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| Global Illumination

e Global lHlumination

— A point is illuminated by more than light from
local lights

— It 1s illuminated by all the emitters and reflectors
In the global scene
 Ray Tracing
 Radiosity
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Ray Tracing
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| Ray Tracing Fundamentals

 Represent specular global lighting

 Trace light backward (usually) from the eye,
through the pixel, and into the scene

 Recursively bounce off objects In the scene,
accumulating a color for that pixel

» Final output Is single image of the scene
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Recursive Ray Tracing

 Cast a ray from the
viewer’s eye through
each pixel

» Compute Intersection
of this ray with objects
from scene

» Closest Intersecting
object determines color
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Recursive Ray Tracing

 For each ray cast from the eyepoint
— If surface Is struck

o Cast ray to each light source (shadow

ray)
o Cast reflected ray (feeler ray)

e Cast transmitted ray (feeler ray) Faa

 Perform Phong lighting on all
Incoming light
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|Recursive Ray Tracing

« Computing all shadow and feeler rays is slow
— Stop after fixed number of iterations
— Stop when energy contributed is below threshold

» Most work Is spent testing ray/plane
Intersections
— Use bounding boxes to reduce comparisons
— Use bounding volumes to group objects
— Parallel computation (on shared-memory machines)
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|Recursive Ray Tracing

o Just a sampling method

— We’d like to cast infinite rays and combine
Illumination results to generate pixel values

— Instead, we use pixel locations to guide ray casting
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| Problems With Ray Tracing

 Aliasing
— Supersampling
— Stochastic sampling
» \Works best on specular surfaces (not diffuse)

 For perfectly specular surfaces

— Ray tracing == rendering equation (subject to
aliasing)

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



| Ray Tracing - Pros

« Simple idea and nice results

» Inter-object interaction possible

— Shadows
— Reflections
— Refractions (light through glass, etc.)

 Based on real-world lighting
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Ray Tracing - Cons

 Takes a long time

« Computation speed-ups are often highly scene-

dependent

» Lighting effects tend to be abnormally sharp,

without soft edges, unless more advanced
technigues are used

 Hard'to put into hardware
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| Supersampling - I

» Problem: each pixel of the display represents one
single ray
— Aliasing
— Unnaturally sharp images

o Solution: send multiple rays through each
“pixel” and average the returned colors together
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| Supersampling - 11

 Direct supersampling
— Split each pixel into a grid and send rays through
each grid point
 Adaptive supersampling

— Split each pixel only 1f 1t’s significantly different
from its neighbors

e Jittering

— Send rays through randomly selected points within
the pixel
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Soft Shadow

» Basic shadow generation was an on/off choice
per point
» “Real” shadows do not usually have sharp edges

e Instead of using a point light, use an object with
area

» Shoot jittered shadow rays toward the light and
count only those that hit it
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Soft Shadow Example

Hard shadow I

Soft shadow I
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|Radiosity 8 i &
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 Ray tracing models specular
reflection and refractive transparency, but
still uses an ambient term to account for
other lighting effects

» Radiosity Is the rate at which energy Is
emitted or reflected by a surface

» By conserving light energy in a volume,
these radiosity effects can be traced

L
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Radiosity — Basic Concept

« Radiosity of a surface: rate at which energy leaves a surface
— emitted by surface and reflected from other surfaces
» Represent diffuse global lighting

» Create a closed energy system where every polygon emits and/or
bounces some light at every other polygon

 (Calculate how light energy spreads through the system
* Solve a linear system for radiosity of each “surface”
— Dependent on emissive property of surface
— Dependent on relation to other surfaces (form factors)

 Final output is a polygon mesh with pre-calculated colors for
each vertex
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| Radiosity

 Break environment up into a finite number n of
discrete patches

— Patches are opague Lambertian surfaces of finite size

— Patches emit and reflect light uniformly over their
entire surface
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Radiosity

» Model light transfer between patches as a system
of linear equations

 Solving this system gives the intensity at each
patch

» Solve for R, G, B Intensities and get color at
each patch

» Render patches as colored polygons in OpenGL

Department of Computer Science ST NY BR® K
Center for Visual Computing STATE UNIVERSITY OF NEW YORK




Radiosity

 All surfaces are assumed perfectly diffuse

Diffuse-diffuse surface lighting effects possible
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| The "Rendering Equation”

