CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

Hong Qin Department of Computer Science Stony Brook University (State University of New York) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.stonybrook.edu, qin@cs.sunysb.edu http://www.cs.stonybrook.edu/~qin

Department of Computer Science Center for Visual Computing

Global Illumination

- Global Illumination
 - A point is illuminated by more than light from local lights
 - It is illuminated by all the emitters and reflectors in the global scene
 - Ray Tracing
 - Radiosity

Department of Computer Science

Ray Tracing

Department of Computer Science Center for Visual Computing

Ray Tracing Fundamentals

- Represent specular global lighting
- Trace light backward (usually) from the eye, through the pixel, and into the scene
- Recursively bounce off objects in the scene, accumulating a color for that pixel
- Final output is single image of the scene

Department of Computer Science Center for Visual Computing

- Cast a ray from the viewer's eye through each pixel
- Compute intersection of this ray with objects from scene
- Closest intersecting object determines color

- For each ray cast from the eyepoint
 - If surface is struck
 - Cast ray to each light source (shadow ray)
 - Cast reflected ray (feeler ray)
 - Cast transmitted ray (feeler ray)
 - Perform Phong lighting on all incoming light
 - Note that, diffuse component of Phong lighting is not pushed through the system

STATE UNIVERSITY OF NEW YORK

- Computing all shadow and feeler rays is slow
 - Stop after fixed number of iterations
 - Stop when energy contributed is below threshold
- Most work is spent testing ray/plane intersections
 - Use bounding boxes to reduce comparisons
 - Use bounding volumes to group objects
 - Parallel computation (on shared-memory machines)

- Just a sampling method
 - We'd like to cast infinite rays and combine illumination results to generate pixel values
 - Instead, we use pixel locations to guide ray casting
- Problems?

Department of Computer Science

Problems With Ray Tracing

- Aliasing
 - Supersampling
 - Stochastic sampling
- Works best on specular surfaces (not diffuse)
- For perfectly specular surfaces
 - Ray tracing == rendering equation (subject to aliasing)

Department of Computer Science

Ray Tracing - Pros

- Simple idea and nice results
- Inter-object interaction possible
 - Shadows
 - Reflections
 - Refractions (light through glass, etc.)
- Based on real-world lighting

Department of Computer Science Center for Visual Computing

Ray Tracing - Cons

- Takes a long time
- Computation speed-ups are often highly scenedependent
- Lighting effects tend to be abnormally sharp, without soft edges, unless more advanced techniques are used
- Hard to put into hardware

Department of Computer Science Center for Visual Computing

Supersampling - I

- Problem: each pixel of the display represents one single ray
 - Aliasing
 - Unnaturally sharp images
- Solution: send multiple rays through each "pixel" and average the returned colors together

Department of Computer Science Center for Visual Computing

Supersampling - II

- Direct supersampling
 - Split each pixel into a grid and send rays through each grid point
- Adaptive supersampling
 - Split each pixel only if it's significantly different from its neighbors

Jittering

Send rays through randomly selected points within the pixel

Department of Computer Science Center for Visual Computing

Soft Shadow

- Basic shadow generation was an on/off choice per point
- "Real" shadows do not usually have sharp edges
- Instead of using a point light, use an object with area
- Shoot jittered shadow rays toward the light and count only those that hit it

Soft Shadow Example

Hard shadow

Department of Computer Science Center for Visual Computing

- Ray tracing models specular reflection and refractive transparency, but still uses an ambient term to account for other lighting effects
- Radiosity is the rate at which energy is emitted or reflected by a surface
- By conserving light energy in a volume, these radiosity effects can be traced

STATE UNIVERSITY OF NEW YORK

Radiosity – Basic Concept

- Radiosity of a surface: rate at which energy leaves a surface
 emitted by surface and reflected from other surfaces
- Represent diffuse global lighting
- Create a closed energy system where every polygon emits and/or bounces some light at every other polygon
- Calculate how light energy spreads through the system
- Solve a linear system for radiosity of each "surface"
 - Dependent on emissive property of surface
 - Dependent on relation to other surfaces (form factors)
- Final output is a polygon mesh with pre-calculated *colors* for each vertex

Department of Comput Center for Visual Co

- Break environment up into a finite number *n* of discrete patches
 - Patches are opaque Lambertian surfaces of finite size
 - Patches emit and reflect light uniformly over their entire surface

Department of Computer Science

- Model light transfer between patches as a system of linear equations
- Solving this system gives the intensity at each patch
- Solve for R, G, B intensities and get color at each patch
- Render patches as colored polygons in OpenGL

