
Least Squares Approach for
Computer Graphics

(From Point Cloud to CAD
Models - A Brief

Introduction)

Motivation
• From 3D points to CAD models

• Local surface fitting to 3D points

2

Reverse Engineering

• From physical prototypes to digital prototypes
via reverse engineering

3

2D Terrain Modeling

• A simplified case

4

Motivation

• Given data points, fit a function that is “close”
to the points

5

y = f (x)y

x

Pi = (xi, yi)

Outline

• Least squares approach

– General / Polynomial fitting

– Linear systems of equations

– Local polynomial surface fitting

6

Line Fitting

• y-offset minimization

7

x

y

Pi = (xi, yi)

Line Fitting

• Orthogonal offset minimization –
Principal Component Analysis (PCA)

8

x

y

Line Fitting

2

1

(,) [()]
n

i i

i

a b ay bE x

9

• Find a line y = ax + b that minimizes

• E(a,b) is quadratic in the unknown parameters a, b

• Another option would be, for example:

• But – it is not differentiable, harder to minimize…

n

i

ii baxybaAbsErr
1

)(),(

Line Fitting – LS Minimization

n

i

n

i

baE
b

baE
a

1

ii

1

iii

0 b)] (ax– (–2)[y),(

 0 b)] (ax–)[y(–2x),(

10

• To find optimal a, b we differentiate E(a, b):

Line Fitting – LS Minimization

• We obtain two linear equations for a, b:

11

n

i

n

i

1

ii

1

iii

0 b)] (ax– (–2)[y

0 b)] (ax–)[y(–2x

Line Fitting – LS Minimization

• We obtain two linear equations for a, b:

12

n

i

n

i

1

ii

1

i

2

iii

0 b]– ax– [y)2(

0]bx– ax– y[x)1(

Line Fitting – LS Minimization

• We obtain two linear equations

13

n

i

i

n

i

n

i

i

n

i

ii

n

i

i

n

i

i

ybax

yxbxax

111

111

2

)1()(

)()(

Line Fitting – LS Minimization

• Solve for a, b using (for example) Gauss elimination

• Question: why the solution is the minimum for the
error function?

14

n

i 1

2

ii b)] (ax– [y b) E(a,

Fitting Polynomials

15

y

x

Fitting Polynomials

• Decide on the degree of the polynomial, k

• Want to fit f (x) = akx
k

+ ak-1x
k-1

+ … + a1x+ a0

• Minimize:

16

n

i 1

2

0i1

1-k

i1-k

k

ikik10)]axa xax(a– [y)a , ,a ,E(a

 n

ima 1

0

1-k

i1-k

k

iki

m

k0 0)]a xax(a–)[y2x(–)a,,E(a

Fitting Polynomials

• We obtain a linear system of k+1 in k+1 variables

17

1 1 1 1

2 1

1 1 1 1

1 2

1 1

0

1 1

1

1 1
n n n n

k

i i i

i i i i

n n n n
k

i i i i i

i i i i

n n n n
k k k k

i i i i i

i i i
k

i

x x y

x x x x

a

a

a

y

x x x x y

General Parametric Fitting

• We can use this approach to fit any function f(x)

– Specified by parameters a, b, c, …

– The expression f(x) linearly depends on the parameters
a, b, c, …

18

General Parametric Fitting

• Want to fit function fabc…(x) to data points (xi, yi)

– Define E(a,b,c,…) = [yi – fabc…(xi)]
2

– Solve the linear system

19

...

1

...

1

(, , ,) (2 ())[()] 0

(, , ,) (2 ())[()] 0

n

abc i i i

i

n

abc i i i

i

E a b c f x y f x
a a

E a b c f x y f x
b b

n

i 1

General Parametric Fitting

• It can even be some crazy function like

• Or in general:

20

2

22

2

7

1 3

1() sin
x

f x x x

 e

1 1, , 1..., 1 2 2() () () ... ()
k kkf x f x f x f x

Solving Linear Systems in LS Sense

• Let’s look at the problem a little differently:

– We have data points (xi, yi)

– We want the function f(x) to go through the points:

 i =1, …, n: yi = f(xi)

– Strict interpolation is in general not possible

• In polynomials: n+1 points define a unique interpolation
polynomial of degree n.

