Least Squares Approach for
Computer Graphics
(From Point Cloud to CAD
Models - A Brief

Introduction)



Motivation

* From 3D points to CAD models
* Local surface fitting to 3D points




Reverse Engineering

* From physical prototypes to digital prototypes
Via reverse engineering




2D Terrain Modeling

implified case

e As




Motivation

* Given data points, fit a function that is “close”
to the points

y y =1(x)




Outline

e Least squares approach
— General / Polynomial fitting
— Linear systems of equations
— Local polynomial surface fitting



Line Fitting

* y-offset minimization

y




Line Fitting

* Orthogonal offset minimization —
Principal Component Analysis (PCA)
o1




Line Fitting

Find aline Y = ax + b that minimizes

E(a.b) = YTy, — (@ +b)F

E(a,b) is quadratic in the unknown parameters @, b

Another option would be, for example:
AbsErr(a,b) = |y, —(ax; +b)
=1

But — it is not differentiable, harder to minimize...



Line Fitting — LS Minimization

* To find optimal a, b we differentiate E(a, b):

% E(a,b) = > (-2x)ly, — (@, +b)]=0

% E(a,b) = > (-2)ly, — (@x, +b)]=0



Line Fitting — LS Minimization

* We obtain two linear equations for a, b:

i(—2xi)[yi —(ax; +b)]=0

> (Dly, - (@x, +b)] =0



Line Fitting — LS Minimization

* We obtain two linear equations for a, b:
@ SIxy, —ax? —bx,]=0

2 Yy, ~ax,~b]=0



Line Fitting — LS Minimization

* \We obtain two linear equations

(i X; )a+ (i X; )b = i Xi Y,
> x)a+(X0b=>y



Line Fitting — LS Minimization
» Solve for a, b using (for example) Gauss elimination

* Question: why the solution is the minimum for the
error function?

(@, b) = Y 1Y, ~ (@, + b)Y



Fitting Polynomials
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Fitting Polynomials

* Decide on the degree of the polynomial, k
* Want to fit f(X) = akxk + ak_lxk'1 + ... T a X+ a,
* Minimize:

n
k K-
=1




Fitting Polynomials

* We obtain a linear system of k+1 in k+1 variables

(a,)

(n
Zl' Y,
i1

D %Y,

i1

KZl XY,

\




General Parametric Fitting

* We can use this approach to fit any function f(x)
— Specified by parameters a, b, ¢, ...

— The expression f(X) linearly depends on the parameters
a b, c, ...



General Parametric Fitting

Want to fit function f , . (X) to data points (X;, Y;)

—Define  E(a.b,c,...) = IV~ fu. O
— Solve the linear system ]

O

_N(0 9 _ _
EE(BHIILC’”')_;( zaafabc...(xi))[yi f(XI)] 0

O

_N(0 0 _ _
%E(a,b,C,...)—;( 28b fabc...(Xi))[yi f(x|)] 0



General Parametric Fitting

* |t can even be some crazy function like
2
f(X)=A4sin°x + 1, e > + 4, x“'
* Orin general:

le,zi ﬂk(x):ﬂlfl(x) + LX) + ...+ A4 F(X)



Solving Linear Systems in LS Sense

* Let’s look at the problem a little differently:
— We have data points (X, Y;)
— We want the function f(x) to go through the points:

Vi=1 ..., 0y =1(x)

— Strict interpolation is in general not possible

* In polynomials: n+1 points define a unique interpolation
polynomial of degree n.

* So, if we have 1000 points and want a cubic polynomial, we
probably won’t find it...



Solving Linear Systems in LS Sense

* We have an over-determined linear system nxKk:

f(x) = A T(X) + A To(xy) + ... + 4 6(X) =Y,
f(Xp) = A T (X5) + A, To(Xy) + ... + 46 (X) =Y,

f(xn) — ﬂ“l fl(xn) + ;LZ fZ(Xn) T T ﬂ‘k fk(xn) — yn



Solving Linear Systems in LS Sense

* |In matrix form:

f.(x) f,(x) .. fO)\A4 Y,
f(x) (%) .. f00)|4 Y,

f1(Xn) f2 (Xn) fk (Xn) yn



Solving Linear Systems in LS Sense

* |n matrix form:

Av =y

where A= ( f, (Xi))i | IS a rectangular nx k matrix, n >k

V= (4, A &)
y= (yl’ Yoreen yn)T



Solving Linear Systems in LS Sense

e More constraints than variables — no exact
solutions generally exist

 We want to find something that is an
“approximate solution”:

V =argmin||Av —yH2
VvV



Finding the LS Solution

e v e R
¢« Av e R"

 Aswe varyV, AV varies over the linear
subspace of R" spanned by the columns of A:

—

/ N
A
Av = a Al Al ] = A Al + A,
}\‘k

\L 1/

N

+...+ A4 A




Finding the LS Solution

 We want to find the closest Av to : minHAv—yH2

closesttoy
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Finding the LS Solution

* The vector Av closest to Y satisfies:
(Av-vy) L {subs&ace of A’s columns}

0

V column A, <A, Av —y>=0

Vi A'(Av—v) =0
/ |(/\ y)

These are \H/
called the T _
normal equations A (AV _ y) =0

(A'TAv=A'y




Finding the LS Solution

* We got a square symmetric system (ATA)V =
Ay (kxK)

* |f A has full rank (the columns of A are linearly
independent) then (A'A) is invertible.

minHAv—yH2
U
v=(A"A) Ay



Weighted Least Squares

* Sometimes the problem also has weights to
the constraints:

min > wly,—f, . (%), w, >0 and doesn't depend on 4,

min (Av-y)'W(Av-y), where W, =w. is a diagonal matrix

)
(A'WA)v = A'Wy this is a square system



Motivation

* We are acquiring point cloud directly from scanners

* From physical prototypes to digital prototypes Local
surface fitting to 3D points (Reverse Engineering

31
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Local Surface Fitting to 3D points

Locally approximate
a polynomial surface
from points




Fitting Local Polynomial

Fit a local polynomial around a

point P

Reference plane
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Fitting Local Polynomial Surface

Compute a reference plane that fits the points close to P
Use the local basis defined by the normal to the plane!
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Fitting Local Polynomial Surface

e Fit polynomial z = p(x,y) = ax’ + bxy + cy* + dx + ey + f
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Fitting Local Polynomial Surface

e Fit polynomial z = p(x,y) = ax’ + bxy + cy* + dx + ey + f
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Fitting Local Polynomial Surface

e Fit polynomial z = p(x,y) = ax’ + bxy + cy* + dx + ey + f
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Fitting Local Polynomial Surface

* Again, solve the system in LS sense:
ax,” + bxyy; + cy,” +dx; +ey, +f=2
ax,” + bxyy, + cy,” + dx, +ey, + =z

ax,” + bxyy, + cy,” +dx, +ey, +f=z,

* Minimize X ||z, — p(X; yi)”2



Fitting Local Polynomial Surface

* Also possible (and better) to add weights:
2 W; ||z — p(x;, yi)Hz, w; >0

 The weights get smaller as the distance from
the origin point grows.