- All surfaces are assumed perfectly diffuse
 - What does that mean about property of lighting in scene?
 - Light is reflected equally in all directions
 - Same lighting independent of viewing angle / location
 - Only a subset of the Rendering Equation

Diffuse-diffuse surface lighting effects possible

ST NY BR K STATE UNIVERSITY OF NEW YORK

The "Rendering Equation"

 Jim Kajiya (current head of Microsoft Research) developed this in 1986

$$I(x,x') = g(x,x') \left[\varepsilon(x,x') + \int_{S} \rho(x,x',x'') I(x',x'') dx'' \right]$$

- I(x, x') is the total intensity from point x' to x
- g(x, x') = 0 when x/x' are occluded and 1/d² otherwise (d = distance between x and x')
- $\Box \epsilon(x, x^{2})$ is the intensity emitted by x' to x
- $\square \rho(x, x^{*}, x^{*})$ is the intensity of light reflected from x" to x through x'
- S is all points on all surfaces

Radiosity Equation

• Then for each surface *i*:

 $B_{i} = E_{i} + \rho_{i} \sum B_{j} F_{ji} (A_{j} / A_{i})$ where

 $\begin{array}{l} \boldsymbol{B}_{i}, \, \boldsymbol{B}_{j} \,=\, \mathrm{radiosity} \,\,\mathrm{of}\,\,\mathrm{patch}\,\,i,\,j \\ \boldsymbol{A}_{i}, \, \boldsymbol{A}_{j} \,=\, \mathrm{area}\,\,\mathrm{of}\,\,\mathrm{patch}\,\,i,\,j \\ \boldsymbol{E}_{i} \,=\, \mathrm{energy}/\mathrm{area}/\mathrm{time}\,\,\mathrm{emitted}\,\,\mathrm{by}\,\,i \\ \boldsymbol{\rho}_{i} \,=\, \mathrm{reflectivity}\,\,\mathrm{of}\,\,\mathrm{patch}\,\,i \\ \boldsymbol{\rho}_{i} \,=\, \mathrm{reflectivity}\,\,\mathrm{of}\,\,\mathrm{patch}\,\,i \\ \boldsymbol{F}_{ji} \,=\, Form\,\,factor\,\,\mathrm{from}\,\,j\,\,\mathrm{to}\,\,i \end{array}$

Form Factors

- Form factor: fraction of energy leaving the entirety of patch *i* that arrives at patch *j*, accounting for:
 - The shape of both patches
 - The relative orientation of both patches
 - Occlusion by other patches

Form Factors

 Compute n-by-n matrix of form factors to store radiosity relationships between each light patch and every other light patch

 $\frac{\cos\theta_i\cos\theta_j}{2}H_{ii}dA$ $dF_{di,dj}$

Form Factor – Another Example

- Spherical projections to model form factor
 - Project polygon A_j on unit hemisphere centered at (and tangent to) A_i $H_i = 1$ or 0 depending on
 - Contributes $\cos\theta_{\rm i}/r^2$
 - Project this projection to base of hemisphere
 - Contributes cosθ_i
 - Divide this area by area of circle base
 - Contributes π(1²)

Department of Computer Science Center for Visual Computing $H_{ij} = 1$ or 0 depending on occlusion

Form Factor – Another Model

- Hemicube allows faster computations
 - Analytic solution of hemisphere is expensive
 - Use rectangular approximation, Hemicube
 - Cosine terms for top and sides are simplified
 - Dimension of 50 200 squares is good

Department of Computer Science

Form Factors Properties

• In diffuse environments, form factors obey a simple reciprocity relationship:

$$\boldsymbol{A}_{i} \boldsymbol{F}_{ij} = \boldsymbol{A}_{i} \boldsymbol{F}_{ji}$$

• Which simplifies our equation:

$$\boldsymbol{B}_{i} = \boldsymbol{E}_{i} + \boldsymbol{\rho}_{i} \boldsymbol{\Sigma} \boldsymbol{B}_{j} \boldsymbol{F}_{ij}$$

• Rearranging to:

$$\boldsymbol{B}_{i} - \boldsymbol{\rho}_{i} \boldsymbol{\Sigma} \boldsymbol{B}_{j} \boldsymbol{F}_{ij} = \boldsymbol{E}_{i}$$

Radiosity Equation

• So...light exchange between all patches becomes a matrix:

What do the various terms mean?

