CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

Hong Qin Department of Computer Science Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.stonybrook.edu http://www.cs.stonybrook.edu/~qin

Department of Computer Science Center for Visual Computing

Rasterization

Per-pixel operations: ray-casting/ray-tracing

Scan conversion of lines: naive version Bresenham algorithm (mid-point algorithm) Scan conversion of polygons

Aliasing / antialiasing

Texturing

Screen = matrix

Department of Computer Science Center for Visual Computing

Drawing of Line Geometry

- Why line drawing the line is the most fundamental drawing primitive with many uses.
 - Charts, engineering drawings, illustrations, 2D pencil-based animation, curve approximation
- Some desirable properties: for any line drawing algorithm

 A line should be straight; endpoint interpolation; uniform density for all lines; efficient
- Our current goal efficient and correct line drawing algorithm
- **Draw-line**($x_{0}, y_{0}, x_{1}, y_{1}$)

Line Drawing

- Convert a continuous line to a set of discretized points
- Rasterization

F NEW YORK

Department of Computer Science Center for Visual Computing

Algorithm Assumption

- Point samples on 2D integer lattice
- Bi-level display: on or off
- Line endpoints are all integer coordinates
- All line slopes are: $|\mathbf{k}| \ll 1$
- Lines are ONE pixel thick
- Are the above assumptions reasonable?

Department of Computer Science Center for Visual Computing

Line Geometry

- Explicit representation
- y = mx + b
- The geometric meanings of these parameters: m

 slope of the line; b where it intercept y-axis
 (where x = 0)
- More derivations
 - -dy = y1 y0
 - -dx = x1 x0
 - -m = (dy) / (dx)

Department of Computer Science Center for Visual Computing

Simple Algorithm

- Draw-line(x0, y0, x1, y1)
 - 1. Let dy = y1 y0; dx = x1 x0
 - $2. \quad For x = x0 \text{ to } x1$
 - 3. y = rounding-operation(y0 + (x x0))(dy/dx)
 - 4. draw-point(x,y)
 - 5. End for
- Why does the above procedure work?
- Explicit definition of the line geometry -y = (dy / dx) (x - x0) + y0 = mx + b

Rendering Line Segments (Rasterization)

One of the fundamental tasks in 2D computer graphics is 2D line drawing: How to render a line segment from (x₁, y₁) to (x₂, y₂)?

• Use the equation y = mx + h (explicit)

 What about horizontal vs. vertical lines?

Department of Computer Science Center for Visual Computing

Further Improvement

- A more efficient algorithm
 - 1. x = x0; y = y0
 - 2. draw-point(x,y)
 - 3. For x from x0 + 1 to x1
 - 4. y = y + (dy / dx)
 - 5. End for
- Note that, m = (dy / dx), and m is a float or double

DDA Algorithm

- Digital Differential Analyzer (DDA) for (x=x₁; x<=x₂; x++) y += m; draw_pixel(x, y, color)
- Handle slopes 0 <= m <= 1; handle others symmetrically
- Does this need floating point operations?

Department of Computer Science Center for Visual Computing

Further Improvement

- We are now seeking an integer-ONLY algorithm to handle all line geometry
- The above procedures will fail
- We must explore new schemes (beyond the line geometry we have already know till now)

Department of Computer Science Center for Visual Computing

Implicit Equation

Department of Computer Science Center for Visual Computing CSE328 Lecture

ST NY BR K

Midpoint Algorithm

- Implicit expression for the line geometry $-f(x,y) = (x - x0)^*(dy) - (y - y0)^*(dx)$
- What does this formulation provide us (compared with the previous derivations)?
- Fundamental ideas spatial partitioning based on the signs!
 - If f(x,y) = 0, then (x, y) is on the line
 - If f(x,y) > 0, then (x,y) is below the line
 - If f(x,y) <0, then (x, y) is above the line

Department of Computer Science Center for Visual Computing

Midpoint Motivation

Department of Computer Science Center for Visual Computing ST NY BR K

Midpoint Motivation

- We are actually considering d = f(xp + 1, yp + 0.5)
- There are three different cases
 - If d < 0, line is below the (current) midpoint, then choose E
 - If d >0, lie is above the midpoint, choose NE
 - If d =0, line is passing through the midpoint, either E or NE

