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Disk
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Sphere
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Cylinder

CSE328 Lectures
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Other Quadrics

CSE328 Lectures
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Popular Shapes

CSE328 Lectures

But they can also be represented 
by implicit functions f(x,y,z)=0
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Implicit Surfaces
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Straight Line (Implicit 
Representation)
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Straight Line

• Mathematics (Implicit representation)

• Example
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Circle

• Implicit representation
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Conic Sections
• Mathematics

• Examples

– Ellipse

– Hyperbola

– Parabola

– Empty set

– Point

– Pair of lines

– Parallel lines

– Repeated lines
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Conics
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Conics 

• Parametric equations of conics

• Generalization to higher-degree curves

• How about non-planar (spatial) curves
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Plane Equation and its Normal

• Chapter 4.7!!!

CSE328 Lectures
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Plane

01 zyx



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Plane and Intersection
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Plane 

• Example

• General plane equation

• Normal of the plane

• Arbitrary point on the plane
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Plane

• Plane equation derivation

• Parametric representation (given three points on 

the plane and they are non-collinear!)
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Plane 

• Explicit expression (if c is non-zero)

• Line-plane intersection
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Circle

• Implicit equation

• Parametric function

• Parametric representation using rational 

polynomials (the first quadrant)

• Parametric representation is not unique!

0122  yx








20

)sin(

)cos(
)(











c

]1,0[

1

2
)(

1

1
)(

2

2

2











u

u

u
uy

u

u
ux



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

What are Implicit Surfaces?

• 2D Geometric shapes that exist in 3D space, 

frequently defined by (algebraic) functions

• Surface representation through a function f(x, y, z) = 0

• Most methods of analysis assume f is continuous and 

not everywhere 0.

• Some objects are easy represent this way

– Spheres, ellipses, and similar

– More generally, quadratic surfaces:

– Shapes depends on all the parameters a,b,c,d,e,f,g
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Example of an Implicit Surface

• 3D Sphere centered at the origin

– x2 + y2 + z2 = r2

– x2 + y2 + z2 – r2 = 0
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Point Classification

• Inside Region: f < 0

• Outside Region: f > 0

• Or vice versa depending on the function

f < 0 f > 0

f = 0
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Surface Normals

• Usually gradient of the function

– f(x,y,z) = 

(df/dx, df/dy, df/dz)

• Points at increasing f
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Properties of Implicits

• Easy to check if a point is inside the implicit 

surface or NOT

– Simply evaluate f at that point

• Fairly easy to check ray intersection

– Substitute ray equation into f for simple functions

– Binary search
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Implicit Equations for Curves

• Describe an implicit relationship

• Planar curve (point set)

• The implicit function is not unique

• Comparison with parametric representation
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Implicit Equations for Curves

• Implicit function is a level-set

• Examples (straight line and conic sections)

• Other examples

– Parabola, two parallel lines, ellipse, hyperbola, two 

intersection lines
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Implicit Functions for Curves

• Parametric equations of conics

• Generalization to higher-degree curves

• How about non-planar (spatial) curves
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Types of Implicit Surfaces

• Mathematic

– Polynomial or Algebraic

– Non polynomial or Transcendental

• Exponential, trigonometric, etc.

• Procedural

– Black box function
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Implicit Equations for Surfaces

• Surface mathematics

• Again, the implicit function for surfaces is not 

unique

• Comparison with parametric representation
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Implicit Equations for Surfaces

• Surface defined by implicit function is a level-set

• Examples

– Plane, quadric surfaces, tori, superquadrics, blobby 

objects

• Parametric representation of quadric surfaces

• Generalization to higher-degree surfaces
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Quadric Surfaces
• Implicit functions

• Examples

– Sphere

– Cylinder

– Cone

– Paraboloid

– Ellipsoid

– Hyperboloid

• More 

– Two parallel planes, two intersecting planes, single plane, 
line, point

0222  kjzhygxfyzexzdxyczbyax

04

05432

0

0

01

01

222

222

22

222

22

222













zyx

zyx

zyx

zyx

yx

zyx



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadric Surfaces

• Implicit surface equation

• An alternative representation



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadrics: Parametric 
Representation
• Sphere

• Ellipsoid

• Geometric meaning of these parameters
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Quadric Surfaces