 Jim Kajiya (current head of Microsoft Research) developed this in
1986

1(x, x') = g(x, x'){g(x, X')+ ! (%, ', X" (x', x")dx’ }
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Radiosity Equation

e Then for each surface 1I:

where
= radiosity of patch I, |
= area of patch I, |

= energy/area/time emitted by |
= reflectivity of patch |

from jto |
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Form Factors

. fraction of energy leaving the
entirety of patch I that arrives at patch |,
accounting for:

— The shape of both patches
— The relative orientation of both patches
— Occlusion by other patches
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|Form Factors

« Compute n-by-n matrix of form factors to store
radiosity relationships between each light patch
and every other light patch
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Form Factor — Another Example

 Spherical projections to model form factor

— Project polygon A; on unit hemisphere centered at (and tangent
(o) AY
- Contributes cos0; / r*
— Project this projection to
base of hemisphere
« Contributes coso.
— Divide this area by area
of circle base
« Contributes wt(12)

H; = 1 or O depending on
occlusion
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Form Factor — Another Model

» Hemicube allows faster computations
— Analytic solution of hemisphere is expensive
— Use rectangular approximation,

— Cosine terms for top and sides
are simplified

— Dimension of 50 — 200 squares
IS good
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Form Factors Properties

» In diffuse environments, form factors obey a
simple reciprocity relationship:

 \Which simplifies our equation:

 Rearranging to:
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Radiosity Equation

* So...light exchange between all patches
becomes a matrix:
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Solving Radiosity Equation
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Goal

 Find efficient ways to solve the radiosity
eguation
— Jacobi Iteration
— Gauss-Seidel
— Southwell or Shooting
— Progressive Radiosity
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Radiosity
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Radiosity
* Now “just” need to solve the matrix!

— Matrix 1s “diagonally dominant™
— Thus Guass-Siedel must converge

 End result: radiosities for all patches

» Solve RGB radiosities separately, color each
patch, and render!

o Caveat: actually, color vertices, not patches
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Radiosity Equation

» We also need to compute the form factors, F;

* Problem Is the size of matrices
(N*N for N elements, N usually > 50000)
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| Solving for All Patches

 Putting Into matrix form
—b=e—RFD
—b=[I-RF]e

 Use matrix algebra to solve for B;’s

- ~ e N

pi p‘nEz —q
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| Solving for All Patches

 One patch defined by:

o Symmetry: AiFi,j = AJ-FJ-,I

e Therefore:
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| Solving for All Patches

o Difficult to perform Gaussian Illumination and
solve for b (size of F is large but sparse — )

» |nstead, Iterate:

— Multiplication of sparse matrix is O(n), not O(n,)
— Stop when bkt = bk
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Solving for All Patches

o Alternative solution
— We know:

— Therfore:

[ —RF]‘lzi(RF)‘

— And solution for b Is:

bzi(RF)‘e

b=e+(RF)e+(RF)’e+(RF)’e+---
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Convergence

 (Gauss-Seidel known to converge for diagonally
dominant matrices

1-p, |:1,1
— P> I:2,1 1-p, Fz,z

_pn—an—l,l . . . _pn—an—l,n
_pnFn,l : = 1_/0n|:n,n
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Solve by Direct Methods?

 Not feasible to use something like Gaussian
elimination because of size of matrix

e We don’t even want to store the matrix
e Use Iterative methods
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| Radiosity

» Where we go from here:
— Evaluating form factors
. VIewing an approximate
solution early

. Increasing patch resolution on
an as-needed basis
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[terative Approach

« Define a residual

e |terate, computing B, to reduce residual

» EVvery iteration, compute new B and r

 |nitial Condition

BY” =E
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Method 1: Jacobi Iteration

 Update each element to the next iteration
using the solution vector

from the previous iteration

» In other words, compute complete set of B and
use that for next iteration
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Details

e The I-th matrix row Is

» Solve for B;
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Details

 Recall that

e SO
° Or

e and

E, _Z K3 ngk) =1+ K;B"

J#i
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Substitute

E-> K

J#i

Into

to get
o

B

I
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Jacobi Iteration

» If we compute residual r each iteration, we can
compute updated B

» Works ... but converges slowly
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Method 2: Gauss-Seidel

At each step use the most current values in B

-1 n
KiiBi(k+l) — Ei - K"B(k+l) o K. B(k)
2 2

I
j=i+1

s

» Analogous formulation to get

» Now must update residuals at each step
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| Algorithm

