approximate form factors

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

79

References

• Cohen and Wallace, Radiosity and Realistic

Image Synthesis, Chapter 5.

