CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

Hong Qin

Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu
http:///www.cs.stonybrook.edu/~qin

Rasterization

Per-pixel operations: ray-c
Scan conversion of lines:
naive version
Bresenham algorithm
(mid-point algorithm)

Screen $=$ matrix

Scan conversion of polygons

Aliasing / antialiasing

Texturing

Drawing of Line Geometry

- Why line drawing - the line is the most fundamental drawing primitive with many uses
- Charts, engineering drawings, illustrations, 2D pencil-based animation, curve approximation
- Some desirable properties for any line drawing algorithm
- A line should be straight; endpoint interpolation; uniform density for all lines; efficient
- Our current goal - efficient and correct line drawing algorithm
- Draw-line $\left(x_{0}, y_{0}, x_{11}, y_{11}\right)$)

Line Drawing

- Convert a continuous line to a set of discretized points
- Rasterization

Algorithm Assumption

- Point samples on 2D integer lattice
- Bi-level display: on or off
- Line endpoints are all integer coordinates
- All line slopes are: $|\mathrm{k}|<=1$
- Lines are ONE pixel thick
- Are the above assumptions reasonable?

Line Geometry

- Explicit representation
- $\mathrm{y}=\mathrm{mx}+\mathrm{b}$
- The geometric meanings of these parameters: m - slope of the line; b - where it intercept y-axis (where $x=0$)
- More derivations

$$
\begin{aligned}
& -\mathrm{dy}=\mathrm{y} 1-\mathrm{y} 0 \\
& -\mathrm{dx}=\mathrm{x} 1-\mathrm{x} 0 \\
& -\mathrm{m}=(\mathrm{dy}) /(\mathrm{dx})
\end{aligned}
$$

Simple Algorithm

- Draw-line(x0, y0, x1, y1)

1. Let $\mathrm{dy}=\mathrm{y} 1-\mathrm{y} 0 ; \mathrm{dx}=\mathrm{x} 1-\mathrm{x} 0$
2. For $\mathrm{x}=\mathrm{x} 0$ to x 1
3. $\mathrm{y}=$ rounding-operation $(\mathrm{y} 0+(\mathrm{x}-\mathrm{x} 0)(\mathrm{dy} / \mathrm{dx})$
4. draw-point(x, y)
5. End for

- Why does the above procedure work?
- Explicit definition of the line geometry

$$
-y=(d y / d x)(x-x 0)+y 0=m x+b
$$

Rendering Line Segments (Rasterization)

- One of the fundamental tasks in 2D computer graphics is 2D line drawing: How to render a line segment from $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ to $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$?
- Use the equation $\mathrm{y}=\mathrm{mx}+\mathrm{h}$ (explicit)
- What about horizontal vs. vertical lines?

Further Improvement

- A more efficient algorithm

1. $\mathrm{x}=\mathrm{x} 0 ; \mathrm{y}=\mathrm{y} 0$
2. draw-point(x, y)
3. For x from $\mathrm{x} 0+1$ to x 1
4. $y=y+(d y / d x)$
5. End for

- Note that, $m=(d y / d x)$, and m is a float or double

DDA Algorithm

- Digital Differential Analyzer (DDA) for ($\mathrm{x}=\mathrm{x}_{1} ; \mathrm{x}<=\mathrm{x}_{2} ; \mathrm{x}++$)

$$
y+=m ;
$$

draw_pixel(x, y, color)

- Handle slopes $0<=\mathrm{m}<=1$; handle others symmetrically
- Does this need floating point operations?

Further Improvement

- We are now seeking an integer-ONLY algorithm to handle all line geometry
- The above procedures will fail
- We must explore new schemes (beyond the line geometry we have already know till now)

Implicit Equation

Midpoint Algorithm

- Implicit expression for the line geometry

$$
-f(x, y)=(x-x 0) *(d y)-(y-y 0) *(d x)
$$

- What does this formulation provide us (compared with the previous derivations)?
- Fundamental ideas - spatial partitioning based on the signs!
- If $f(x, y)=0$, then (x, y) is on the line
- If $f(x, y)>0$, then (x, y) is below the line
- If $f(x, y)<0$, then (x, y) is above the line

Midpoint Motivation

Midpoint Motivation

- We are actually considering $\mathrm{d}=\mathrm{f}(\mathrm{xp}+1, \mathrm{yp}+0.5)$
- There are three different cases
- If $\mathrm{d}<0$, line is below the (current) midpoint, then choose E
- If $\mathrm{d}>0$, lie is above the midpoint, choose NE
- If $\mathrm{d}=0$, line is passing through the midpoint, either E or NE

Recursive Algorithm

- Midpoint algorithm is a recursive algorithm!
- For any recursive algorithm, we MUST consider the subsequent steps (by traversing all cases respectively)!
- If E is chosen, then the NEW E is ($x p+2, y p$), the NEW NE is $(x p+2, y p+1)$, the NEW midpoint is

$$
\begin{aligned}
& (x p+2, y p+0.5) \\
& - \text { d_new }=\mathrm{f}(\mathrm{xp}+2, \mathrm{yp}+0.5) \\
& - \text { d_old }=\mathrm{f}(\mathrm{xp}+1, \mathrm{yp}+0.5) \\
& - \text { d_new }=\text { d_old }+(\mathrm{dy})
\end{aligned}
$$

