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Global Illumination
• Global Illumination

– A point is illuminated by more than light from 

local lights

– It is illuminated by all the emitters and reflectors 

in the global scene

• Ray Tracing

• Radiosity
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Ray Tracing
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Ray Tracing Fundamentals
• Represent specular global lighting

• Trace light backward (usually) from the eye, 
through the pixel, and into the scene

• Recursively bounce off objects in the scene, 
accumulating a color for that pixel

• Final output is single image of the scene

CSE328 Lectures
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Recursive Ray Tracing
• Cast a ray from the 

viewer’s eye through 

each pixel

• Compute intersection 

of this ray with objects 

from scene

• Closest intersecting 

object determines color
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Recursive Ray Tracing
• For each ray cast from the eyepoint

– If surface is struck

• Cast ray to each light source (shadow 

ray)

• Cast reflected ray (feeler ray)

• Cast transmitted ray (feeler ray)

• Perform Phong lighting on all 

incoming light

– Note that, diffuse component of    

Phong lighting is not pushed        

through the system 
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Recursive Ray Tracing
• Computing all shadow and feeler rays is slow

– Stop after fixed number of iterations

– Stop when energy contributed is below threshold

• Most work is spent testing ray/plane 

intersections

– Use bounding boxes to reduce comparisons

– Use bounding volumes to group objects

– Parallel computation (on shared-memory machines)
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Recursive Ray Tracing
• Just a sampling method

– We’d like to cast infinite rays and combine 

illumination results to generate pixel values

– Instead, we use pixel locations to guide ray casting

• Problems?
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Problems With Ray Tracing
• Aliasing

– Supersampling

– Stochastic sampling

• Works best on specular surfaces (not diffuse)

• For perfectly specular surfaces

– Ray tracing == rendering equation (subject to 

aliasing)
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Ray Tracing - Pros

CSE328 Lectures

• Simple idea and nice results

• Inter-object interaction possible

– Shadows

– Reflections

– Refractions (light through glass, etc.)

• Based on real-world lighting 
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Ray Tracing - Cons

• Takes a long time

• Computation speed-ups are often highly scene-

dependent

• Lighting effects tend to be abnormally sharp,      

without soft edges, unless more advanced 

techniques are used

• Hard to put into hardware 

CSE328 Lectures
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Supersampling - I

• Problem: each pixel of the display represents one 

single ray

– Aliasing

– Unnaturally sharp images

• Solution: send multiple rays through each 

“pixel” and average the returned colors together

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Supersampling - II
• Direct supersampling

– Split each pixel into a grid and send rays through 
each grid point

• Adaptive supersampling

– Split each pixel only if it’s significantly different 
from its neighbors

• Jittering

– Send rays through randomly selected points within 
the pixel

CSE328 Lectures
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Soft Shadow

• Basic shadow generation was an on/off choice 

per point

• “Real” shadows do not usually have sharp edges

• Instead of using a point light, use an object with 

area

• Shoot jittered shadow rays toward the light and 

count only those that hit it

CSE328 Lectures
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Soft Shadow Example
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Hard shadow Soft shadow



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity

• Ray tracing models specular 

reflection and refractive transparency, but 

still uses an ambient term to account for 

other lighting effects

• Radiosity is the rate at which energy is 

emitted or reflected by a surface

• By conserving light energy in a volume, 

these radiosity effects can be traced
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Radiosity – Basic Concept

CSE328 Lectures

• Radiosity of a surface: rate at which energy leaves a surface 

– emitted by surface and reflected from other surfaces

• Represent diffuse global lighting

• Create a closed energy system where every polygon emits and/or 
bounces some light at every other polygon

• Calculate how light energy spreads through the system

• Solve a linear system for radiosity of each “surface”

– Dependent on emissive property of surface 

– Dependent on relation to other surfaces (form factors)

• Final output is a polygon mesh with pre-calculated colors for 
each vertex
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Radiosity
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Radiosity

• Break environment up into a finite number n of 

discrete patches

– Patches are opaque Lambertian surfaces of finite size

– Patches emit and reflect light uniformly over their 

entire surface
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Radiosity

• Model light transfer between patches as a system 

of linear equations

• Solving this system gives the intensity at each 

patch

• Solve for R, G, B intensities and get color at 

each patch

• Render patches as colored polygons in OpenGL
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Radiosity

• All surfaces are assumed perfectly diffuse

– What does that mean about property of lighting in 

scene?

