CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

Hong Qin

Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu
http://www.cs.stonybrook.edu/~qin

Disk

Sphere

Cylinder

Other Quadrics

$$
\frac{h x^{2}}{r^{2}}+\frac{h y^{2}}{r^{2}}-z=0 \quad x^{2}+y^{2}-z^{2}=-1 \quad\left(\frac{h x}{r}\right)^{2}+\left(\frac{h y}{r}\right)^{2}-(z-h)^{2}=0
$$

paraboloid hyperboloid
cone

Popular Shapes

But they can also be represented by implicit functions $f(x, y, z)=0$

Implicit Surfaces

Straight Line (Implicit Representation)

Straight Line

- Mathematics (Implicit representation)

$$
\begin{aligned}
& a x+b y+c=0 \\
& +\alpha(a x+b y+c)=0 \\
& -\alpha(a x+y+c)=0
\end{aligned}
$$

- Example

$$
x+2 y-4=0
$$

Circle

- Implicit representation

$$
\begin{gathered}
x^{2}+y^{2}-1>0 \\
x^{2}+y^{2}-1<0
\end{gathered}
$$

Conic Sections

- Mathematics

$$
a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
$$

- Examples
- Ellipse
- Hyperbola
- Parabola
- Empty set
- Point
- Pair of lines
- Parallel lines
- Repeated lines

$$
\begin{aligned}
& 2 x^{2}+3 y^{2}-5=0 \\
& 2 x^{2}-3 y^{2}-5=0 \\
& 2 x^{2}+3 y=0 \\
& 2 x^{2}+3 y^{2}+1=0 \\
& 2 x^{2}+3 y^{2}=0 \\
& 2 x^{2}-3 y^{2}=0 \\
& 2 x^{2}-7=0 \\
& 2 x^{2}=0
\end{aligned}
$$

Conics

$A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0$

$$
\begin{gathered}
\mathbf{P Q P}^{T}=0 \\
\mathbf{Q}=\left[\begin{array}{lll}
A & B & D \\
B & C & E \\
D & E & F
\end{array}\right] \\
\mathbf{P}=\left[\begin{array}{lll}
x & y & 1
\end{array}\right]
\end{gathered}
$$

Table 2.1 Conic curve characteristics

k	$\|\mathbf{Q}\|$	Other conditions	Type
0	$\neq 0$		Parabola
0	0	$C \neq 0, E^{2}-C F>0$	Two parallel real lines
0	0	$C \neq 0, E^{2}-C F=0$	Two parallel coincident lines
0	0	$C \neq 0, E^{2}-C F<0$	Two parallel imaginary lines
0	0	$C=B=0, D^{2}-A F>0$	Two parallel real lines
0	0	$C=B=0, D^{2}-A F=0$	Two parallel coincident lines
0	0	$C=B=0, D^{2}-A F<0$	Two parallel inaginary lines
<0	0		Point ellipse
<0	$\neq 0$	$-C\|\mathbf{Q}\|>0$	Real ellipse
<0	$\neq 0$	$-C\|\mathbf{Q}\|<0$	Imaginary ellipse
<0	$\neq 0$		Hyperbola
<0	0		Two intersecting lines

Conics

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves

Plane Equation and its Normal

- Chapter 4.7!!!

Plane

Plane and Intersection

Plane

- Example $x+y+z-1=0$
- General plane equation $a x+b y+c z+y=0$
- Normal of the plane
r-
- Arbitrary point on the plane
$\mathbf{p}_{a}=\left[\begin{array}{l}a_{x} \\ a_{y} \\ a_{z}\end{array}\right]$

Plane

- Plane equation derivation

$$
\begin{aligned}
& \left(x-a_{x}\right) a+\left(y-a_{y}\right) b+\left(z-a_{z}\right) c=0 \\
& a x+b y+c z-\left(a_{x} a+a_{y} b+a_{z} c\right)=0
\end{aligned}
$$

- Parametric representation (given three points on the plane and they are non-collinear!)

$$
\mathbf{p}(u, v)=\mathbf{p}_{a}+\left(\mathbf{p}_{b}-\mathbf{p}_{a}\right) u+\left(\mathbf{p}_{c}-\mathbf{p}_{a}\right) v
$$

