CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

Hong Qin Department of Computer Science Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.stonybrook.edu http://www.cs.stonybrook.edu/~qin

Disk

Sphere

Cylinder

Department of Computer Science Center for Visual Computing

CSE328 Lectures

Other Quadrics

Department of Computer Science Center for Visual Computing

CSE328 Lectures

Popular Shapes

But they can also be represented by implicit functions f(x,y,z)=0

Implicit Surfaces

ST NY BR K

Department of Computer Science

Straight Line (Implicit Representation)

ST NY BR K

Department of Computer Science

Straight Line

• Mathematics (Implicit representation)

$$ax + by + c = 0$$
$$+ \alpha(ax + by + c) = 0$$
$$- \alpha(ax + y + c) = 0$$

• Example

$$x+2y-4=0$$

Department of Computer Science

Circle

Implicit representation

$$x^2 + y^2 - 1 > 0$$

$$x^2 + y^2 - 1 < 0$$

$$x^2 + y^2 - 1 = 0$$

ST NY BR K

Department of Computer Science

Conic Sections

• Mathematics

$$ax^2 + 2bxy + cy^2 + dx + ey + f = 0$$

- Examples
 - Ellipse
 - Hyperbola
 - Parabola
 - Empty set
 - Point
 - Pair of lines
 - Parallel lines
 - Repeated lines

$$2x^{2} + 3y^{2} - 5 = 0$$

$$2x^{2} - 3y^{2} - 5 = 0$$

$$2x^{2} + 3y = 0$$

$$2x^{2} + 3y^{2} + 1 = 0$$

$$2x^{2} + 3y^{2} = 0$$

$$2x^{2} - 3y^{2} = 0$$

$$2x^{2} - 7 = 0$$

$$2x^{2} = 0$$

Conics

$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$

 $\mathbf{P}\mathbf{Q}\mathbf{P}^{T}=\mathbf{0}$

Table 2.1 Conic curve characteristics

k	 Q	Other conditions	Туре
0	≠0		Parabola
0	0	$C \neq 0, E^2 - CF > 0$	Two parallel real lines
0	0	$C \neq 0, E^2 - CF = 0$	Two parallel coincident lines
0	0	$C \neq 0, E^2 - CF < 0$	Two parallel imaginary lines
0	0	$C = B = 0, D^2 - AF > 0$	Two parallel real lines
0	0	$C = B = 0, D^2 - AF = 0$	Two parallel coincident lines
0	0	$C = B = 0, D^2 - AF < 0$	Two parallel inaginary lines
<0	0		Point ellipse
<0	≠0	$-C \mathbf{Q} > 0$	Real ellipse
<0	≠0	$-C \mathbf{Q} < 0$	Imaginary ellipse
<0	≠0		Hyperbola
<0	0		Two intersecting lines

ST = NY BR = K

STATE UNIVERSITY OF NEW YORK

$$\mathbf{Q} = \begin{bmatrix} A & B & D \\ B & C & E \\ D & E & F \end{bmatrix}$$
$$\mathbf{P} = \begin{bmatrix} x & y & 1 \end{bmatrix}$$

Department of Computer Science

Conics

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves

Department of Computer Science

Plane Equation and its Normal

• Chapter 4.7!!!

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Plane and Intersection

Department of Computer Science

- **Example** x+y+z-1=0
- General plane equation ax + by + cz + y = 0
- Normal of the plane

$$\mathbf{n} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

• Arbitrary point on the plane

$$\mathbf{p}_a = \begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix}$$

Department of Computer Science

Plane equation derivation

$$(x - a_x)a + (y - a_y)b + (z - a_z)c = 0$$

$$ax + by + cz - (a_xa + a_yb + a_zc) = 0$$

 Parametric representation (given three points on the plane and they are non-collinear!)

$$\mathbf{p}(u,v) = \mathbf{p}_a + (\mathbf{p}_b - \mathbf{p}_a)u + (\mathbf{p}_c - \mathbf{p}_a)v$$

