
Least Squares Approach for
Computer Graphics

(From Point Cloud to CAD 
Models - A Brief 

Introduction)



Motivation
• From 3D points to CAD models

• Local surface fitting to 3D points
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Reverse Engineering

• From physical prototypes to digital prototypes 
via reverse engineering
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2D Terrain Modeling

• A simplified case
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Motivation

• Given data points, fit a function that is “close” 
to the points
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y = f (x)y

x

Pi = (xi, yi)



Outline

• Least squares approach

– General / Polynomial fitting

– Linear systems of equations

– Local polynomial surface fitting
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Line Fitting

• y-offset minimization
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Line Fitting

• Orthogonal offset minimization –
Principal Component Analysis (PCA)
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Line Fitting
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• Find a line y = ax + b that minimizes

• E(a,b) is quadratic in the unknown parameters a, b

• Another option would be, for example:

• But – it is not differentiable, harder to minimize…
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Line Fitting – LS Minimization
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• To find optimal a, b we differentiate E(a, b):



Line Fitting – LS Minimization

• We obtain two linear equations for a, b:
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Line Fitting – LS Minimization

• We obtain two linear equations for a, b:
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Line Fitting – LS Minimization

• We obtain two linear equations 

13













n

i

i

n

i

n

i

i

n

i

ii

n

i

i

n

i

i

ybax

yxbxax

111

111

2

)1()(

)()(



Line Fitting – LS Minimization

• Solve for a, b using (for example) Gauss elimination

• Question: why the solution is the minimum for the 
error function?
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Fitting Polynomials
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Fitting Polynomials

• Decide on the degree of the polynomial, k

• Want to fit  f (x) = akx
k

+ ak-1x
k-1

+ … + a1x+ a0

• Minimize:
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Fitting Polynomials

• We obtain a linear system of  k+1 in k+1 variables
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General Parametric Fitting

• We can use this approach to fit any function f(x)

– Specified by parameters a, b, c, …

– The expression f(x) linearly depends on the parameters 
a, b, c, …
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General Parametric Fitting

• Want to fit function fabc…(x) to data points (xi, yi)

– Define     E(a,b,c,…) =       [yi – fabc…(xi)]
2

– Solve the linear system
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General Parametric Fitting

• It can even be some crazy function like

• Or in general:
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Solving Linear Systems in LS Sense

• Let’s look at the problem a little differently:

– We have data points (xi, yi)

– We want the function f(x) to go through the points:

 i =1, …, n:     yi = f(xi)

– Strict interpolation is in general not possible

• In polynomials: n+1 points define a unique interpolation 
polynomial of degree n. 

• So, if we have 1000 points and want a cubic polynomial, we 
probably won’t find it…
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Solving Linear Systems in LS Sense

• We have an over-determined linear system nk:

f(x1) = 1 f1(x1) + 2 f2(x1)  + … + k fk(x1) = y1

f(x2) = 1 f1(x2) + 2 f2(x2)  + … + k fk(x2) = y2

…

…

…

f(xn) = 1 f1(xn) + 2 f2(xn)  + … + k fk(xn) = yn
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Solving Linear Systems in LS Sense
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• In matrix form:
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Solving Linear Systems in LS Sense
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• In matrix form:
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Solving Linear Systems in LS Sense

• More constraints than variables – no exact 
solutions generally exist

• We want to find something that is an 
“approximate solution”:
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Finding the LS Solution

• v  R
k

• Av  R
n

• As we vary v,  Av varies over the linear 
subspace of Rn spanned by the columns of A:
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Finding the LS Solution

• We want to find the closest Av to y:
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Finding the LS Solution

• The vector Av closest to y satisfies:

(Av – y)  {subspace of A’s columns}

 column Ai, <Ai, Av – y> = 0

 i,  Ai
T
(Av – y) = 0

A
T
(Av – y) = 0

(A
T
A)v = A

T
y
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These are

called the 

normal equations



Finding the LS Solution

• We got a square symmetric system (AT
A)v = 

A
T
y (kk)

• If A has full rank (the columns of A are linearly 
independent) then (AT

A) is invertible.
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Weighted Least Squares

• Sometimes the problem also has weights to 
the constraints:
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Motivation
• We are acquiring point cloud directly from scanners

• From physical prototypes to digital prototypes Local 
surface fitting to 3D points (Reverse Engineering
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Local Surface Fitting to 3D points

• Normals?

• Lighting?

• Upsampling?
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Local Surface Fitting to 3D points
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Locally approximate

a polynomial surface

from points



Fitting Local Polynomial
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Z
Reference plane

 Fit a local polynomial around a point P
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Fitting Local Polynomial Surface

• Compute a reference plane that fits the points close to P

• Use the local basis defined by the normal to the plane!
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Fitting Local Polynomial Surface

• Fit polynomial  z = p(x,y) = ax2 + bxy + cy2 + dx + ey + f
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Fitting Local Polynomial Surface

• Fit polynomial  z = p(x,y) = ax2 + bxy + cy2 + dx + ey + f

37

z

x

y



Fitting Local Polynomial Surface

• Fit polynomial  z = p(x,y) = ax2 + bxy + cy2 + dx + ey + f
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Fitting Local Polynomial Surface

• Again, solve the system in LS sense:

ax1
2 + bx1y1 + cy1

2 + dx1 + ey1 + f = z1

ax2
2 + bx2y2 + cy2

2 + dx2 + ey2 + f = z1

. . . 

axn
2 + bxnyn + cyn

2 + dxn + eyn + f = zn

• Minimize    ||zi – p(xi, yi)||
2
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Fitting Local Polynomial Surface

• Also possible (and better) to add weights:   

 wi ||zi – p(xi, yi)||
2,   wi > 0

• The weights get smaller as the distance from 
the origin point grows.

40


