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2D-3D Transformations

• From local, model coordinates to global, world 

coordinates
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Modeling Transformations

• 2D-3D transformations

• Specify transformations for objects 

– Allows definitions of objects in their own coordinate 

systems

– Allows use of object definition multiple times in a 

scene

– Please pay attention to how OpenGL provides a 

transformation stack  because they are so frequently 

reused



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Overview

• 2D Transformations

– Basic 2D transformations

– Matrix representation

– Matrix composition

• Generalization to 3D Transformations

– Basic 3D transformations

– Same as 2D
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From Model Coordinates to World 
Coordinates (Local to Global)

CSE528 Lectures

x

y
Model coordinates (local)

World coordinates (global)
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Basic 2D Transformations
• Translation:

– x’ = x + tx

– y’ = y + ty

• Scale:

– x’ = x * sx

– y’ = y * sy

• Shear:

– x’ = x + hx*y

– y’ = y + hy*x

• Rotation:

– x’ = x*cosQ - y*sinQ

– y’ = x*sinQ + y*cosQ
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Scaling
• Scaling a coordinate means multiplying each of 

its components by a scalar

• Uniform scaling means this scalar is the same for 
all components:

• Non-uniform scaling: different scalars per 
component:

• How can we represent scaling in matrix form?
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Scaling Operation in Matrix Form
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Scaling

• Scaling operation:

• Or, in matrix form:
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Rotation
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2-D Rotation

x’ = x cos() - y sin()

y’ = x sin() + y cos()
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2D Rotation Derivation
• x = r cos (f)

• y = r sin (f)

• x’ = r cos (f + )

• y’ = r sin (f + )

• x’ = r cos(f) cos() – r sin(f) sin()

• y’ = r sin(f) sin() + r cos(f) cos()

• x’ = x cos() - y sin()

• y’ = x sin() + y cos()
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2-D Rotation

• It is straightforward to see this procedure in 

matrix form:

Even though sin() and cos() are nonlinear 

functions of ,

– x’ is a linear combination of x and y

– y’ is a linear combination of x and y
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2D Rotation
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Basic 2D Transformations
• Translation:

– x’ = x + tx

– y’ = y + ty

• Scale:
– x’ = x * sx

– y’ = y * sy

• Shear:
– x’ = x + hx*y

– y’ = y + hy*x

• Rotation:
– x’ = x*cosQ - y*sinQ

– y’ = x*sinQ + y*cosQ
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Basic 2D Transformations
• Translation:

– x’ = x + tx
– y’ = y + ty

• Scale:
– x’ = x * sx

– y’ = y * sy

• Shear:
– x’ = x + hx*y

– y’ = y + hy*x

• Rotation:
– x’ = x*cosQ - y*sinQ

– y’ = x*sinQ + y*cosQ

Transformations can be 
combined (with simple 
algebra)
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Combining Transformations
• Transformations can be combined (with 

simple algebra)
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Composite Transformations

Transformations can be combined

(with simple algebra)
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Matrix Representation

• Represent 2D transformation by a matrix

• Multiply matrix by column vector

 apply transformation to point
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Overview

• 2D Transformations

– Basic 2D transformations

– Matrix representation

– Matrix composition

• Generalization to 3D Transformations

– Basic 3D transformations

– Same as 2D
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Matrix Representation







dc
ba



















y
x

dc
ba

y
x
'
'

dycxy

byaxx





'

'



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Matrix Representation

• Represent 2D transformation by a matrix

• Multiply matrix by column vector

 apply transformation to point
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Matrix Representation
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Matrix Representation

• Transformations can be combined by 

multiplication

– Matrices are a convenient and efficient way to 

represent a sequence of transformations!
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Matrix Representation

• Transformations combined by multiplication
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Matrices are a convenient and efficient way 

to represent a sequence of transformations!
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2x2 Matrices

• What types of transformations can be 

represented with a 2x2 matrix?

2D Identity?
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2x2 Matrices

• What types of transformations can be 

represented with a 2x2 matrix?

2D Rotate around (0,0)?
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2x2 Matrices

• What types of transformations can be 

represented with a 2x2 matrix?

2D Mirror about Y axis?
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2x2 Matrices

• What types of transformations can be 

represented with a 2x2 matrix?