• Explicit expression (if c is non-zero)

$$z = -\frac{1}{c}(ax+by+d)$$

Line-plane intersection

$$\mathbf{l}(u) = \mathbf{p}_0 + (\mathbf{p}_1 - \mathbf{p}_0)u$$

(\mbox{n})(\mbox{p}_0 + (\mbox{p}_1 - \mbox{p}_0)u) + d = 0
$$u = -\frac{\mathbf{n}\mathbf{p}_0}{\mathbf{n}\mathbf{p}_1 - \mathbf{n}\mathbf{p}_0} = -\frac{plane(\mathbf{p}_0)}{plane(\mathbf{p}_1) - plane(\mathbf{p}_0)}$$

ST

NY BR

STATE UNIVERSITY OF NEW YORK

K

Department of Computer Science

Circle

- Implicit equation $x^2 + y^2 1 = 0$
- Parametric function

$$\mathbf{c}(\theta) = \begin{bmatrix} \cos(\theta) \\ \sin(\theta) \end{bmatrix}$$
$$0 <= \theta <= 2\pi$$

 Parametric representation using rational polynomials (the first quadrant) x(u)

$$x(u) = \frac{1 - u^2}{1 + u^2}$$
$$y(u) = \frac{2u}{1 + u^2}$$
$$u \in [0, 1]$$

Parametric representation is not unique!

ST NY BR K STATE UNIVERSITY OF NEW YORK

What are Implicit Surfaces?

- 2D Geometric shapes that exist in 3D space, frequently defined by (algebraic) functions
- Surface representation through a function f(x, y, z) = 0
- Most methods of analysis assume f is continuous and not everywhere 0.
- Some objects are easy represent this way
 - Spheres, ellipses, and similar
 - More generally, quadratic surfaces:

 $ax^{2} + bx + cy^{2} + dy + ez^{2} + fz + g = 0$

- Shapes depends on all the parameters a,b,c,d,e,f,g

Department of Computer Science

Example of an Implicit Surface

• 3D Sphere centered at the origin

- $-x^2 + y^2 + z^2 = r^2$
- $-x^2 + y^2 + z^2 r^2 = 0$

Department of Computer Science

Point Classification

- Inside Region: f < 0
- Outside Region: f > 0
- Or vice versa depending on the function

Department of Computer Science

Surface Normals

- Usually gradient of the function
 - $\nabla f(x,y,z) =$ $(\delta f/\delta x, \delta f/\delta y, \delta f/\delta z)$
- Points at increasing f

Department of Computer Science

Properties of Implicits

- Easy to check if a point is inside the implicit surface or NOT
 - Simply evaluate f at that point
- Fairly easy to check ray intersection
 - Substitute ray equation into f for simple functions
 - Binary search

Department of Computer Science

Implicit Equations for Curves

- Describe an implicit relationship
- Planar curve (point set) $\{(x, y) | f(x, y) = 0\}$
- The implicit function is not unique

 $\{(x, y) | + \alpha f(x, y) = 0\}$ $\{(x, y) | -\alpha f(x, y) = 0\}$

Comparison with parametric representation

$$\mathbf{p}(u) = \begin{bmatrix} x(u) \\ y(u) \end{bmatrix}$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Implicit Equations for Curves

• Implicit function is a level-set

$$\begin{cases} z = f(x, y) \\ z = 0 \end{cases}$$

• Examples (straight line and conic sections)

ax+by+c = 0ax²+2bxy+cy²+dx+ey+f = 0

Other examples

Parabola, two parallel lines, ellipse, hyperbola, two intersection lines

Implicit Functions for Curves

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves

Department of Computer Science

Types of Implicit Surfaces

• Mathematic

- Polynomial or Algebraic
- Non polynomial or Transcendental
 - Exponential, trigonometric, etc.
- Procedural
 - Black box function

Department of Computer Science

Implicit Equations for Surfaces

- Surface mathematics $\{(x, y, z) | f(x, y, z) = 0\}$
- Again, the implicit function for surfaces is not unique $\{(x, y, z) | + \alpha f(x, y, z) = 0\}$

$$\{(x, y, z) \mid -\alpha f(x, y, z) = 0\}$$

Comparison with parametric representation

$$\mathbf{p}(u,v) = \begin{bmatrix} x(u,v) \\ y(u,v) \\ z(u,v) \end{bmatrix}$$

Department of Computer Science

Implicit Equations for Surfaces

• Surface defined by implicit function is a level-set

$$\begin{cases} w = f(x, y, z) \\ w = 0 \end{cases}$$

- Examples
 - Plane, quadric surfaces, tori, superquadrics, blobby objects
- Parametric representation of quadric surfaces
- Generalization to higher-degree surfaces

