CSE328 Fundamentals of Computer Graphics (Theory, Algorithms, and Applications)

Hong Qin Department of Computer Science Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.stonybrook.edu http://www.cs.stonybrook.edu/~qin

2D-3D Transformations

• From local, model coordinates to global, world coordinates

Department of Computer Science

Modeling Transformations

- 2D-3D transformations
- Specify transformations for objects
 - Allows definitions of objects in their own coordinate systems
 - Allows use of object definition multiple times in a scene
 - Please pay attention to how OpenGL provides a transformation stack because they are so frequently reused

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- Generalization to 3D Transformations
 - Basic 3D transformations
 - Same as 2D

Department of Computer Science

From Model Coordinates to World Coordinates (Local to Global)

Model coordinates (local)

World coordinates (global)

Department of Computer Science Center for Visual Computing K

Basic 2D Transformations

- Translation:
 - $x' = x + t_x \\ y' = y + t_y$
- Scale:

$$- x' = x * s_x - y' = y * s_y$$

- Shear:
 - $-x' = x + h_x * y$ $-y' = y + h_y * x$
- Rotation: $-x' = x^*\cos\Theta - y^*\sin\Theta$ $-y' = x^*\sin\Theta + y^*\cos\Theta$

Department of Computer Science

Scaling

- Scaling a coordinate means multiplying each of its components by a scalar
- Uniform scaling means this scalar is the same for all components:
- Non-uniform scaling: different scalars per component:

• How can we represent scaling in matrix form?

Scaling Operation in Matrix Form

Department of Computer Science

Scaling

• Scaling operation:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} ax \\ by \end{bmatrix}$$

• Or, in matrix form

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix

Department of Computer Science

Rotation

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

2-D Rotation

$$x' = x \cos(\theta) - y \sin(\theta)$$
$$y' = x \sin(\theta) + y \cos(\theta)$$

ST NY BR K

2D Rotation Derivation

- $x = r \cos(\phi)$
- $y = r \sin(\phi)$
- $x' = r \cos(\phi + \theta)$
- $y' = r \sin(\phi + \theta)$
- $x' = r \cos(\phi) \cos(\theta) r \sin(\phi) \sin(\theta)$
- $y' = r \sin(\phi) \sin(\theta) + r \cos(\phi) \cos(\theta)$
- $x' = x \cos(\theta) y \sin(\theta)$
- $y' = x \sin(\theta) + y \cos(\theta)$

2-D Rotation

• It is straightforward to see this procedure in matrix form:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Even though $sin(\theta)$ and $cos(\theta)$ are nonlinear functions of θ ,

-x' is a linear combination of x and y

-y is a linear combination of x and y

Department of Computer Science

2D Rotation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

ST NY BR K

Department of Computer Science

Basic 2D Transformations

- Translation:
 - $x' = x + t_x$
 - $y' = y + t_{y_y}$
- Scale:
 - $x' = x * s_{x}$
 - $y' = y * s_{y}$
- Shear:
 - $x' = x + h_x * y$
 - $y' = y + h_{y} * x$
- Rotation:
 - $x' = x \cos \Theta y \sin \Theta$
 - $y' = x^* \sin \Theta + y^* \cos \Theta$

Department of Computer Science

Basic 2D Transformations

- Translation:
 - $-\mathbf{x}' = \mathbf{x} + \mathbf{t}_{\mathbf{x}}$
 - $y' = y_{y_{y_{y_{y}}}} + t_{y_{y_{y}}}$
- Scale:
 - $x' = x * \overline{s_x}$ $y' = y * s_y$
- Shear:
 - $x' = x + h_x * y_y$ $- y' = y + h_y * x_y$
- Rotation: $-x' = x^*\cos\Theta - y^*\sin\Theta$ $-y' = x^*\sin\Theta + y^*\cos\Theta$

Transformations can be combined (with simple algebra)

Department of Computer Science

Combining Transformations

Transformations can be combined (with simple algebra)

Department of Computer Science

Composite Transformations

Transformations can be combined (with simple algebra)

ST NY BR K

- Represent 2D transformation by a matrix
- Multiply matrix by column vector
 ⇔ apply transformation to point