Plane

- Explicit expression (if c is non-zero)

$$
z=-\frac{1}{c}(a x+b y+d)
$$

- Line-plane intersection

$$
\begin{aligned}
& \mathbf{l}(u)=\mathbf{p}_{0}+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u \\
& (\mathbf{n})\left(\mathbf{p}_{0}+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u\right)+d=0 \\
& u=-\frac{\mathbf{n} \mathbf{p}_{0}}{\mathbf{n} \mathbf{p}_{1}-\mathbf{n} \mathbf{p}_{0}}=-\frac{\operatorname{plane}\left(\mathbf{p}_{0}\right)}{\operatorname{plane}\left(\mathbf{p}_{1}\right)-\operatorname{plane}\left(\mathbf{p}_{0}\right)}
\end{aligned}
$$

Circle

- Implicit equation $x^{2}+y^{2}-1=0$
- Parametric function

$$
\begin{aligned}
& \mathbf{c}(\theta)=\left[\begin{array}{c}
\cos (\theta) \\
\sin (\theta)
\end{array}\right] \\
& 0<=\theta<=2 \pi
\end{aligned}
$$

- Parametric representation using rational polynomials (the first quadrant)

$$
\begin{aligned}
& x(u)=\frac{1-u^{2}}{1+u^{2}} \\
& y(u)=\frac{2 u}{1+u^{2}} \\
& u \in[0,1]
\end{aligned}
$$

- Parametric representation is not unique!

What are Implicit Surfaces?

- 2D Geometric shapes that exist in 3D space, frequently defined by (algebraic) functions
- Surface representation through a function $f(x, y, z)=0$
- Most methods of analysis assume fis continuous and not everywhere 0 .
- Some objects are easy represent this way
- Spheres, ellipses, and similar
- More generally, quadratic surfàces:

$$
a x^{2}+b x+c y^{2}+d y+e z^{2}+f z+g=0
$$

- Shapes depends on all the parameters a, b, c, d, e, f, g

Example of an Implicit Surface

- 3D Sphere centered at the origin

$$
\begin{aligned}
& -x^{2}+y^{2}+z^{2}=r^{2} \\
& -x^{2}+y^{2}+z^{2}-r^{2}=0
\end{aligned}
$$

Point Classification

- Inside Region: $\mathrm{f}<0$
- Outside Region: f>0
- Or vice versa depending on the function
$f=0$

Surface Normals

- Usually gradient of the function

$$
-\nabla f(x, y, z)=
$$

$$
(\delta f / \delta x, \delta f / \delta y, \delta f / \delta z)
$$

- Points at increasing ff

Properties of Implicits

- Easy to check if a point is inside the implicit surface or NOT
- Simply evaluate f at that point
- Fairly easy to check ray intersection
- Substitute ray equation into f for simple functions
- Binary search

Implicit Equations for Curves

- Describe an implicit relationship
- Planar curve (point set) $\{(x, y) \mid f(x, y)=0\}$
- The implicit function is not unique

$$
\begin{aligned}
& \{(x, y) \mid+\alpha f(x, y)=0\} \\
& \{(x, y) \mid-\alpha f(x, y)=0\}
\end{aligned}
$$

- Comparison with parametric representation

$$
\mathbf{p}(u)=\left[\begin{array}{l}
x(u) \\
y(u)
\end{array}\right]
$$

Implicit Equations for Curves

- Implicit function is a level-set
$\left\{\begin{array}{cc}z= & f(x, y) \\ z= & 0\end{array}\right.$
- Examples (straight line and conic sections)

$$
\begin{aligned}
& a x+b y+c=0 \\
& a x^{2}+2 b x y+c y^{2}+d x+e y+f=0
\end{aligned}
$$

- Other examples
- Parabola, two parallel lines, ellipse, hyperbola, two intersection lines

Implicit Functions for Curves

- Parametric equations of conics
- Generalization to higher-degree curves
- How about non-planar (spatial) curves

Types of Implicit Surfaces

- Mathematic
- Polynomial or Algebraic
- Non polynomial or Transcendental
- Exponential, trigonometric, etc.
- Procedural
- Black box function