Quadric Surfaces

- Implicit functions
- Examples
 - Sphere
 - Cylinder
 - Cone
 - Paraboloid
 - Ellipsoid
 - Hyperboloid
- More

$$ax^{2} + by^{2} + cz^{2} + dxy + exz + fyz + gx + hy + jz + k = 0$$

$$x^{2} + y^{2} + z^{2} - 1 = 0$$

$$x^{2} + y^{2} - 1 = 0$$

$$x^{2} + y^{2} - z^{2} = 0$$

$$x^{2} + y^{2} + z = 0$$

$$2x^{2} + 3y^{2} + 4z^{2} - 5 = 0$$

$$x^{2} + y^{2} - z^{2} + 4 = 0$$

 Two parallel planes, two intersecting planes, single plane, line, point

Quadric Surfaces

Implicit surface equation

 $f(x, y, z) = ax^{2} + by^{2} + cz^{2} + 2dxy + 2eyz + 2fxz + 2gx + 2hy + 2jz + k = 0$

An alternative representation

$$P^{\mathrm{T}} \bullet Q \bullet P = 0$$
with
$$Q = \begin{bmatrix} a & d & f & g \\ d & b & e & h \\ f & e & c & j \\ g & h & j & k \end{bmatrix} \quad P = \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

ST NY BR K

Quadrics: Parametric Representation

• Sphere

$$x^{2} + y^{2} + z^{2} - r^{2} = 0$$

$$x = r \cos(\alpha) \cos(\beta)$$

$$y = r \cos(\alpha) \sin(\beta)$$

$$z = r \sin(\alpha)$$

$$\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]; \beta \in \left[-\pi, \pi\right]$$

Ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0$$

$$x = a\cos(\alpha)\cos(\beta)$$

$$y = b\cos(\alpha)\sin(\beta)$$

$$z = c\sin(\alpha)$$

$$\alpha \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]; \beta \in \left[-\pi, \pi\right]$$

ST NY BR K

Department of Computer Science

Quadric Surfaces

Modeling advantages

 computing the surface normal
 testing whether a point is on the surface
 computing z given x and y
 calculating intersections of one surface

with another

Department of Computer Science
Generalization

• Higher-degree polynomials

$$\sum_{i}\sum_{j}\sum_{k}a_{ijk}x^{i}y^{j}z^{k}=0$$

Non polynomials

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Algebraic Function

- Parametric representation is popular, but...
- Formulation

$$\sum_{i}\sum_{j}\sum_{k}a_{ijk}x^{i}y^{j}z^{k}=0$$

- Properties....
 - Powerful, but lack of modeling tools

Department of Computer Science

Algebraic Surfaces

Cubic

Degree 4

Degree 6

Department of Computer Science

Non-Algebraic Surfaces

ST NY BR K

Spatial Curves

• Intersection of two surfaces

$$\begin{cases} f(x, y, z) = 0\\ g(x, y, z) = 0 \end{cases}$$

Department of Computer Science

Algebraic Solid

• Half space $\{(x, y, z) | f(x, y, z) \le 0\}; or$ $\{(x, y, z) | f(x, y, z) \ge 0\}$

Useful for complex objects (refer to notes on solid modeling)

$$\mathbf{f}(x, y, z) = \begin{bmatrix} f_1(x, y, z) \\ f_2(x, y, z) \\ f_3(x, y, z) \\ \dots \end{bmatrix} = \mathbf{0}$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Implicit Surfaces

CSG on implicit surfaces

Department of Computer Science Center for Visual Computing

CSE328 Lectures

CSEJ26 Let

Implicit Surfaces

Object made by CSG Converted to polygons Converted to implicit surface

Department of Computer Science Center for Visual Computing

CSE328 Lectures

Implicit Surfaces: Applications

Zero sets of implicit functions.

$$f(x, y, z) = 0$$

$(l - |x| > 0) \cap (l - |y| > 0) \cap (l - |z| > 0)$

CSG operations.