Department of Computer Science

Solving Radiosity Equation

Department of Computer Science Center for Visual Computing

Goal

- Find efficient ways to <u>solve the radiosity</u> <u>equation</u>
 - Jacobi Iteration
 - Gauss-Seidel
 - Southwell or Shooting
 - Progressive Radiosity

- Q: How many form factors must be computed?
- A: O(n²)
- Q: What primarily limits the accuracy of the solution?
- A: The number of patches

Department of Computer Science

- Now "just" need to solve the matrix!
 - Matrix is "diagonally dominant"
 - Thus Guass-Siedel must converge
- End result: radiosities for all patches
- Solve RGB radiosities separately, color each patch, and render!
- Caveat: actually, color vertices, not patches

Radiosity Equation

$$\begin{bmatrix} 1 - \rho_{1}F_{1,1} & \cdot & \cdot & \cdot & -\rho_{1}F_{1,n} \\ - \rho_{2}F_{2,1} & 1 - \rho_{2}F_{2,2} & \cdot & -\rho_{2}F_{2,n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ - \rho_{n-1}F_{n-1,1} & \cdot & \cdot & -\rho_{n-1}F_{n-1,n} \\ - \rho_{n}F_{n,1} & \cdot & \cdot & 1 - \rho_{n}F_{n,n} \end{bmatrix} \begin{bmatrix} B_{1} \\ B_{2} \\ \cdot \\ \cdot \\ B_{n} \end{bmatrix} = \begin{bmatrix} E_{1} \\ B_{2} \\ \cdot \\ \cdot \\ B_{n} \end{bmatrix}$$

We also need to compute the form factors, F_{ii}

 Problem is the <u>size</u> of matrices (N*N for N elements, N usually > 50000)

Solving for All Patches

- Putting into matrix form
 - $-\mathbf{b}=\mathbf{e}-\mathbf{RFb}$
 - $-b = [I RF]^{-1}e$
- Use matrix algebra to solve for B_i's

Solving for All Patches

• One patch defined by:

$$B_i = \varepsilon_i + \rho_i \sum_{1 \le j \le n} B_j F_{j,i} \frac{A_j}{A_i}$$

• Symmetry: $A_i F_{i,j} = A_j F_{j,I}$

$$B_i = \mathcal{E}_i + \rho_i \sum_{1 \le j \le n} B_j F_{i,j}$$

• Therefore:

$$B_i - \rho_i \sum_{1 \le j \le n} B_j F_{i,j} = \mathcal{E}_i$$

Department of Computer Science
Solving for All Patches

 Difficult to perform Gaussian Illumination and solve for b (size of F is large but sparse – why?)

• Instead, iterate: $\mathbf{b}^{k+1} = \mathbf{e} - \mathbf{RFb}^k$

- Multiplication of sparse matrix is O(n), not $O(n_2)$ - Stop when $b^{k+1} = b^k$

Department of Computer Science

Solving for All Patches

Alternative solution

– We know:

- Therfore:

$$\frac{1}{1-x} = \sum_{i=0}^{\infty} x^i$$

$$[I-RF]^{-1} = \sum_{i=0}^{\infty} (RF)^{i}$$

- And solution for b is:

$$b = \sum_{i=0}^{\infty} (RF)^{i} e$$

$$b = e + (RF)e + (RF)^{2}e + (RF)^{3}e + \cdots$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Convergence

Gauss-Seidel known to converge for diagonally dominant matrices

$$\begin{bmatrix} 1 - \rho_1 F_{1,1} & \cdot & \cdot & \cdot & -\rho_1 F_{1,n} \\ - \rho_2 F_{2,1} & 1 - \rho_2 F_{2,2} & \cdot & -\rho_2 F_{2,n} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ - \rho_{n-1} F_{n-1,1} & \cdot & \cdot & -\rho_{n-1} F_{n-1,n} \\ - \rho_n F_{n,1} & \cdot & \cdot & 1 - \rho_n F_{n,n} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \\ \cdot \\ \cdot \\ B_n \end{bmatrix} = \begin{bmatrix} E_1 \\ E_2 \\ \cdot \\ \cdot \\ B_n \end{bmatrix}$$

ST NY BR K

Solve by Direct Methods?

