CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

Hong Qin

Department of Computer Science
State University of New York at Stony Brook (Stony Brook University)
Stony Brook, New York 11794--4400
Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.sunysb.edu
http:///www.cs.sunysb.edu// qin

Explicit Representation

- Consider one example: a function $f(\theta)=\sin (\theta)$.
- This is the explicit description of a curve in 2 dimensions with parameter θ.
- This is an example of an unbounded curve (in that we can take values of θ from $-\infty$... $+\infty$. We'll limit our curve to the domain ($0 \ldots 2 \pi$). This gives the following curve:

Explicit Representation

- We are used to seeing an equation of a curve defined by expressing one variable as a function of the other

$$
\begin{aligned}
& y=x^{3} \\
& y=\sqrt{4-x^{2}} \\
& y=f(x)
\end{aligned}
$$

Parametric Curves

Parametric Representations

- We are going to start the topic of parametric representation, especially for curves and surfaces
- But first, let us look at the concept of explicit, nonparametric representation

Parametric Representations

Parametric Representations

- The geometric and physical intuition: a parameter is a third, independent variable (for example, time).
- By introducing a parameter, x and y can be expressed as a function of the parameter, as opposed to functions of each other.
- For example, $F(t)=\langle f(t), g(t)\rangle$, where $x=f(t)$ and $y=g(t))$ $F(t)=\langle\cos (t), \sin (t)\rangle-$ what is this curve and why is this parameterization useful?

Parametric Representations

- Each value of the parameter t determines a point, (f(t), $\mathrm{g}(\mathrm{t})$), and the set of all points comprises the graph of the curve.
- Complicated curves are easily dealt with since the components $f(t)$ and $g(t)$ each becomes a function.
- For example, $F(t)=\langle\sin (3 t)$, $\sin (4 t)\rangle$
- From parametric representation to explicit representation --- Sometimes the parameter can be eliminated by solving one equation (say, $x=f(t)$) for the parameter t and substituting this expression into the other equation $y=g(t)$. The result-will be the parametrie curve.

Properties and Visualization

- A conceptual example:
- Picture the xy-plane to be on the table and the z-axis coming straight up out of the table
- Picture the parameterized 2-D path $(\cos (\mathrm{t}), \sin (\mathrm{t}))$ which is a circle on the table
- Add a simple z-component such that the circle climbs off the table to form a helix (or corkscrew), $\mathrm{z}=\mathrm{t}$
- Mathematically:
- Add a simple linear term in the z-direction:

$$
\mathbf{F}(t)=\langle\cos (t), \sin (t), t\rangle
$$

Visualization

Parametric Curves

- Please remember to make comparisons between parametric representations and the following equations:
- Explicit representation:
- $y=f(x)$
- Implicit representation:
- $f(x, y))=0$

Parametric Curves

- Please remember to make comparisons between parametric representations and the following equations:
- Explicit representation:
- $y=f(x)$
- Implicit representation:
- $f(x, y))=0$

Parametric Curves

- Why use parametric curves?
- Why curves (rather than polylines)?
- reduce the number of points
- interactive manipulation is easier
- Why parametric (as opposed to $\mathrm{y}, \mathrm{z}=\mathrm{f}(\mathrm{x})$))?
- arbitrary curves can be easily represented
- rotational invariance
- Why parametric (rather than implicit)?
- simplicity and efficiency

Line (Geometric Line)

- Parametric representation $\mathbf{l}\left(\mathbf{p}_{0}, \mathbf{p}_{1}\right)=\mathbf{p}_{0}+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u$

$$
u \in[0,1]
$$

- Parametric representation is not unique
- In general

$$
\begin{aligned}
& \mathbf{p}(u) \\
& u \in[a, b]
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{l}\left(\mathbf{p}_{0}, \mathbf{p}_{1}\right)=\mathbf{0 . 5}\left(\mathbf{p}_{1}+\mathbf{p}_{0}\right)+\mathbf{0 . 5}\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) v \\
& v \in[-1,1]
\end{aligned}
$$

- Re-parameterization (variable transformation)

$$
\begin{aligned}
& v=(u-a) /(b-a) \\
& u=(b-a) v+a \\
& \mathbf{q}(v)=\mathbf{p}((b-a) v+a) \\
& v \in[0,1]
\end{aligned}
$$

Basic Concepts

- Linear interpolation: $\mathbf{v}=\mathbf{v}_{0}(1-t)+\mathbf{v}_{1}(t)$
- Local coordinates: $\quad \mathbf{v} \in\left[\mathbf{v}_{0}, \mathbf{v}_{1}\right], t \in[0,1]$
- Re-parameterization: $f(u), u=g(v), f(g(v))=h(v)$
- Affine transformation:

$$
f(a x+b y)=a f(x)+b f(y)
$$

- Polynomials

$$
a+b=1
$$

- Continuity

Linear Interpolation

- Simplest "curve" between two points

$$
\begin{aligned}
& x(t)=g_{1 x}(1-t)+g_{2 x}(t) \\
& y(t)=g_{1 y}(1-t)+g_{2 y}(t) \\
& z(t)=g_{1 z}(1-t)+g_{2 z}(t)
\end{aligned}
$$