Department of C

Polygonization

- Conversion of implicit surface to polygonal mesh
- Display implicit surface using polygons
- Real-time approximate visualization method
- Two steps
 - Partition space into cells
 - Fit a polygon to surface in each cell

Implicit Surface (Polygonal Representation)

F: $R^3 => R$, $\Sigma = F^{-1}(0)$

Department of Computer Science

Spatial Partitioning

Subdivision

- Start with root cell and subdivide
- Continue subdividing
- traverse cells

Spatial Partitioning

- Exhaustive enumeration
 - Divide space into regular lattice of cells
 - Traverse cells in order to arrive at polygonization

Space Partitioning Criteria

- How do we know if a cell actually contains the surface?
- Straddling Cells
 - At least one vertex inside and outside surface
 - Non-straddling cells can still contain surface
- Guarantees
 - Interval analysis
 - Lipschitz condition

Polygonal Representation

- Partition space into convex cells
- Find cells that intersect the surface (*traverse cells*)
- Compute surface vertices

Cell Polygonization

- We will need to find those cells that actually contain parts of surface
- Need to approximate surface within cell
- Basic idea: use piecewise-linear approximation (polygon)

Department of Computer Science

Spatial Partitioning

Adaptive polygonization

Department of Computer Science

Surface Vertex Computations

- Determine where implicit surface intersects cell edges
- EITHER linear interpolate function values to approximate
- OR numerically find zero of $f(\mathbf{r}(t))_{f(\mathbf{x}_1) = v_1(+)}$ $\mathbf{r}(t) = \mathbf{x}_1 + t(\mathbf{x}_2 - \mathbf{x}_1)$ $0 \le t \le 1$

$$\mathbf{x} = \frac{v_1}{v_1 + v_2} \mathbf{x}_1 + \frac{v_2}{v_1 + v_2} \mathbf{x}_2$$

Department of Computer Science Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

 $f(\mathbf{x}_2) = v_2$ (-)

Polygonal Shape

- Use table indexed by vertex signs and consider all possible combinations
- Let + be 1, be 0
- Table size
 - Tetrahedral cells: 16 entries
 - Cubic cells: 256 entries
- E.g., 2-D 16 square cells

Determining Intersections

Tetrahedral Cell Polygons

Department of Computer Science Center for Visual Computing ST NY BR K

Orientation

- Consistency allows polygons to be drawn with correct orientation
- Supports backface culling

Department of Computer Science

CSG Polygonization

- Polygonization can smooth crease edges caused by CSG operations
- Polygonization needs to add polygon vertices along crease edges

ST NY BR K STATE UNIVERSITY OF NEW YORK

Visualization of Implicit Surfaces

Ray-tracing

Polygonization (e.g. Marching cubes method)

Problem of Polygonization

50³ grid

.00³ grid

200³ grid

 Sharp features are broken

Department of Computer Science Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

Reconstruction of Sharp Features

Blobs and Metaballs

- Define the location of some points
- For each point, define a function on the distance to a given point, (x, y, z)
- Sum these functions up, and use them to define (surface) geometry via an implicit function
- Question: if I have two special points, in 2D, and my function is just the distance, what shape results?
- More generally, use Gaussian functions of distance, or other forms

- Various results are called blobs or metaballs

What Is This?

 "Metaball, or 'Blobby', Modeling is a technique which uses implicit surfaces to produce models which seem more 'organic' or 'blobby' than conventional models built from flat planes and rigid angles"

Department of Computer Science

Distance Functions

Case Studies: Distance Functions

• $D(\mathbf{p}) = \mathbf{R}$

- Sphere: distance to a point
- Cylinder: distance to a line
- More examples

NY BR

STATE UNIVERSITY OF NEW YORK

ST

Blobby Models

- Blobby models [Blinn 82], also known as metaballs [Nishimura and Hirai 85] or soft objects [Wyvill and Wyvill 86, 88]
- A blobby model a center surrounded by a density field, where the density attributed to the center decreases with distance from the center.
- By simply summing the influences of each blobby model on a given location, we can obtain very smooth blends of the spherical density fields.

$$G(x, y, z) = \sum_{i} g_i(x, y, z) - threshold = 0$$

Design Using Blobs

- None of these parameters allow the designer to specify exactly where the surface is actually located.
- A designer only has indirect control over the shape of a blobby implicit surface.
- Blobby models facilitate the design of smooth, complex, organicappearing shapes.