- Not feasible to use something like Gaussian elimination because of size of matrix
- We don't even want to store the matrix
- Use <u>iterative methods</u>

Radiosity

- Where we go from here:
 - Evaluating form factors
 - Progressive radiosity: viewing an approximate solution early
 - Hierarchical radiosity: increasing patch resolution on an as-needed basis

Iterative Approach

- Define a residual r = E KB
- Iterate, computing **B**, to reduce residual

 $r^{(0)} = \mathbf{E} - \mathbf{K} \mathbf{B}^{(0)}$

• Every iteration, compute new **B** and *r*

 $\boldsymbol{r}^{(k)} = \mathbf{E} - \mathbf{K} \mathbf{B}^{(k)}$

Initial Condition

$$\mathbf{B}^{(0)} = \mathbf{E}$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Method 1: Jacobi Iteration

- Update each element B_i^(k) to the next iteration using the solution vector B^(k+1)
 From the previous iteration B^(k)
- In other words, compute <u>complete set of B</u> and use that for next iteration

Department of Computer Science

Details

• The *i*-th matrix row is $\frac{n}{5}$

$$\sum_{j=1}^n K_{ij}B_j = E_i$$

• Solve for B_i

$$K_{ii}B_i = E_i - \sum_{j \neq i} K_{ij}B_j$$

ST NY BR K

Department of Computer Science

Details

• Recall that

$$r^{(k)} = \mathbf{E} - \mathbf{K} \mathbf{B}^{(k)}$$

• So

$$E_{i}^{(k)} = E_{i} - \sum_{j=1}^{n} K_{ij} B_{j}^{(k)}$$

• or

$$E^{(k)} = E_i - \sum_{j \neq i} K_{ij} B_j^{(k)} - K_{ii} B_i^{(k)}$$

• and

$$E_{i} - \sum_{j \neq i} K_{ij} B_{j}^{(k)} = r^{(k)} + K_{ii} B_{i}^{(k)}$$

Substitute

$$E_{i} - \sum_{j \neq i} K_{ij} B_{j}^{(k)} = r^{(k)} + K_{ii} B_{i}^{(k)}$$

into

$$K_{ii}B_i = E_i - \sum_{j \neq i} K_{ij}B_j$$

to get

$$K_{ii}B_i^{(k+1)} = r^{(k)} + K_{ii}B_i^{(k)}$$

$$B_i^{(k+1)} = \frac{r^{(k)}}{K_{ii}} + B_i^{(k)}$$

Jacobi Iteration

If we compute residual r each iteration, we can compute updated B

$$B_i^{(k+1)} = \frac{r^{(k)}}{K_{ii}} + B_i^{(k)}$$

$$r^{(k)} = E_i - \sum_{j=1}^n K_{ij} B_j^{(k)}$$

• Works but converges slowly

Method 2: Gauss-Seidel

• At each step use <u>the most current values</u> in **B**

$$K_{ii}B_i^{(k+1)} = E_i - \sum_{j=1}^{i-1} K_{ij}B_j^{(k+1)} - \sum_{j=i+1}^n K_{ij}B_j^{(k)}$$

Analogous formulation to get

$$B_i^{(k+1)} = \frac{r^{(k)}}{K_{ii}} + B_i^{(k)}$$

Now must update residuals at each step

Algorithm

Set all B_i to the E_i values While (not converged) { For (i = 1 to n) Compute new B_i

A full iteration takes $O(n^2)$ – residual update costs O(n) at each step

ST NY BR K STATE UNIVERSITY OF NEW YORK

Method 3: Gathering

- A physical analogy is to think of a node or element as *gathering* light from all of the other elements to arrive at a new estimate
- Each element *j* contributes some radiosity to the radiosity of element *i* as follows

$$\Delta B_i = \rho_i B_j F_{ij}$$

Gathering variant: Southwell

- Very similar, but instead of proceeding in order from 1 to n, choose the row with the *highest residual* and update it....
-that is, gather to the element which received the <u>least light</u> from what it should

Department of Computer Science

Southwell Algorithm

• For *i*, such that $r_i = Max(\mathbf{r})$, compute

$$B_{i}^{(k+1)} = E_{i} - \sum_{j \neq i} \frac{K_{ij} B_{j}^{(k)}}{K_{ii}}$$

Note that, now the variable k is a step and not a complete iteration

Department of Computer Science

Complexity

• In order to keep each step O(n), you need to incrementally update the residuals

Department of Computer Science

Computing Residual

• Define the difference in radiosity at each step as $\Delta B^{(p)}$

• Then

$$\mathbf{B}^{(p+1)} = \mathbf{B}^{(p)} + \Delta \mathbf{B}^{(p)}$$

so the residual can be computed as

$$\mathbf{r}^{(p+1)} = \mathbf{E} - \mathbf{K} (\mathbf{B}^{(p)} + \Delta \mathbf{B}^{(p)}) = \mathbf{r}^{(p)} - \mathbf{K} \Delta \mathbf{B}^{(p)}$$

Only One *B* Changes

• All of the changes in the **B** vector are 0, except for the one that was just updated at step *I*, so

$$r_j^{(p+1)} = r_j^{(p)} - K_{ji} \Delta B_i, \forall j$$

Department of Computer Science

Initial Conditions

- Set $\mathbf{B}^{(0)}$ to all be zero, and $\mathbf{r}^{(0)}$ to be \mathbf{E}
- So at the first step, the element being the brightest emitter would have its radiosity set to the value of that emitter and its residual set to 0
- This leads to the interpretation of . . .