• Modeling advantages

– computing the surface normal

– testing whether a point is on the surface

– computing z given x and y

– calculating intersections of one surface 
with another
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Generalization

• Higher-degree polynomials

• Non polynomials
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Algebraic Function

• Parametric representation is popular, but…

• Formulation

• Properties…

– Powerful, but lack of modeling tools
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Algebraic Surfaces

Degree 6Cubic Degree 4
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Non-Algebraic Surfaces

http://atrey.karlin.mff.cuni.cz/~0rfelyus/povray/pics/goniom4.png
http://atrey.karlin.mff.cuni.cz/~0rfelyus/povray/pics/goniom4.png


STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Spatial Curves

• Intersection of two surfaces
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Algebraic Solid

• Half space

• Useful for complex objects (refer to notes on 

solid modeling)
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Implicit Surfaces

CSE328 Lectures

CSG on implicit surfaces



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Implicit Surfaces

CSE328 Lectures

Object made by CSG

Converted to polygons

Converted to implicit surface
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Implicit Surfaces: Applications
• Zero sets of implicit functions. 

• CSG operations.
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Polygonization

• Conversion of implicit surface to polygonal 

mesh

• Display implicit surface using polygons

• Real-time approximate visualization method

• Two steps

– Partition space into cells

– Fit a polygon to surface in each cell
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Implicit Surface (Polygonal 
Representation)

F: R3 => R, Σ = F-1(0)
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Spatial Partitioning
• Subdivision

– Start with root cell and subdivide

– Continue subdividing 

– traverse cells
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Spatial Partitioning
• Exhaustive enumeration

– Divide space into regular lattice of cells

– Traverse cells in order to arrive at polygonization
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Space Partitioning Criteria

How do we know if a cell actually contains the 

surface?

• Straddling Cells

– At least one vertex inside and outside surface

– Non-straddling cells can still contain surface

• Guarantees

– Interval analysis

– Lipschitz condition
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Polygonal Representation
• Partition space into convex cells

• Find cells that intersect the surface

(traverse cells)

• Compute surface vertices
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Cell Polygonization

• We will need to find those cells that actually 

contain parts of surface

• Need to approximate surface within cell

• Basic idea: use piecewise-linear approximation 

(polygon)
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Spatial Partitioning
• Adaptive polygonization
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Surface Vertex Computations

• Determine where implicit surface intersects cell 

edges

• EITHER linear interpolate function values to 

approximate

• OR numerically find zero of f(r(t))

r(t) = x1 + t(x2-x1)

0 t  1

f(x1) = v1 (+)

f(x2) = v2 (-)
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Polygonal Shape
• Use table indexed by 

vertex signs and consider 

all possible combinations

• Let + be 1, - be 0

• Table size

– Tetrahedral cells: 16 

entries

– Cubic cells: 256 entries

• E.g., 2-D - 16 square 

cells
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CSE528 Lectures

Determining Intersections
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Tetrahedral Cell Polygons
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Orientation

• Consistency allows polygons to be drawn with 

correct orientation

• Supports backface culling +
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CSG Polygonization

• Polygonization can smooth crease edges caused 

by CSG operations

• Polygonization needs to add polygon vertices 

along crease edges
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Visualization of 
Implicit Surfaces

Ray-tracing
Polygonization 

(e.g. Marching cubes method)
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Problem of Polygonization

• Sharp features

are broken

503 grid 1003 grid 2003 grid
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Post-

processing

Input

Output

Rough  Polygonization

(Correct topology)

Reconstruction of Sharp Features

),,( :functionImplicit zyxf
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Blobs and Metaballs
• Define the location of some points

• For each point, define a function on the distance to a 

given point, (x,y,z)

• Sum these functions up, and use them to define (surface) 

geometry via an implicit function

• Question: if I have two special points, in 2D, and my 

function is just the distance, what shape results?

• More generally, use Gaussian functions of distance, or 

other forms

– Various results are called blobs or metaballs
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What Is This?

• “Metaball, or ‘Blobby’, Modeling is a technique 

which uses implicit surfaces to produce models 

which seem more ‘organic’ or ‘blobby’ than 

conventional models built from flat planes and 

rigid angles”
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CSE528 Lectures
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Distance Functions
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Case Studies: Distance Functions

• D(p) = R

– Sphere: distance to a point

– Cylinder: distance to a 

line

– More examples
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CSE528 Lectures

Blobby Models
• Blobby models [Blinn 82], also known as metaballs 

[Nishimura and Hirai 85] or soft objects [Wyvill and 

Wyvill 86, 88] 

• A blobby model  a center surrounded by a density 

field, where the density attributed to the center 

decreases with distance from the center.