2D Translation?
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Only linear 2D transformations 

can be represented with a 2x2 matrix

NO!
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Linear Transformations
• Linear transformations are combinations of …

– Scale,

– Rotation,

– Shear, and

– Mirror

• Properties of linear transformations:

– Satisfies:

– Origin maps to origin

– Lines map to lines

– Parallel lines remain parallel

– Ratios are preserved

– Closed under composition
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Homogeneous Coordinates

• Q: How can we represent translation as a 3x3 

matrix?
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Homogeneous Coordinates

• Homogeneous 

coordinates

– represent coordinates in 2 

dimensions with a 3-

vector 
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less intuitive, but they indeed make graphics 

operations much easier
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Homogeneous Coordinates

• Q: How can we represent translation as a 3x3 

matrix?

• A: Using the rightmost column:
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Translation

• Example of translation
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Homogeneous Coordinates

• Add a 3rd coordinate to every 2D point

– (x, y, w) represents a point at location (x/w, y/w)

– (x, y, 0) represents a point at infinity

– (0, 0, 0) is not allowed

• Note that, (6,3,1); (12,6,2); and (18,9,3) represent the SAME 

POINT in 2D

Convenient coordinate system to 

represent many useful transformations
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Basic 2D Transformations

• Basic 2D transformations as 3x3 matrices
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Affine Transformations

• Affine transformations are combinations of …

– Linear transformations, and

– Translations

• Properties of affine transformations:

– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines remain parallel

– Ratios are preserved

– Closed under composition
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Projective Transformations

• Projective transformations …

– Affine transformations, and

– Projective warps

• Properties of projective transformations:

– Origin does not necessarily map to origin

– Lines map to lines

– Parallel lines do not necessarily remain parallel

– Ratios are not preserved

– Closed under composition
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Overview

• 2D Transformations

– Basic 2D transformations

– Matrix representation

– Matrix composition

• Generalization to 3D Transformations

– Basic 3D transformations

– Same as 2D
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Matrix Composition

• Transformations can be combined by 

matrix multiplication
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p’ =  T(tx,ty)  *  R(Q)  *  S(sx,sy)  *  p
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Matrix Composition

• Matrices are a convenient and efficient way to 

represent a sequence of transformations

– General purpose representation

– Hardware matrix multiply

p’ = (T * (R * (S*p)  )  )

p’ = (T*R*S) * p
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Matrix Composition

• From local coordinates to global coordinates

• Be aware: order of transformations matters
• Matrix multiplication is not commutative

p’ = T * R * S * p
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Matrix Composition

• A more complicated example: rotating 90 

degrees around the mid-point of a line segment 

(whose coordinates are (3,2))

• Can we change the order between rotation and 

translation?
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Will this sequence of operations work?

Matrix Composition
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Matrix Composition

• After correctly ordering the matrices

• Multiply matrices together

• What results is one matrix – store it (on stack)!

• Multiply this matrix by the vector of each vertex

• All vertices easily transformed with one matrix 

multiply
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Overview

• 2D Transformations

– Basic 2D transformations

– Matrix representation

– Matrix composition

• Generalization to 3D Transformations

– Basic 3D transformations

– Same as 2D
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3D Transformations

• Same idea as 2D transformations

– Homogeneous coordinates: (x,y,z,w) 

– 4x4 transformation matrices
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Basic 3D Transformations
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Basic 3D Transformations
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Matrix Composition

• Matrices are a convenient and efficient way to 

represent a sequence of transformations

– General purpose representation

– Hardware matrix multiply

p’ = (T * (R * (S*p)  )  )

p’ = (T*R*S) * p
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Matrix Composition

• From local coordinates to global coordinates

• Be aware: order of transformations matters
• Matrix multiplication is not commutative

p’ = T * R * S * p
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Reverse Rotations
• Q: How do you undo a rotation of , R()?

• A: Apply the inverse of the rotation…    R-1() = R(-) 

• How to construct R-1() = R(-) 

– Inside the rotation matrix: cos() = cos(-)

• The cosine elements of the inverse rotation matrix are 

unchanged

– The sign of the sine elements will flip

– This is because the rotation matrix is orthogonal matrix

• Therefore…  R-1() = R(-) = RT()
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Summary
• Coordinate systems are the basis for computer graphics

– World vs. model coordinates (Global vs. Local)

• 2D and 3D transformations

– Trigonometry and geometry

– Matrix representations

– Linear, affine, and projective transformations

• Matrix operations

– Matrix composition