Implicit Equations for Surfaces

- Surface mathematics $\{(x, y, z) \mid f(x, y, z)=0\}$
- Again, the implicit function for surfaces is not unique

$$
\begin{aligned}
& \{(x, y, z) \mid+\alpha f(x, y, z)=0\} \\
& \{(x, y, z) \mid-\alpha f(x, y, z)=0\}
\end{aligned}
$$

- Comparison with parametric representation
$\mathbf{p}(u, v)=\left[\begin{array}{l}x(u, v) \\ y(u, v) \\ z(u, v)\end{array}\right]$

Implicit Equations for Surfaces

- Surface defined by implicit function is a level-set
$\left\{\begin{array}{lc}w= & f(x, y, z) \\ w= & 0\end{array}\right.$
- Examples
- Plane, quadric surfaces, tori, superquadrics, blobby objects
- Parametric representation of quadric surfáces
- Generalization to higher-degree surfâces

Quadric Surfaces

- Implicit functions
- Examples

$$
a x^{2}+b y^{2}+c z^{2}+d x y+e x z+f y z+g x+h y+j z+k=0
$$

- Sphere
- Cylinder
- Cone
- Paraboloid
- Ellipsoid
- Hyperboloid

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2}-\mathbf{1}=\mathbf{0} \\
& x^{2}+y^{2}-1=\mathbf{0} \\
& x^{2}+y^{2}-z^{2}=\mathbf{0} \\
& x^{2}+y^{2}+z=\mathbf{0} \\
& 2 x^{2}+3 y^{2}+4 z^{2}-5=\mathbf{0} \\
& x^{2}+y^{2}-z^{2}+4=\mathbf{0}
\end{aligned}
$$

- More
- Two parallel planes, two intersecting planes, single plane, line, point

Quadric Surfaces

- Implicit surface equation

$$
f(x, y, z)=a x^{2}+b y^{2}+c z^{2}+2 d x y+2 e y z+2 f x z+2 g x+2 h y+2 j z+k=0
$$

- An alternative representation
$P^{\mathrm{T}} \bullet Q \bullet P=0$
with $Q=\left[\begin{array}{llll}a & d & f & g \\ d & b & e & h \\ f & e & c & j \\ g & h & j & k\end{array}\right] \quad P=\left[\begin{array}{l}x \\ y \\ z \\ 1\end{array}\right]$

Quadrics: Parametric Representation

- Sphere
$x^{2}+y^{2}+z^{2}-r^{2}=0$
$x=r \cos (\alpha) \cos (\beta)$
$y=r \cos (\alpha) \sin (\beta)$
$z=r \sin (\alpha)$
$\alpha \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] ; \beta \in[-\pi, \pi]$
- Ellipsoid

$$
\begin{aligned}
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0 \\
& x=a \cos (\alpha) \cos (\beta) \\
& y=b \cos (\alpha) \sin (\beta) \\
& z=c \sin (\alpha) \\
& \alpha \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] ; \beta \in[-\pi, \pi]
\end{aligned}
$$

- Geometric meaning of these parameters

Quadric Surfaces

- Modeling advantages
- computing the surface normal
- testing whether a point is on the surface
- computing z given x and y
- calculating intersections of one surface with another

Generalization

- Higher-degree polynomials

- Non polynomials

Algebraic Function

- Parametric representation is popular, but...
- Formulation

- Properties...
- Powerful, but lack of modeling tools

Algebraic Surfaces

Cubic

Degree 4

Degree 6

Non-Algebraic Surfaces

Spatial Curves

- Intersection of two surfaces

Algebraic Solid

- Half space

$$
\begin{aligned}
& \{(x, y, z) \mid f(x, y, z)<=0\} ; o r \\
& \{(x, y, z) \mid f(x, y, z)>=0\}
\end{aligned}
$$

- Useful for complex objects (refer to notes on solid modeling)

Implicit Surfaces

CSG on implicit surfaces

Implicit Surfaces

Object made by CSG Converted to polygons Converted to implicit surface

Implicit Surfaces: Applications

- Zero sets of implicit functions.

$$
f(x, y, z)=0
$$

$$
r^{2}-x^{2}-y^{2}-z^{2}>0
$$

$$
(l-|x|>0) \cap(l-|y|>0) \cap(l-|z|>0)
$$

- CSG operations.