• By simply summing the influences of each blobby 

model on a given location, we can obtain very smooth 

blends of the spherical density fields.
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Design Using Blobs

• None of these parameters allow the 

designer to specify exactly where 

the surface is actually located. 

• A designer only has indirect 

control over the shape of a blobby 

implicit surface.

• Blobby models facilitate the design 

of smooth, complex, organic-

appearing shapes.
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Example with Blobs

Rendered with POVray. Not everything is a blob, but the characters are.
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Examples
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Blobby Modeling: Its Utility

• Organic forms and nonlinear shapes

• Scientific modeling (electron orbitals, some 

medical imaging)

• Muscles and joints with skin

• Rapid prototyping

• CAD/CAM solid geometry
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Examples
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Mathematics for Blobby Model

• Implicit equation:

• The wi are weights – just numbers

• The gi are (scalar) functions, one common choice 

is:

– ci and i are parameters
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Skeletal Design
• Use skeleton technique to design implicit 

surfaces and solids toward interactive speed.

• Each skeletal element is associated with a locally 
defined implicit function.

• These local functions are blended using a 
polynomial weighting function.

– [Bloomenthal and Wyvill 90, 95, 97] defined 
skeletons consisting of points, splines, polygons.

– 3D skeletons [Witkin and Heckbert 94] [Chen 01]
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Skeletal Design
• Global and local control in three separate ways:

– Defining or manipulating the skeleton;

– Defining or adjusting those implicit functions defined for each 

skeletal element;

– Defining a blending function to weight the individual implicit 

functions.
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Multi-level Representation

CSE328 Lectures
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Rendering Implicit Surfaces
• Raytracing or its variants can render them directly

– The key is to find intersections with Newton’s method

• For polygonal renderer, must convert to polygons

• Advantages:
– Good for organic looking shapes e.g., human body

– Reasonable interfaces for design

• Disadvantages:
– Difficult to render and control when animating

– Being replaced with subdivision surfaces, it appears
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Implicit Surfaces vs Polygons

• Advantages

– Smoother and more precise

– More compact

– Easier to interpolate and deform

• Disadvantages

– More difficult to display in real time
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Implicits vs Parameter-Based 
Representations

• Advantages

– Implicits are easier to blend and morph

– Interior/Exterior description

– Ray-trace

• Disadvantages

– Rendering

– Control 
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Display Implicit Surfaces

• Recursive subdivision:
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Display Implicit Surfaces

• Recursive subdivision:
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Display Implicit Surfaces

• Recursive subdivision:
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Display Implicit Surfaces

• Find the edges, separating hot from cold:
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Visualization
• Contours
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Visualization
• Particle display
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Particle Systems
• Witkin Heckbert S94

• Constrain particle system to implicit surface (Implicit 

surface f = 0 becomes constraint surface C = 0)

• Particles exert repulsion forces onto each other to 

spread out across surface

• Particles subdivide to fill open gaps

• Particles commit suicide if overcrowded

• Display particle as oriented disk

• Constrain implicit surface to particles!
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Meshing Particles
• Stander Hart S97

• Use particles as vertices

• Connect vertices into mesh

• Problems:

– Which vertices should be connected?

– How should vertices be reconnected when surface 

moves?

• Solution: Morse theory

• Track/find critical points of function to detect changes 

in topology of implicit surface
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Shrink-wrapping Mechanism

• Look at family of surfaces f -1(s) for s > 0

• For s large, f -1(s) spherical

• Polygonize sphere

• Reduce s to zero

– Allow vertices to track surface

– Subdivide polygons as necessary when curvature 

increases
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Visualization
• Ray tracing
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Other Coordinate Systems

Cylindrical CoordinatesSpherical Coordinates
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Summary

• Surface defined implicitly by f(p) = 0; p=[x,y,z]

• Easy to test if point is on surface, inside, or 

outside

• Easy to handle blending, interpolation, and 

deformation

• Difficult to render
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Deformation
• p’ = D(p)

• D maps each point in 3-space to some new 

location

• Twist, bend, taper, and offset