Example with Blobs

Examples

Blobby Modeling: Its Utility

- Organic forms and nonlinear shapes
- Scientific modeling (electron orbitals, some medical imaging)
- Muscles and joints with skin
- Rapid prototyping
- CAD/CAM solid geometry

Department of Computer Science
Examples

Department of Computer Science

Center for Visual Computing

Mathematics for Blobby Model

• Implicit equation:

$$f(x, y, z) = \sum_{i=1}^{n_{blobs}} w_i g_i(x, y, z) = d$$

- The w_i are weights just numbers
- The g_i are (scalar) functions, one common choice is:

$$g_i(\mathbf{x}) = e^{\frac{-(\mathbf{x}-c_i)^2}{\sigma_i}}$$

$-c_i$ and σ_i are parameters

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Skeletal Design

- Use skeleton technique to design implicit surfaces and solids toward interactive speed.
- Each skeletal element is associated with a locally defined implicit function.
- These local functions are blended using a polynomial weighting function.
 - [Bloomenthal and Wyvill 90, 95, 97] defined skeletons consisting of *points*, *splines*, *polygons*.
 - 3D skeletons [Witkin and Heckbert 94] [Chen 01]

Department of Computer Science

Skeletal Design

- Global and local control in three separate ways:
 - Defining or manipulating the skeleton;
 - Defining or adjusting those implicit functions defined for each skeletal element;
 - Defining a blending function to weight the individual implicit functions.

Multi-level Representation

Department of Computer Science Center for Visual Computing

CSE328 Lectures

ST NY BR K

Rendering Implicit Surfaces

- Raytracing or its variants can render them directly
 - The key is to find intersections with Newton's method
- For polygonal renderer, must convert to polygons
- Advantages:
 - Good for organic looking shapes e.g., human body
 - Reasonable interfaces for design
- Disadvantages:
 - Difficult to render and control when animating
 - Being replaced with subdivision surfaces, it appears

Implicit Surfaces vs Polygons

- Advantages
 - Smoother and more precise
 - More compact
 - Easier to interpolate and deform
- Disadvantages
 - More difficult to display in real time

Department of Computer Science

Center for Visual Computing

Implicits vs Parameter-Based Representations

- Advantages
 - Implicits are easier to blend and morph
 - Interior/Exterior description
 - Ray-trace
- Disadvantages
 - Rendering
 - Control

• Recursive subdivision:

ST NY BR K STATE UNIVERSITY OF NEW YORK

• Recursive subdivision:

ST NY BR K STATE UNIVERSITY OF NEW YORK

• Recursive subdivision:

ST NY BR K

• Find the edges, separating hot from cold:

Visualization

• Contours

Visualization

• Particle display

Department of Computer Science Center for Visual Computing ST NY BR K

Particle Systems

- Witkin Heckbert S94
- Constrain particle system to implicit surface (Implicit surface f = 0 becomes constraint surface C = 0)
- Particles exert repulsion forces onto each other to spread out across surface
- Particles subdivide to fill open gaps
- Particles commit suicide if overcrowded
- Display particle as oriented disk
- Constrain implicit surface to particles!

Meshing Particles

- Stander Hart S97
- Use particles as vertices
- Connect vertices into mesh
- Problems:
 - Which vertices should be connected?
 - How should vertices be reconnected when surface moves?
- Solution: Morse theory
- Track/find critical points of function in topology of implicit surface

Center for Visual Computing

STATE

Shrink-wrapping Mechanism

- Look at family of surfaces $f^{-1}(s)$ for s > 0
- For s large, $f^{-1}(s)$ spherical
- Polygonize sphere
- Reduce s to zero

Allow vertices to track surface Subdivide polygons as necessary when curvature increases

Visualization

• Ray tracing

Other Coordinate Systems

Spherical Coordinates

Department of Computer Science Center for Visual Computing **Cylindrical Coordinates**

Summary

- Surface defined implicitly by f(p) = 0; p=[x,y,z]
- Easy to test if point is on surface, inside, or outside
- Easy to handle blending, interpolation, and deformation
- Difficult to render

Department of Computer Science

Center for Visual Computing

Deformation

- **p**' = D(p)
- D maps each point in 3-space to some new location
- Twist, bend, taper, and offset

ST NY BR K STATE UNIVERSITY OF NEW YORK