Polygonization

- Conversion of implicit surface to polygonal mesh
- Display implicit surface using polygons
- Real-time approximate visualization method
- Two steps
- Partition space into cells
- Fit a polygon to surface in each cell

Implicit Surface (Polygonal Representation)

$\mathrm{F}: \mathrm{R}^{3}=>\mathrm{R}, \Sigma=\mathrm{F}^{-1}(0)$

Spatial Partitioning

- Subdivision
- Start with root cell and subdivide
- Continue subdividing
- traverse cells

Spatial Partitioning

- Exhaustive enumeration
- Divide space into regular lattice of cells
- Traverse cells in order to arrive at polygonization

Space Partitioning Criteria

How do we know if a cell actually contains the surface?

- Straddling Cells
- At least one vertex inside and outside surface
- Non-straddling cells can still contain surfáce
- Guarantees
- Interval analysis
- Lipschitz condition

Polygonal Representation

- Partition space into convex cells
- Find cells that intersect the surface

(travense cells)

- Compute surfáce vertices

Cell Polygonization

- We will need to find those cells that actually contain parts of surface
- Need to approximate surface within cell
- Basic idea: use piecewise-linear approximation (polygon)

Spatial Partitioning

- Adaptive polygonization

Surface Vertex Computations

- Determine where implicit surface intersects cell edges
- EITHER linear interpolate function values to approximate
- OR numerically find zero of $f(\mathrm{r}(t))$

$$
\begin{aligned}
& \mathbf{r}(t)=\mathbf{x}_{1}+t\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \\
& 0 \leq t \leq 1
\end{aligned}
$$

$$
\mathbf{x}=\frac{v_{1}}{v_{1}+v_{2}} \mathbf{x}_{1}+\frac{v_{2}}{v_{1}+v_{2}} \mathbf{x}_{2}
$$

$$
f\left(\mathbf{x}_{2}\right)=v_{2}(-)
$$

Polygonal Shape

- Use table indexed by vertex signs and consider all possible combinations
- Let + be 1 , - be 0
- Table size
- Tetrahedral cells: 16 entries
- Cubic cells: 256 entries
- E.g., 2-D - 16 square
 cells

Determining Intersections

Tetrahedral Cell Polygons

Orientation

- Consistency allows polygons to be drawn with correct orientation
- Supports backface culling

CSG Polygonization

- Polygonization can smooth crease edges caused by CSG operations
- Polygonization needs to add polygon vertices along crease edges

Visualization of Implicit Surfaces

Ray-tracing
Polygonization (e.g. Marching cubes method)

Problem of Polygonization

Reconstruction of Sharp Features

Input

Implicit function : $f(x, y, z)$ and
Rough Polygonization (Correct topology)

Blobs and Metaballs

- Define the location of some points
- For each point, define a function on the distance to a given point, (x, y, z)
- Sum these functions up, and use them to define (surface) geometry via an implicit function
- Question: if I have two special points, in 2D, and my function is just the distance, what shape results?
- More generally, use Gaussian functions of distance, or other forms
- Various results are called blobs or metaballs

What Is This?

- "Metaball, or 'Blobby', Modeling is a technique which uses implicit surfaces to produce models which seem more 'organic' or 'blobby' than conventional models built from flat planes and rigid angles"

$$
9008
$$

Case Studies: Distance Functions

- $\mathrm{D}(\mathrm{p})=\mathrm{R}$
- Sphere: distance to a point
- Cylinder: distance to a line
- More examples

Department of Computer Science

Blobby Models

- Blobby models [Blinn 82], also known as metaballs [Nishimura and Hirai 85] or soft objects [Wyvill and Wyvill 86, 88]
- A blobby model - a center surrounded by a density field, where the density attributed to the center decreases with distance from the center.
- By simply summing the influences of each blobby model on a given location, we can obtain very smooth blends of the spherical density fields.

$$
G(x, y, z)=\sum_{i} g_{i}(x, y, z)-\text { threshold }=0
$$

Design Using Blobs

- None of these parameters allow the designer to specify exactly where the surface is actually located.
- A designer only has indirect control over the shape of a blobby implicit surfâce.
- Blobby models facilitate the design of smooth, complex, organicappearing shapes.