Set all B, to the E; values
While (not converged) {
For (I = 1 to n)
Compute new B,

A full iteration takes O(n?4) — residual update costs
O(n) at each step
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Method 3: Gathering

A physical analogy Is to think of a node or
element as gathering light from all of the other

elements to arrive at a new estimate

 Each element J contributes some radiosity to the

radiosity of element 1 as follows
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Gathering variant: Southwell

 \Very similar, but instead of proceeding in order
from 1 to n, choose the row with the highest

residual and update it....

o ...that s, gather to the element which

recelved the least light from what it should
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Southwell Algorithm

» For I, such that r; = Max(r), compute

 Note that, now the variable k Is a step and not a
complete iteration
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Complexity

* In order to keep each step O(n), you need to
Incrementally update the residuals
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Computing Residual

 Define the difference In radiosity at each step as

(p+) _ p(p) (p)
B =B + AB

so the residual can be computed as

 Then

rP _E_ K(B(p) +AB(p)) —r'®» _kABW
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Only One B Changes

» All of the changes In the B vector are 0, except
for the one that was just updated at step I, so

(p+1) _ (p) -
7 =r" — K, AB;, Vj
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Initial Conditions

» Set BO to all be zero, and r® to be E

S0 at the first step, the element being the brightest
emitter would have Its radiosity set to the value of
that emitter and its residual set to 0

 This leads to the interpretation of . . .
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Shooting

 The residual can be interpreted as the amount of
energy left to be reflected (or emitted)

At each step, one of the residuals (the one for

row 1) contributes — shoots — to all of the other
residuals
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Progressive Radiosity

(Similar to Southwell)

 Shoot from the element having the most energy
» Compute the form factors as you shoot
 Update all of the radiosities

 Display the results every Iteration
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Initially

For all I {
B, =E;
AB. = E;
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while (not converged) {
Select I, such that AB; A Is greatest;

Project all other elements onto Hemicube at | to
compute form factors;

For every element | {
ARad = AB; * p F; ;

ABJ. += ARad ;
Bj += ARad ;
}
AB; = 0;

Display image;

}
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Advantages

* YOU See progresses
e You don’t store a O(n%) matrix of form factors

» \When the process starts out, all of the unshot
energy Is at lights

 ASs the process unfolds, the energy Is spread
around and the residuals become more even
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Ambient Term

 An estimate of the average form factors can be
made from their areas

 \We can also compute the area-weighted average
of reflectivities
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Ambient Term

e Just to make the images look better (less dark) at
the beginning, Cohen, et. al. use an ambient term

* |t’s related to the reflected illumination not yet

accounted for (or In other words the energy yet
unshot)
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. Ambient Estimate

« Ambient term Is total of the area-weighted
unshot energy times the total reflectivity

Bambient = Rtotalz (ABJ F*j)

j=1
» Each element displays its own fraction

Bdlsplay B +pIB

ambient
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Reflection

» The energy will be reflected over and over, so
the total reflection can be expressed as

o
1-p

R

=1+ p+p° +p° +...=

total
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30,000 patches divided into 50,000 elements.
o Solution run for only 2000 patches

» View-dependent post-process, computing radiosity at
visible vertices, 190 hours
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Magritte Studio Image
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Radiosity - Cons

» Form factors need to be re-computed If anything
moves

» |arge computational and storage costs

» Non-diffuse light not represented
— Mirrors and shiny objects hard to include

» [Lighting effects tend to be “blurry”, not sharp
without good subdivision

» Not applicable to procedurally defined surfaces
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Radiosity - Pros

 Viewpoint independence means fast real-time
display after initial calculation
» Inter-object interaction possible
— Soft shadows
— Indirect lighting
— Color bleeding

 Accurate simulation of energy transfer
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View-dependent vs

|View-independent

 Ray-tracing models specular reflection well, but
diffuse reflection Is approximated

» Radiosity models diffuse reflection accurately,
but specular reflection Is
ignored

 Advanced algorithms
combine the two
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| Radiosity

 Radiosity Is expensive to compute

» Some parts of illuminated world can change
—Emitted light

—Viewpoint
e Other things cannot
—Light angles
—ODbject positions and occlusions
—Computing form factors Is expensive
o Specular reflection information Is not modeled
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Summary

* Now we know
— How to formulate the radiosity problem
— How to solve equations
— How to approximate form factors
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