Least Squares Approach for

 Computer Graphics (From Point Cloud to CAD Models - A Brief Introduction)
Motivation

- From 3D points to CAD models
- Local surface fitting to 3D points

Reverse Engineering

- From physical prototypes to digital prototypes via reverse engineering

2D Terrain Modeling

- A simplified case

Motivation

- Given data points, fit a function that is "close" to the points

Outline

- Least squares approach
- General / Polynomial fitting
- Linear systems of equations
- Local polynomial surface fitting

Line Fitting

- y-offset minimization

Line Fitting

- Orthogonal offset minimization Principal Component Analysis (PCA)

Line Fitting

- Find a line $y=a x+b$ that minimizes

$$
E(a, b)=\sum_{i=1}^{n}\left[y_{i}-\left(a x_{i}+b\right)\right]^{2}
$$

- $E(a, b)$ is quadratic in the unknown parameters a, b
- Another option would be, for example:

$$
\operatorname{AbsErr}(a, b)=\sum_{i=1}^{n}\left|y_{i}-\left(a x_{i}+b\right)\right|
$$

- But - it is not differentiable, harder to minimize...

Line Fitting - LS Minimization

- To find optimal a, b we differentiate $E(a, b)$:

$$
\begin{aligned}
& \frac{\partial}{\partial a} E(a, b)=\sum_{i=1}^{n}\left(-2 \mathrm{x}_{\mathrm{i}}\right)\left[\mathrm{y}_{\mathrm{i}}-\left(\mathrm{ax}_{\mathrm{i}}+\mathrm{b}\right)\right]=0 \\
& \frac{\partial}{\partial b} E(a, b)=\sum_{i=1}^{n}(-2)\left[\mathrm{y}_{\mathrm{i}}-\left(\mathrm{ax}_{\mathrm{i}}+\mathrm{b}\right)\right]=0
\end{aligned}
$$

Line Fitting - LS Minimization

- We obtain two linear equations for a, b :

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(-2 x_{i}\right)\left[y_{i}-\left(a x_{i}+b\right)\right]=0 \\
& \sum_{i=1}^{n}(-2)\left[y_{i}-\left(a x_{i}+b\right)\right]=0
\end{aligned}
$$

Line Fitting - LS Minimization

- We obtain two linear equations for a, b :
(1) $\sum_{i=1}^{n}\left[\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}-\mathrm{ax}_{\mathrm{i}}^{2}-\mathrm{bx} \mathrm{x}_{\mathrm{i}}\right]=0$
(2) $\sum_{i=1}^{n}\left[\mathrm{y}_{\mathrm{i}}-\mathrm{ax}_{\mathrm{i}}-\mathrm{b}\right]=0$

Line Fitting - LS Minimization

- We obtain two linear equations

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} x_{i}^{2}\right) a+\left(\sum_{i=1}^{n} x_{i}\right) b=\sum_{i=1}^{n} x_{i} y_{i} \\
& \left(\sum_{i=1}^{n} x_{i}\right) a+\left(\sum_{i=1}^{n} 1\right) b=\sum_{i=1}^{n} y_{i}
\end{aligned}
$$

Line Fitting - LS Minimization

- Solve for a, b using (for example) Gauss elimination
- Question: why the solution is the minimum for the error function?

$$
\mathrm{E}(\mathrm{a}, \mathrm{~b})=\sum_{i=1}^{n}\left[\mathrm{y}_{\mathrm{i}}-\left(\mathrm{ax}_{\mathrm{i}}+\mathrm{b}\right)\right]^{2}
$$

Fitting Polynomials

Fitting Polynomials

- Decide on the degree of the polynomial, k
- Want to fit $f(x)=a_{\mathrm{k}} x^{\mathrm{k}}+a_{\mathrm{k}-1} x^{\mathrm{k}-1}+\ldots+a_{1} x+a_{0}$
- Minimize:

$$
\begin{aligned}
& \mathrm{E}\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{k}}\right)=\sum_{i=1}^{n}\left[\mathrm{y}_{\mathrm{i}}-\left(\mathrm{a}_{\mathrm{k}} \mathrm{x}_{\mathrm{i}}^{\mathrm{k}}+\mathrm{a}_{\mathrm{k}-1} \mathrm{x}_{\mathrm{i}}^{\mathrm{k}-1}+\ldots+\mathrm{a}_{1} \mathrm{x}_{\mathrm{i}}+\mathrm{a}_{0}\right)\right]^{2} \\
& \frac{\partial}{\partial a_{m}} \mathrm{E}\left(\mathrm{a}_{0}, \ldots, \mathrm{a}_{\mathrm{k}}\right)=\sum_{i=1}^{n}\left(-2 \mathrm{x}^{\mathrm{m}}\right)\left[\mathrm{y}_{\mathrm{i}}-\left(\mathrm{a}_{\mathrm{k}} \mathrm{x}_{\mathrm{i}}^{\mathrm{k}}+\mathrm{a}_{\mathrm{k}-1} \mathrm{x}_{\mathrm{i}}^{\mathrm{k}-1}+\ldots+\mathrm{a}_{0}\right)\right]=0
\end{aligned}
$$