Example with Blobs

Examples

Blobby Modeling: Its Utility

- Organic forms and nonlinear shapes
- Scientific modeling (electron orbitals, some medical imaging)
- Muscles and joints with skin
- Rapid prototyping
- CAD/CAM solid geometry

Examples

Mathematics for Blobby Model

- Implicit equation:

$$
f(x, y, z)=\sum_{i=1}^{n_{b l o b s}} w_{i} g_{i}(x, y, z)=d
$$

- The w_{i} are weights - just numbers
- The g_{i} are (scalar) functions, one common choice is:

$$
g_{i}(\mathbf{X})=e^{\frac{-\left(\mathbf{x}-c_{i}\right)^{2}}{\sigma_{i}}}
$$

$-c_{i}$ and σ_{i} are parameters

Skeletal Design

- Use skeleton technique to design implicit surfaces and solids toward interactive speed.
- Each skeletal element is associated with a locally defined implicit function.
- These local functions are blended using a polynomial weighting function.
- [Bloomenthal and Wyvill 90, 95, 97] defined skeletons consisting of points, splines, polygons.
- 3D skeletons [Witkin and Heckbert 94] [Chen 01]

Skeletal Design

- Global and local control in three separate ways:
- Defining or manipulating the skeleton;
- Defining or adjusting those implicit functions defined for each skeletal element;
- Defining a blending function to weight the individual implicit functions.

Multi-level Representation

Rendering Implicit Surfaces

- Raytracing or its variants can render them directly - The key is to find intersections with Newton's method
- For polygonal renderer, must convert to polygons
- Advantages:
- Good for organic looking shapes e.g., human body
- Reasonable interfaces for design
- Disadvantages:
- Difficult to render and control when animating
- Being replaced with subdivision surfaces, it appears

Implicit Surfaces vs Polygons

- Advantages
- Smoother and more precise
- More compact
- Easier to interpolate and deform
- Disadvantages
- More difficult to display in real time

Implicits vs Parameter-Based Representations

- Advantages
- Implicits are easier to blend and morph
- Interior/Exterior description
- Ray-trace
- Disadvantages
- Rendering
- Control

Display Implicit Surfaces

- Recursive subdivision:

Display Implicit Surfaces

- Recursive subdivision:

Display Implicit Surfaces

- Recursive subdivision:

Display Implicit Surfaces

- Find the edges, separating hot from cold:

Visualization

- Contours

Visualization

- Particle display

Particle Systems

- Witkin Heckbert S94
- Constrain particle system to implicit surface (Implicit surface $f=0$ becomes constraint surface $C=0$)
- Particles exert repulsion forces onto each other to spread out across surface
- Particles subdivide to fill open gaps
- Particles commit suicide if overcrowded
- Display particle as oriented disk
- Constrain implicit surfàce to particles!

Meshing Particles

- Stander Hart S97
- Use particles as vertices
- Connect vertices into mesh
- Problems:

- Which vertices should be connected?
- How should vertices be reconnected when surface moves?
- Solution: Morse theory
- Track/find critical points of function intopology-of-implicit surfâce

Shrink-wrapping Mechanism

- Look at family of surfaces $f^{-1}(s)$ for $s>0$
- For s large, $f^{-1}(s)$ spherical
- Polygonize sphere
- Reduce s to zero
- Allow vertices to track surface
- Subdivide polygons as necessary when curvature increases

Visualization

- Ray tracing

Other Coordinate Systems

Summary

- Surface defined implicitly by $\mathrm{f}(\mathrm{p})=0 ; \mathrm{p}=[\mathrm{x}, \mathrm{y}, \mathrm{z}]$
- Easy to test if point is on surface, inside, or outside
- Easy to handle blending, interpolation, and deformation
- Difficult to render

Deformation

- $\mathbf{p}^{\prime}=\mathrm{D}(\mathrm{p})$
- D maps each point in 3-space to some new location
- Twist, bend, taper, and offset