Department of Computer Science

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- Generalization to 3D Transformations
 - Basic 3D transformations
 - Same as 2D

Department of Computer Science

a h d C

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix}$$

$$x' = ax + by$$
$$y' = cx + dy$$

• Represent 2D transformation by a matrix

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Multiply matrix by column vector
 apply transformation to point

$$\begin{bmatrix} x'\\y'\end{bmatrix} = \begin{bmatrix} a & b\\c & d\end{bmatrix} \begin{bmatrix} x\\y\end{bmatrix} \qquad \begin{array}{c} x' = ax + b\\y' = cx + d\end{array}$$

ST NY BR K

Department of Computer Science

- Transformations can be combined by multiplication
 - Matrices are a convenient and efficient way to represent a sequence of transformations!

Department of Computer Science

Transformations combined by multiplication

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \begin{bmatrix} i & j \\ k & l \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Matrices are a convenient and efficient way to represent a sequence of transformations!

Department of Computer Science

- What types of transformations can be represented with a 2x2 matrix?
 - 2D Identity?

$$\begin{array}{l} x' = x \\ y' = y \end{array}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_y \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

 What types of transformations can be represented with a 2x2 matrix?
 2D Rotate around (0,0)?

$$x' = \cos \Theta^* x - \sin \Theta^* y$$

$$y' = \sin \Theta^* x + \cos \Theta^* y$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \Theta & -\sin \Theta \\ \sin \Theta & \cos \Theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Shear?

$$x' = x + sh_x * y$$

 $y' = sh_y * x + y$

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x \\ s\mathbf{h}_y & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix}$$

Department of Computer Science

Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

 \mathbf{NY}

- What types of transformations can be represented with a 2x2 matrix?
 - 2D Mirror about Y axis?

$$\begin{array}{c} x' = -x \\ y' = y \end{array}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror over (0,0)?

Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

• What types of transformations can be represented with a 2x2 matrix?

2D Translation?

$$\begin{array}{c} x' = x + t_x \\ y' = y + t_y \end{array}$$

Only linear 2D transformations

can be represented with a 2x2 matrix

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Linear Transformations

- Linear transformations are combinations of ...
 - Scale,
 - Rotation,
 - Shear, and
 - Mirror
- Properties of linear transformations:
 - Satisfies:
 - Origin maps to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$T(s_1\mathbf{p}_1 + s_2\mathbf{p}_2) = s_1T(\mathbf{p}_1) + s_2T(\mathbf{p}_2)$$

• Q: How can we represent translation as a 3x3 matrix?

 $x' = x + t_x$ $y' = y + t_{y}$

Department of Computer Science

- Homogeneous
 coordinates
 - represent coordinates in 2 dimensions with a 3vector

Homogeneous coordinates appear to be far less intuitive, but they indeed make graphics operations much easier

• Q: How can we represent translation as a 3x3 matrix?

$$x' = x + t_x$$
$$y' = y + t_y$$

• A: Using the rightmost column:

$$\mathbf{Translation} = \begin{bmatrix} 1 & 0 & \mathbf{t}_x \end{bmatrix}$$
$$\begin{bmatrix} 0 & 1 & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix}$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Translation

• Example of translation

- Add a 3rd coordinate to every 2D point
 - (x, y, w) represents a point at location (x/w, y/w)
 - -(x, y, 0) represents a point at infinity
 - (0, 0, 0) is not allowed
- Note that, (6,3,1); (12,6,2); and (18,9,3) represent the SAME POINT in 2D

Convenient coordinate system to represent many useful transformations

Basic 2D Transformations

• Basic 2D transformations as 3x3 matrices

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \mathbf{t}_x \\ 0 & 1 & \mathbf{t}_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Translate

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{s}_x & 0 & 0 \\ 0 & \mathbf{s}_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scale

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & s\mathbf{h}_x & 0 \\ s\mathbf{h}_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Shear

Department of Computer Science

Affine Transformations

- Affine transformations are combinations of
 - Linear transformations, and
 - Translations
- Properties of affine transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines remain parallel
 - Ratios are preserved
 - Closed under composition

$$\begin{bmatrix} x'\\y'\\w\end{bmatrix} = \begin{bmatrix} a & b & c\\d & e & f\\0 & 0 & 1\end{bmatrix}\begin{bmatrix} x\\y\\w\end{bmatrix}$$