Fitting Polynomials

- We obtain a linear system of $\mathrm{k}+1$ in $\mathrm{k}+1$ variables

$$
\left(\begin{array}{cccc}
\sum_{i=1}^{n} 1 & \sum_{i=1}^{n} x_{i} & \cdots & \sum_{i=1}^{n} x_{i}^{k} \\
\sum_{i=1}^{n} x_{i} & \sum_{i=1}^{n} x_{i}^{2} & \cdots & \sum_{i=1}^{n} x_{i}^{k+1} \\
\vdots & \vdots & \ddots & \vdots \\
\sum_{i=1}^{n} x_{i}^{k} & \sum_{i=1}^{n} x_{i}^{k+1} & \cdots & \sum_{i=1}^{n} x_{i}^{2 k}
\end{array}\right)\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{k}
\end{array}\right)=\left(\begin{array}{l}
\sum_{i=1}^{n} 1 \cdot y_{i} \\
\sum_{i=1}^{n} x_{i} y_{i} \\
\\
\sum_{i=1}^{n} x_{i}^{k} y_{i}
\end{array}\right)
$$

General Parametric Fitting

- We can use this approach to fit any function $f(x)$
- Specified by parameters a, b, c, \ldots
- The expression $f(x)$ linearly depends on the parameters a, b, c, \ldots

General Parametric Fitting

- Want to fit function $f_{a b c \ldots}(x)$ to data points $\left(x_{i}, y_{i}\right)$
- Define $E(a, b, c, \ldots)=\sum_{i=1}^{n}\left[y_{i}-f_{a b c \ldots}\left(x_{i}\right)\right]^{2}$
- Solve the linear system

$$
\begin{aligned}
& \frac{\partial}{\partial a} E(a, b, c, \ldots)=\sum_{i=1}^{n}\left(-2 \frac{\partial}{\partial a} f_{a b c \ldots}\left(x_{i}\right)\right)\left[y_{i}-f\left(x_{i}\right)\right]=0 \\
& \frac{\partial}{\partial b} E(a, b, c, \ldots)=\sum_{i=1}^{n}\left(-2 \frac{\partial}{\partial b} f_{a b c \ldots}\left(x_{i}\right)\right)\left[y_{i}-f\left(x_{i}\right)\right]=0
\end{aligned}
$$

General Parametric Fitting

- It can even be some crazy function like

$$
f(x)=\lambda_{1} \sin ^{2} x+\lambda_{2} \mathbf{e}^{-\frac{x^{2}}{\sqrt{2 \pi}}}+\lambda_{3} x^{17}
$$

- Or in general:

$$
f_{\lambda_{1}, \lambda_{1}, \ldots, \lambda_{k}}(x)=\lambda_{1} f_{1}(x)+\lambda_{2} f_{2}(x)+\ldots+\lambda_{k} f_{k}(x)
$$

Solving Linear Systems in LS Sense

- Let's look at the problem a little differently:
- We have data points $\left(x_{i}, y_{i}\right)$
- We want the function $f(x)$ to go through the points:

$$
\forall i=1, \ldots, n: \quad y_{i}=f\left(x_{i}\right)
$$

- Strict interpolation is in general not possible
- In polynomials: $\mathrm{n}+1$ points define a unique interpolation polynomial of degree n.
- So, if we have 1000 points and want a cubic polynomial, we probably won't find it...

Solving Linear Systems in LS Sense

- We have an over-determined linear system $\mathrm{n} \times \mathrm{k}$:

$$
\begin{aligned}
& f\left(x_{1}\right)=\lambda_{1} f_{1}\left(x_{1}\right)+\lambda_{2} f_{2}\left(x_{1}\right)+\ldots+\lambda_{k} f_{k}\left(x_{1}\right)=y_{1} \\
& f\left(x_{2}\right)=\lambda_{1} f_{1}\left(x_{2}\right)+\lambda_{2} f_{2}\left(x_{2}\right)+\ldots+\lambda_{k} f_{k}\left(x_{2}\right)=y_{2}
\end{aligned}
$$

$$
f\left(x_{n}\right)=\lambda_{1} f_{1}\left(x_{n}\right)+\lambda_{2} f_{2}\left(x_{n}\right)+\ldots+\lambda_{k} f_{k}\left(x_{n}\right)=y_{n}
$$