– Light is reflected equally in all directions

– Same lighting independent of viewing angle / location

– Only a subset of the Rendering Equation

Diffuse-diffuse surface lighting effects possible
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The “Rendering Equation”
• Jim Kajiya (current head of Microsoft Research) developed this in 

1986

• I(x, x’) is the total intensity from point x’ to x

• g(x, x’) = 0 when x/x’ are occluded and 1/d2 otherwise (d = distance 
between x and x’)

 e(x, x’) is the intensity emitted by x’ to x

 r(x, x’,x’’) is the intensity of light reflected from x’’ to x through x’

• S is all points on all surfaces
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Radiosity Equation
• Then for each surface i:

Bi = Ei + ri  Bj Fji (Aj / Ai)

where

Bi, Bj   = radiosity of patch i, j

Ai, Aj   = area of patch i, j

Ei = energy/area/time emitted by i

ri = reflectivity of patch i 

Fji = Form factor from j to i
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Form Factors

• Form factor: fraction of energy leaving the 

entirety of patch i that arrives at patch j, 

accounting for:

– The shape of both patches

– The relative orientation of both patches

– Occlusion by other patches
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Form Factors
• Compute n-by-n matrix of form factors to store 

radiosity relationships between each light patch 

and every other light patch
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Form Factor – Another Example
• Spherical projections to model form factor

– Project polygon Aj on unit hemisphere centered at (and tangent 
to) Ai

• Contributes cosj / r2

– Project this projection to 
base of hemisphere

• Contributes cosi

– Divide this area by area 
of circle base

• Contributes 12

jij
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Hij = 1 or 0 depending on 

occlusion
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Form Factor – Another Model
• Hemicube allows faster computations

– Analytic solution of hemisphere is expensive

– Use rectangular approximation, Hemicube

– Cosine terms for top and sides 

are simplified

– Dimension of 50 – 200 squares 

is good
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Form Factors Properties

• In diffuse environments, form factors obey a 

simple reciprocity relationship:

Ai Fij = Ai Fji

• Which simplifies our equation:

Bi = Ei + ri  Bj Fij

• Rearranging to:

Bi - ri  Bj Fij = Ei
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Radiosity Equation
• So…light exchange between all patches 

becomes a matrix:

• What do the various terms mean?
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Solving Radiosity Equation

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

34

Goal

• Find efficient ways to solve the radiosity 

equation

– Jacobi Iteration

– Gauss-Seidel

– Southwell or Shooting

– Progressive Radiosity
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Radiosity

• Q: How many form factors must be computed?

• A: O(n2)

• Q: What primarily limits the accuracy of the 

solution?

• A: The number of patches
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Radiosity

• Now “just” need to solve the matrix!

– Matrix is “diagonally dominant”

– Thus Guass-Siedel must converge

• End result: radiosities for all patches

• Solve RGB radiosities separately, color each 

patch, and render!

• Caveat: actually, color vertices, not patches
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Radiosity Equation

CSE328 Lectures
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• We also need to compute the form factors, Fij

• Problem is the size of matrices

(N*N for N elements, N usually > 50000)
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Solving for All Patches

• Putting into matrix form

– b = e – RFb

– b = [I – RF]-1 e

• Use matrix algebra to solve for Bi’s
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Solving for All Patches
• One patch defined by:

• Symmetry: AiFi,j = AjFj,I

• Therefore: 
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Solving for All Patches

• Difficult to perform Gaussian Illumination and 

solve for b (size of F is large but sparse – why?)

• Instead, iterate:    bk+1 = e – RFbk

– Multiplication of sparse matrix is O(n), not O(n2)

– Stop when bk+1 = bk
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Solving for All Patches

• Alternative solution

– We know:

– Therfore:

– And solution for b is:
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Convergence

• Gauss-Seidel known to converge for diagonally 

dominant matrices
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Solve by Direct Methods?

• Not feasible to use something like Gaussian 

elimination because of size of matrix

• We don’t even want to store the matrix

• Use iterative methods
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Radiosity

• Where we go from here:

– Evaluating form factors

– Progressive radiosity: viewing an approximate 

solution early

– Hierarchical radiosity: increasing patch resolution on 

an as-needed basis
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Iterative Approach

• Define a residual

• Iterate, computing B, to reduce residual

• Every iteration, compute new B and r

• Initial Condition

KBEr

)0()0(
KBEr

)()( kkr KBE

EB )0(
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Method 1: Jacobi Iteration
• Update each element         to the next iteration 

using the solution vector

from the previous iteration 

• In other words, compute complete set of B and 

use that for next iteration

)(k

iB
)1( k

B

)(k
B
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Details

• The i-th matrix row is

• Solve for Bi
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Details

• Recall that

• So

• or

• and

)()( kkr KBE
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Substitute

into

to get

or





ij

jijiiii BKEBK

)()()( k

iii

k

ij

k

jiji BKrBKE 


)()()1( k

iii

kk

iii BKrBK 

)(
)(

)1( k

i

ii

k
k

i B
K

r
B 



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Jacobi Iteration

• If we compute residual r each iteration, we can 

compute updated B

• Works … but converges slowly
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Method 2: Gauss-Seidel