Recursive Algorithm

- If NE is chosen, the NEW E is ($x p+2, y p+1$), the NEW NE is $(\mathrm{xp}+2, \mathrm{yp}+2)$, the NEW midpoint is $(x p+2, y+1.5)$
$-\mathrm{d} _$new $=\mathrm{f}(\mathrm{xp}+2, \mathrm{yp}+1.5)$
-d _old $=\mathrm{f}(\mathrm{xp}+1, \mathrm{yp}+0.5)$
- d_new $=$ d_old $+(d y-d x)$
- This process MUST repeat recursively, stepping along x from x 0 to x 1

Midpoint Initialization

Initialization

- How about the initialization process
- At the beginning,

$$
\begin{aligned}
& -x p=x 0 \\
& -y p=y 0 \\
& \left.-d _ \text {old }=f(x 0+1, y 0+0.5)\right)=(d y)-(d x) *(1 / 2)
\end{aligned}
$$

Midpoint Algorithm

- draw-line(x0, y0, x1, y1)
- Int x0, y0, x1, y1
- \{int dx, dy, inc_E, inc_NE, x, y,
- reald
$-\mathrm{dx}=\mathrm{x} 1-\mathrm{x} 0$
$-d y=y 1-y 0$
$-\mathrm{d}=(\mathrm{dy}))-(\mathrm{dx}))^{*}(1 / 2)$
- inc_E $=$ dy
- inc_NE $=d y-d x$
$-\mathrm{y}=\mathrm{y} 0$
- for x fromx0 to x1
- if $d \geqslant 0$, then $d=d+$ inc_NE, $y+1$, else $d=d+$ inc_ E
- end for
$-\quad\}$

Midpoint Algorithm

- d is NOT an integer, however, ONLY the sign MATTERS!
- We prefer an integer-ONLY algorithm!!!
$-\mathrm{g}(\mathrm{x}, \mathrm{y})=2 \mathrm{f}(\mathrm{x}, \mathrm{y})$
- d becomes 2d
- then $\mathrm{d}=2(\mathrm{dy})-(\mathrm{dx})$

Modifying the Previous Algorithm

- Make it an integer-ONLY algorithm
- Our earlier assumptions
- slopes: $0<=(\mathrm{dy}) /(\mathrm{dx})<=1$
- line endpoints are all integer coordinates
- How about other cases

Handling All Other Cases

- Generalizations
- negative slope
- slope larger than 1
- If the slope is larger than 1 , we use symmetry to switch x and y (you are NOT displaying (x, y), , you should display $(\mathrm{y}, \mathrm{x}))$)!
- In negative slope, we should use x and ($-y$)

Bresenham's Algorithm

- The DDA algorithm requires a floating point add and round for each pixel: can we eliminate?
- Note that at each step we will go E or NE. How to decide which?

Bresenham Decision Variable

- Bresenham algorithm uses decision variable $\mathrm{d}=\mathrm{a}-\mathrm{b}$, where a and b are distances to NE and E pixels
- If $\mathrm{d}>=0$, go NE ; if $d<0$, go E
- Let $\mathrm{d}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)(\mathrm{a}-\mathrm{b})=\mathrm{d}_{\mathrm{x}}(\mathrm{a}-\mathrm{b})$ [only sign matters]
- Substitute for a and busing line equation to get integer math (but lots of it)

- $\left.\left.d=(a-b) d_{x}=(2 j+3)\right) d_{x x}-(2 i+3)\right) d_{y}-2\left(y_{1} d_{x}-x_{1} d_{y}\right)$
- But note that $\mathrm{d}_{k+1}=\mathrm{d}_{k}+2 \mathrm{~d}_{\mathrm{y}}$ (E) or $2\left(\mathrm{~d}_{\mathrm{y}}-\mathrm{d}_{\mathrm{x}}\right)$ (NE)

Bresenham's Algorithm

- Set up loop computing d at $\mathrm{x}_{1}, \mathrm{y}_{1}$ for ($\mathrm{x}=\mathrm{x}_{1} ; \quad \mathrm{x}<=\mathrm{x}_{2}$;)

$$
\begin{aligned}
& \mathrm{x}+\mathrm{+} ; \\
& \mathrm{d}+=2 \mathrm{dy} ; \\
& \text { if }(\mathrm{d}>=0)\{ \\
& \begin{array}{l}
\mathrm{y}++; \\
\mathrm{d}-=2 \mathrm{dx} ;
\end{array}
\end{aligned}
$$

drawpoint $((x, y))$;

- Pure integer math, and not much of it
- So easy that it is built into one graphics instruction (for several points in parallel)

Extensions to Handle Curves

- Generalizations to handle all cases for line drawing
- Algorithms for circle-drawing
- Algorithms for ellipses, conic section drawing
- Algorithms for cubic curve drawing
- Algorithms to handle any type of curves?

Circles

- Implicit expression of a circle $\mathrm{f}(\mathrm{x}, \mathrm{y})=0$

$$
f(x, y)=\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}-r^{2}
$$

- Remember the key idea is that, ONLY the sign matters!
- If $f(x, y)=0$, then (x, y) is on the circle
- Iff $f(x, y)>0$, then (x, y) is outside the circle
- If $f(x, y)<0$, then (x, y) is inside the circle
- Equations for ellipses?
- The key message: the slope is controllable!!!