Solving Linear Systems in LS Sense

- In matrix form:

$$
\left(\begin{array}{cccc}
f_{1}\left(x_{1}\right) & f_{2}\left(x_{1}\right) & \ldots & f_{k}\left(x_{1}\right) \\
f_{1}\left(x_{2}\right) & f_{2}\left(x_{2}\right) & \ldots & f_{k}\left(x_{2}\right) \\
& & \ldots & \\
& & & \\
\vdots & \vdots & & \vdots \\
& & & \\
f_{1}\left(x_{n}\right) & f_{2}\left(x_{n}\right) & \ldots & f_{k}\left(x_{n}\right)
\end{array}\right)\left(\begin{array}{c}
\lambda_{1} \\
\lambda_{2} \\
\vdots \\
\lambda_{k}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\\
\vdots \\
y_{n}
\end{array}\right)
$$

Solving Linear Systems in LS Sense

- In matrix form:

$$
A \mathbf{v}=\mathbf{y}
$$

where $A=\left(f_{j}\left(x_{i}\right)\right)_{i . j}$ is a rectangular $n \times k$ matrix, $\mathrm{n}>\mathrm{k}$

$$
\begin{gathered}
\mathbf{v}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)^{T} \\
\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}
\end{gathered}
$$

Solving Linear Systems in LS Sense

- More constraints than variables - no exact solutions generally exist
- We want to find something that is an "approximate solution":

$$
\tilde{\mathbf{v}}=\underset{\mathbf{v}}{\arg \min }\|A \mathbf{v}-\mathbf{y}\|^{2}
$$

Finding the LS Solution

- $\mathbf{v} \in \mathrm{R}^{\mathrm{k}}$
- $A \mathbf{v} \in \mathrm{R}^{\mathrm{n}}$
- As we vary $\mathbf{v}, A \mathbf{v}$ varies over the linear subspace of R^{n} spanned by the columns of A :

Finding the LS Solution

- We want to find the closest $A \mathbf{v}$ to $\mathbf{y}: \min _{v}\|A \mathbf{v}-\mathbf{y}\|^{2}$

Finding the LS Solution

- The vector $A \mathbf{v}$ closest to \mathbf{y} satisfies:

$$
\left.(A \mathbf{v}-\mathbf{y}) \perp \text { \{subspace of } A^{\prime} \text { s columns }\right\}
$$

\forall column $A_{i,}\left\langle A_{i}, A \mathbf{v}-\mathbf{y}\right\rangle=0$

Finding the LS Solution

- We got a square symmetric system $\left(A^{\mathrm{T}} A\right) \mathbf{v}=$ $A^{\mathrm{T}} \mathbf{y}$
- If A has full rank (the columns of A are linearly independent) then $\left(A^{\mathrm{T}} A\right)$ is invertible.

$$
\begin{aligned}
& \min _{\mathbf{v}}\|A \mathbf{v}-\mathbf{y}\|^{2} \\
& \Downarrow \\
& \mathbf{v}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{y}
\end{aligned}
$$

Weighted Least Squares

- Sometimes the problem also has weights to the constraints:
$\min _{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}} \sum_{i=1}^{n} w_{i}\left[y_{i}-f_{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}}\left(x_{i}\right)\right]^{2}, w_{i}>0$ and doesn't depend on λ_{i} I
$\min (A \mathbf{v}-\mathbf{y})^{T} W(A \mathbf{v}-\mathbf{y})$, where $\mathrm{W}_{\mathrm{ii}}=w_{i}$ is a diagonal matrix ॥
$\left(A^{T} W A\right) v=A^{T} W y$ this is a square system

Motivation

- We are acquiring point cloud directly from scanners
- From physical prototypes to digital prototypes Local surface fitting to 3D points (Reverse Engineering

Local Surface Fitting to 3D points

- Normals?
- Lighting?
- Upsampling?

Local Surface Fitting to 3D points

Locally approximate a polynomial surface from points

Fitting Local Polynomial

Fit a local polynomial around a point P

Fitting Local Polynomial Surface

- Compute a reference plane that fits the points close to P
- Use the local basis defined by the normal to the plane!

Fitting Local Polynomial Surface

- Fit polynomial $z=p(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f$

Fitting Local Polynomial Surface

- Fit polynomial $z=p(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f$

Fitting Local Polynomial Surface

- Fit polynomial $z=p(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+f$

Fitting Local Polynomial Surface

- Again, solve the system in LS sense:

$$
\begin{aligned}
& a x_{1}^{2}+b x_{1} y_{1}+c y_{1}^{2}+d x_{1}+e y_{1}+f=z_{1} \\
& a x_{2}^{2}+b x_{2} y_{2}+c y_{2}^{2}+d x_{2}+e y_{2}+f=z_{1} \\
& \cdots \\
& a x_{n}^{2}+b x_{n} y_{n}+c y_{n}^{2}+d x_{n}+e y_{n}+f=z_{n}
\end{aligned}
$$

- Minimize $\Sigma\left\|z_{i}-p\left(x_{i}, y_{i}\right)\right\|^{2}$

Fitting Local Polynomial Surface

- Also possible (and better) to add weights:

$$
\Sigma w_{i}\left\|z_{i}-p\left(x_{i}, y_{i}\right)\right\|^{2}, \quad w_{i}>0
$$

- The weights get smaller as the distance from the origin point grows.