Projective Transformations

- Projective transformations
 - Affine transformations, and
 - Projective warps

- Properties of projective transformations:
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are not preserved
 - Closed under composition

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- Generalization to 3D Transformations
 - Basic 3D transformations
 - Same as 2D

Department of Computer Science

• Transformations can be combined by matrix multiplication

$$\begin{bmatrix} x'\\y'\\w' \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} 1 & 0 & tx\\0 & 1 & ty\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos\Theta & -\sin\Theta & 0\\\sin\Theta & \cos\Theta & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} sx & 0 & 0\\0 & sy & 0\\0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x\\y\\w \end{bmatrix}$$

 $\mathbf{p}' = \mathbf{T}(\mathbf{t}_x, \mathbf{t}_y) * \mathbf{R}(\Theta) * \mathbf{S}(\mathbf{s}_x, \mathbf{s}_y)$

Department of Computer Science

- Matrices are a convenient and efficient way to represent a sequence of transformations
 - General purpose representation
 - Hardware matrix multiply

p' = (T * (R * (S*p))) p' = (T*R*S) * p

- From local coordinates to global coordinates
- Be aware: order of transformations matters
 - Matrix multiplication is not commutative

Department of Computer Science

- A more complicated example: rotating 90 degrees around the mid-point of a line segment (whose coordinates are (3,2))
- Can we change the order between rotation and translation?

Department of Computer Science

Will this sequence of operations work?

Department of Computer Science

- After correctly ordering the matrices
- Multiply matrices together
- What results is one matrix store it (on stack)!
- Multiply this matrix by the vector of each vertex
- All vertices easily transformed with one matrix multiply

Department of Computer Science

Overview

- 2D Transformations
 - Basic 2D transformations
 - Matrix representation
 - Matrix composition
- Generalization to 3D Transformations
 - Basic 3D transformations
 - Same as 2D

Department of Computer Science

3D Transformations

- Same idea as 2D transformations
 - Homogeneous coordinates: (x,y,z,w)
 - 4x4 transformation matrices

Department of Computer Science

Basic 3D Transformations

Identity

Scale

ST

NY BR

STATE UNIVERSITY OF NEW YORK

 $\bigcirc K$

Translation Mirror about Y/Z plane

Department of Computer Science

Basic 3D Transformations

Rotate around Z axis.

Rotate around Y axis:

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{z}' \\ \mathbf{w} \end{bmatrix} = \begin{bmatrix} \cos \Theta & 0 & \sin \Theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \Theta & 0 & \cos \Theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ \mathbf{w} \end{bmatrix}$$

 $-\sin\Theta$

 $\cos \Theta$

 $\mathbf{0}$

0

 $\mathbf{0}$

0

 \mathbf{O}

 $\cos \Theta$

 $\sin \Theta$

0

X

y

z'

Rotate around X axis:

Department of Computer Science Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

- Matrices are a convenient and efficient way to represent a sequence of transformations
 - General purpose representation
 - Hardware matrix multiply

p' = (T * (R * (S*p))) p' = (T*R*S) * p

- From local coordinates to global coordinates
- Be aware: order of transformations matters
 - Matrix multiplication is not commutative

Department of Computer Science

Reverse Rotations

- Q: How do you undo a rotation of θ , R(θ)?
- A: Apply the inverse of the rotation.... $R^{-1}(\theta) = R(-\theta)$
- How to construct $R-1(\theta) = R(-\theta)$
 - Inside the rotation matrix: $\cos(\theta) = \cos(-\theta)$
 - The cosine elements of the inverse rotation matrix are unchanged
 - The sign of the sine elements will flip
 - This is because the rotation matrix is orthogonal matrix
- Therefore..., $R^{-1}(\theta) = R(-\theta) = R^{T}(\theta)$

Summary

- Coordinate systems are the basis for computer graphics
 - World vs. model coordinates (Global vs. Local)

• 2D and 3D transformations

- Trigonometry and geometry
- Matrix representations
- Linear, affine, and projective transformations
- Matrix operations
 - Matrix composition