• At each step use the most current values in B

• Analogous formulation to get

• Now must update residuals at each step
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Algorithm

Set all Bi to the Ei values

While (not converged) {

For (i = 1 to n)

Compute new Bi

}

A full iteration takes O(n2) – residual update costs 

O(n) at each step
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Method 3: Gathering

• A physical analogy is to think of a node or 

element as gathering light from all of the other 

elements to arrive at a new estimate

• Each element j contributes some radiosity to the 

radiosity of element i as follows 

ijjii FBB r
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Gathering variant: Southwell

• Very similar, but instead of proceeding in order 

from 1 to n, choose the row with the highest 

residual and update it….

• …that is, gather to the element which

received the least light from what it should
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Southwell Algorithm

• For i, such that ri = Max(r), compute

• Note that, now the variable k is a step and not a 

complete iteration
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Complexity

• In order to keep each step O(n), you need to 

incrementally update the residuals
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Computing Residual

• Define the difference in radiosity at each step as        

• Then

so the residual can be computed as 

)( p
B
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Only One B Changes 

• All of the changes in the B vector are 0, except 

for the one that was just updated at step I, so

jBKrr iji

p

j

p

j  ,)()1(
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Initial Conditions

• Set B(0) to all be zero, and r(0) to be E

• So at the first step, the element being the brightest 

emitter would have its radiosity set to the value of 

that emitter and its residual set to 0

• This leads to the interpretation of . . .
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Shooting

• The residual can be interpreted as the amount of 

energy left to be reflected (or emitted)

• At each step, one of the residuals (the one for 

row i) contributes – shoots – to all of the other 

residuals
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Progressive Radiosity
(Similar to Southwell)

• Shoot from the element having the most energy

• Compute the form factors as you shoot

• Update all of the radiosities

• Display the results every iteration
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Initially

For all i {

Bi = Ei;

Bi = Ei;

}
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while (not converged) {

Select i, such that Bi Ai is greatest;

Project all other elements onto Hemicube at i to 
compute form factors;

For every element j {

Rad = Bi * rj Fji ;

Bj += Rad ;

Bj += Rad ;

}

Bi = 0;

Display image;

}
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Advantages

• You see progresses

• You don’t store a O(n2) matrix of form factors

• When the process starts out, all of the unshot 

energy is at lights

• As the process unfolds, the energy is spread 

around and the residuals become more even
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• An estimate of the average form factors can be 

made from their areas

• We can also compute the area-weighted average 

of reflectivities
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Ambient Term

• Just to make the images look better (less dark) at 

the beginning, Cohen, et. al. use an ambient term

• It’s related to the reflected illumination not yet 

accounted for (or in other words the energy yet 

unshot)
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Ambient Estimate

• Ambient term is total of the area-weighted 

unshot energy times the total reflectivity

• Each element displays its own fraction
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Reflection

• The energy will be reflected over and over, so 

the total reflection can be expressed as

r
rrr
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1 32 totalR
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• 30,000 patches divided into 50,000 elements.

• Solution run for only 2000 patches

• View-dependent post-process, computing radiosity at 
visible vertices, 190 hours
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Example
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Magritte Studio Image
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Radiosity - Cons

CSE328 Lectures

• Form factors need to be re-computed if anything
moves

• Large computational and storage costs

• Non-diffuse light not represented

– Mirrors and shiny objects hard to include

• Lighting effects tend to be “blurry”,  not sharp 
without good subdivision

• Not applicable to procedurally defined surfaces



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Radiosity - Pros

• Viewpoint independence means fast real-time 

display after initial calculation

• Inter-object interaction possible

– Soft shadows

– Indirect lighting

– Color bleeding

• Accurate simulation of energy transfer

CSE328 Lectures
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View-dependent vs 
View-independent
• Ray-tracing models specular reflection well, but 

diffuse reflection is approximated

• Radiosity models diffuse reflection accurately, 

but specular reflection is 

ignored

• Advanced algorithms 

combine the two
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Radiosity
• Radiosity is expensive to compute

• Some parts of illuminated world can change

–Emitted light

–Viewpoint

• Other things cannot

–Light angles

–Object positions and occlusions

–Computing form factors is expensive

• Specular reflection information is not modeled
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Summary

• Now we know

– How to formulate the radiosity problem

– How to solve equations

– How to approximate form factors
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