• So, if we have 1000 points and want a cubic polynomial, we
probably won’t find it…

21

Solving Linear Systems in LS Sense

• We have an over-determined linear system nk:

f(x1) = 1 f1(x1) + 2 f2(x1) + … + k fk(x1) = y1

f(x2) = 1 f1(x2) + 2 f2(x2) + … + k fk(x2) = y2

…

…

…

f(xn) = 1 f1(xn) + 2 f2(xn) + … + k fk(xn) = yn

22

Solving Linear Systems in LS Sense

23

• In matrix form:

1 1 2 1 1 1

1 2 2 2 2 2

1 2

() () ... ()

() () ... ()

...

() () ... ()

k

k

n n k n n

f x f x f x y

f x f x f x y

f x f x f x y

1

2

k

Solving Linear Systems in LS Sense

24

• In matrix form:

Av = y

.

1 2

1 2

where () is a rectangular matr

(, ,...,

ix, n k

(, ,...,)

)

j j

T

i i

n

k

T

A f x n k

y y y

y

v

Solving Linear Systems in LS Sense

• More constraints than variables – no exact
solutions generally exist

• We want to find something that is an
“approximate solution”:

25

2
arg min A

v

v v y

Finding the LS Solution

• v R
k

• Av R
n

• As we vary v, Av varies over the linear
subspace of Rn spanned by the columns of A:

26

Av = A2A1 Ak

1

2

.

.

k

= 1 A1 A2 Ak+ 2 +…+ k

Finding the LS Solution

• We want to find the closest Av to y:

27

2
min A

v
v y

Subspace spanned

by columns of A

y

R
n

Av

closest to y

Finding the LS Solution

• The vector Av closest to y satisfies:

(Av – y) {subspace of A’s columns}

 column Ai, <Ai, Av – y> = 0

 i, Ai
T
(Av – y) = 0

A
T
(Av – y) = 0

(A
T
A)v = A

T
y

28

These are

called the

normal equations

Finding the LS Solution

• We got a square symmetric system (AT
A)v =

A
T
y (kk)

• If A has full rank (the columns of A are linearly
independent) then (AT

A) is invertible.

29

2

1

min

()T T

A

A A A

v
v y

v y

Weighted Least Squares

• Sometimes the problem also has weights to
the constraints:

30

1 2
1 2

2

, ,..., i
, ,. ,

ii

..
1

min [()] , and doesn't depend on

min () (), where is a diagonal matrix

() this is a

0

s

W

quare system

k
k

n

i i i

T

i

T

i

i

v

T

w w

W

y f x

A A

A A v A y

w

W W

v y v y

Motivation
• We are acquiring point cloud directly from scanners

• From physical prototypes to digital prototypes Local
surface fitting to 3D points (Reverse Engineering

31

Local Surface Fitting to 3D points

• Normals?

• Lighting?

• Upsampling?

32

Local Surface Fitting to 3D points

33

Locally approximate

a polynomial surface

from points

Fitting Local Polynomial

34

X Y

Z
Reference plane

 Fit a local polynomial around a point P

P

Fitting Local Polynomial Surface

• Compute a reference plane that fits the points close to P

• Use the local basis defined by the normal to the plane!

35

z

x y

Fitting Local Polynomial Surface

• Fit polynomial z = p(x,y) = ax2 + bxy + cy2 + dx + ey + f

36

z

x y

Fitting Local Polynomial Surface

• Fit polynomial z = p(x,y) = ax2 + bxy + cy2 + dx + ey + f

37

z

x

y

Fitting Local Polynomial Surface

• Fit polynomial z = p(x,y) = ax2 + bxy + cy2 + dx + ey + f

38

z

x y

Fitting Local Polynomial Surface

• Again, solve the system in LS sense:

ax1
2 + bx1y1 + cy1

2 + dx1 + ey1 + f = z1

ax2
2 + bx2y2 + cy2

2 + dx2 + ey2 + f = z1

. . .

axn
2 + bxnyn + cyn

2 + dxn + eyn + f = zn

• Minimize ||zi – p(xi, yi)||
2

39

Fitting Local Polynomial Surface

• Also possible (and better) to add weights:

 wi ||zi – p(xi, yi)||
2, wi > 0

• The weights get smaller as the distance from
the origin point grows.

40