Shooting

- The residual can be interpreted as the amount of energy left to be reflected (or emitted)
- At each step, one of the residuals (the one for row *i*) contributes – *shoots* – to all of the other residuals

Department of Computer Science

Progressive Radiosity (Similar to Southwell)

- Shoot from the element having the most energy
- Compute the form factors as you shoot
- Update all of the radiosities
- Display the results every iteration

Department of Computer Science

Initially

For all $i \{$ $B_i = E_i;$ $\Delta B_i = E_i;$ }

ST NY BR K

Department of Computer Science

while (not converged) { Select *i*, such that $\Delta B_i A_i$ is greatest; Project all other elements onto Hemicube at *i* to compute form factors; For every element *j* { $\Delta Rad = \Delta B_i^* \rho_i F_{ii};$ $\Delta B_i += \Delta Rad;$ $B_i += \Delta Rad;$ $\Delta B_i = 0;$ Display image;

Advantages

- You see progresses
- You don't store a $O(n^2)$ matrix of form factors
- When the process starts out, all of the unshot energy is at lights
- As the process unfolds, the energy is spread around and the residuals become more even

Department of Computer Science

Ambient Term

- An estimate of the average form factors can be made from their areas $F_{*j} \approx \frac{A_j}{\sum_{i=1}^n A_i}$
- We can also compute the area-weighted average of reflectivities

Department of Computer Science

Ambient Term

- Just to make the images look better (less dark) at the beginning, Cohen, et. al. use an ambient term
- It's related to the reflected illumination not yet accounted for (or in other words the energy yet unshot)

Department of Computer Science

Ambient Estimate

• Ambient term is total of the area-weighted unshot energy times the total reflectivity

$$B_{ambient} = R_{total} \sum_{j=1}^{n} (\Delta B_j F_{*j})$$

Each element displays its own fraction

$$B_i^{display} = B_i + \rho_i B_{ambient}$$

Reflection

• The energy will be reflected over and over, so the total reflection can be expressed as

$$R_{total} = 1 + \overline{\rho} + \overline{\rho}^2 + \overline{\rho}^3 + \ldots = \frac{1}{1 - \overline{\rho}}$$

Department of Computer Science

- 30,000 patches divided into 50,000 elements.
- Solution run for only 2000 patches
- View-dependent post-process, computing radiosity at visible vertices, 190 hours

Displayed Image after 1, 2, 24, and 100 Steps

F NEW YORK

Department Center for

Magritte Studio Image

Department of Computer S Center for Visual Compu NY BR K

Radiosity - Cons

- Form factors need to be re-computed if *anything* moves
- Large computational and storage costs
- Non-diffuse light not represented
 - Mirrors and shiny objects hard to include
- Lighting effects tend to be "blurry", not sharp without good subdivision
- Not applicable to procedurally defined surfaces

CSE328 Lectures

Radiosity - Pros

- Viewpoint independence means fast real-time display after initial calculation
- Inter-object interaction possible
 - Soft shadows
 - Indirect lighting
 - Color bleeding
- Accurate simulation of energy transfer

Department of Computer Science Center for Visual Computing **CSE328** Lectures

View-dependent vs View-independent

- Ray-tracing models specular reflection well, but diffuse reflection is approximated
- Radiosity models diffuse reflection accurately, but specular reflection is ignored
- Advanced algorithms combine the two

Ray-Traced Room

Radiosity Room

Department of Computer Science

Radiosity

- Radiosity is expensive to compute
- Some parts of illuminated world can change —Emitted light
 - -Viewpoint
- Other things cannot
 - -Light angles
 - -Object positions and occlusions
 - -Computing form factors is expensive
- Specular reflection information is not modeled

Summary

- Now we know
 - How to formulate the radiosity problem
 - How to solve equations
 - How to approximate form factors

References

• Cohen and Wallace, Radiosity and Realistic Image Synthesis, Chapter 5.