Department of Computer Science Center for Visual Computing

Recursive Algorithm

- Midpoint algorithm is a recursive algorithm!
- For any recursive algorithm, we MUST consider the subsequent steps (by traversing all cases respectively)!
- If E is chosen, then the NEW E is (xp + 2, yp), the NEW NE is (xp + 2, yp +1), the NEW midpoint is (xp + 2, yp + 0.5)
 d_new = f (xp + 2, yp + 0.5)
 d_old = f (xp + 1, yp +0.5)
 - $d_new = d_old + (dy)$

Department of Computer Science Center for Visual Computing

Recursive Algorithm

- If NE is chosen, the NEW E is (xp +2, yp +1), the NEW NE is (xp + 2, yp + 2), the NEW midpoint is (xp + 2, y + 1.5)
 - $d_{new} = f(xp + 2, yp + 1.5)$
 - $d_old = f(xp + 1, yp + 0.5)$
 - $d_new = d_old + (dy dx)$
- This process MUST repeat recursively, stepping along x from x0 to x1

Midpoint Initialization

Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

Initialization

- How about the initialization process
- At the beginning,
 - -xp = x0
 - -yp = y0
 - $-d_old = f(x_0+1, y_0+0.5) = (dy) (dx) * (1/2)$

Department of Computer Science Center for Visual Computing

Midpoint Algorithm

• draw-line(x0, y0, x1, y1)

- Int x0, y0, x1, y1
- {{ int dx, dy, inc_E, inc_NE, x, y,
- reald
- dx = x1 x0
- $dy = y_1 y_0$
- d = (dy) (dx) * (1/2)
- inc_E = dy
- inc_NE = dy_-dx
- $y = y_0$
- for x from x0 to x1
- if d > 0, then $d = d + inc_NE$, y + 1, else $d = d + inc_E$
- end for

Department of Computer Science Center for Visual Computing

Midpoint Algorithm

- d is NOT an integer, however, ONLY the sign MATTERS!
- We prefer an integer-ONLY algorithm!!!
 - -g(x,y) = 2 f(x,y)
 - d becomes 2d
 - then d = 2(dy) (dx)

Department of Computer Science Center for Visual Computing

Modifying the Previous Algorithm

- Make it an integer-ONLY algorithm
- Our earlier assumptions
 - slopes: 0 <= (dy) / (dx) <=1
 - line endpoints are all integer coordinates
- How about other cases

Handling All Other Cases

- Generalizations
 - negative slope
 - slope larger than 1
- If the slope is larger than 1, we use symmetry to switch x and y (you are NOT displaying (x,y), you should display (y,x))!
- In negative slope, we should use x and (-y)

Department of Computer Science Center for Visual Computing

Bresenham's Algorithm

- The DDA algorithm requires a floating point *add* and *round* for each pixel: can we eliminate?
- Note that at each step we will go E or NE. How to decide which?

STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Bresenham Decision Variable

- Bresenham algorithm uses decision variable d=a-b, where a and b are distances to NE and E pixels
- If d>=0, go NE; if d<0, go E
- Let $d=(x_2-x_1)(a-b) = d_x(a-b)$ [only sign matters]
- Substitute for a and b using line equation to get integer math (but lots of it)

- $d=(a-b) d_x = (2j+3) d_x (2i+3) d_y 2(y_1 d_x x_1 d_y)$
- But note that $d_{k+1} = d_k + 2d_y$ (E) or $2(d_y d_x)$ (NE)

Department of Computer Science Center for Visual Computing

Bresenham's Algorithm

- Set up loop computing d at x_1 , y_1
 - for (x=x $_1$; x<=x $_2$;)
 - X++;;
 - d += 2dy;
 - if (d >= 0) {
 - y++; d -= 2dx; }
 - drawpoint (x,y);
- Pure integer math, and not much of it
- So easy that it is built into one graphics instruction (for several points in parallel)

Department of Computer Science Center for Visual Computing

Extensions to Handle Curves

- Generalizations to handle all cases for line drawing
- Algorithms for circle-drawing
- Algorithms for ellipses, conic section drawing
- Algorithms for cubic curve drawing
- Algorithms to handle any type of curves?

Department of Computer Science Center for Visual Computing

Circles

• Implicit expression of a circle f(x,y)=0

$$f(x,y) = (x - x_0)^2 + (y - y_0)^2 - r^2$$

- Remember the key idea is that, ONLY the sign matters!
 - If f(x,y)=0, then (x,y) is on the circle
 - If f(x,y) > 0, then (x,y) is outside the circle
 - If f(x,y) < 0, then (x,y) is inside the circle
- Equations for ellipses?
- The key message: the slope is controllable!!!

Department of Computer Science Center for Visual Computing