Parameterization: The Basic Concept

Splines

- For a 3D spline, we have 3 polynomials:
$\left.\begin{array}{l}x(u)=a_{x} u^{3}+b_{x} u^{2}+c_{x} u+d_{x} \\ y(u)=a_{y} u^{3}+b_{y} u^{2}+c_{y} u+d_{y} \\ z(u)=a_{z} u^{3}+b_{z} u^{2}+c_{z} u+d_{z}\end{array}\right\} \rightarrow\left[\begin{array}{lll}x(u) & y(u) & z(u)\end{array}\right]=\left[\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\right]\left[\begin{array}{lll}a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z}\end{array}\right] \rightarrow \mathbf{p}(u)=\mathbf{u} . \mathbf{C}$

12 unknowns
4 3D points requirec

Parametric Cubic Curves

$$
\begin{aligned}
& x(t)=a_{x} t^{3}+b_{x} t^{2}+c_{x} t+d_{x}, \\
& y(t)=a_{y} t^{3}+b_{y} t^{2}+c_{y} t+d_{y}, \\
& z(t)=a_{z} t^{3}+b_{z} t^{2}+c_{z} t+d_{z}, \quad 0 \leq t \leq 1 .
\end{aligned}
$$

Interpolation vs. Approximation Curves

Parametric Polynomials

- High-order polynomials

- No intuitive insight for the curved shape
- Difficult for piecewise smooth curves

Parametric Polynomials

Definition: What's a Spline?

- Smooth curve defined by some control points
- Moving the control points changes the curve

Interpolation Curves / Splines (Prior to the Digital Representation)

Interpolation vs. Approximation Curves

- Interpolation curve - over constrained \rightarrow lots of (undesirable?) oscillations

Interpolating Splines: Applications

- Idea: Use key frames to indicate a series of positions that must be "hit"
- For example:
- Camera location
- Path for character to follow
- Animation of walking, gesturing, or facial expressions
- Morphing
- Use splines for smooth interpolation

How to Define a Curve?

- Specify a set of points for interpolation and/or approximation with fixed or unfixed parameterization

- Specify the derivatives at some locations
- What is the geometric meaning to specify derivatives?
- A set of constraints
- Solve constraint equations

One Example

- Two end-vertices: c(0) and c(1)
- One mid-point: c(0.5)
- Tangent at the mid-point: $c^{\prime}(0.5)$
- Assuming 3D curve

Cubic Polynomials

- Parametric representation (u is in [0,1])
$\left[\begin{array}{l}x(u) \\ y(u) \\ z(u)\end{array}\right]=\left[\begin{array}{l}a_{3} \\ b_{3} \\ c_{3}\end{array}\right] u^{3}+\left[\begin{array}{l}a_{2} \\ b_{2} \\ c_{2}\end{array}\right] u^{2}+\left[\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right] u+\left[\begin{array}{l}a_{0} \\ b_{0} \\ c_{0}\end{array}\right]$
- Each components are treated independently
- High-dimension curves can be easily defined
- Alternatively ${ }_{x(u)=\left[\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\left[\begin{array}{llll}a_{3} & a_{2} & a_{1} & a_{0}\end{array}\right]^{T}=U A,\right.}$

$$
\begin{aligned}
& y(u)=U B \\
& z(u)=U C
\end{aligned}
$$

Cubic Polynomial Example

- Constraints: two end-points, one mid-point, and tangent at the mid-point

$$
\begin{aligned}
& x(0)=\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right] A \\
& x(0.5)=\left[\begin{array}{llll}
0.5^{3} & 0.5^{2} & 0.5^{1} & 1
\end{array}\right] A \\
& x^{\prime}(0.5)=\left[\begin{array}{llll}
3(0.5)^{2} & 2(0.5) & 1 & 0
\end{array}\right] A \\
& x(1)=\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right] A
\end{aligned}
$$

- In matrix form
$\left[\begin{array}{c}x(0) \\ x(0.5) \\ x^{\prime}(0.5) \\ x(1)\end{array}\right]=\left[\begin{array}{cccc}0 & 0 & 0 & 1 \\ 0.125 & 0.25 & 0.5 & 1 \\ 0.75 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right] A$

Solve this Linear Equation

- Invert the Matrix

$$
A=\left[\begin{array}{cccc}
-4 & 0 & -4 & 4 \\
8 & -4 & 6 & -4 \\
-5 & 4 & -2 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x(0.5) \\
x^{\prime}(0.5) \\
x(1)
\end{array}\right]
$$

- Rewrite the curve expression

$$
\left.\begin{array}{llll}
x(u)=U M[x(0) & x(0.5) & x^{\prime}(0.5) & x(1)
\end{array}\right]^{T}
$$

Basis Functions

- Special polynomials

$$
\begin{aligned}
& f_{1}(u)=-4 u^{3}+8 u^{2}-5 u+1 \\
& f_{2}(u)=-4 u^{2}+4 u \\
& f_{3}(u)=-4 u^{3}+6 u^{2}-2 u \\
& f_{4}(u)=4 u^{3}-4 u^{2}+1
\end{aligned}
$$

- What is the image of these basis functions?
- Polynomial curve can be defïned by

$$
\mathbf{c}(u)=\mathbf{c}(0) f_{1}(u)+\mathbf{c}(0.5) f_{2}(u)+\mathbf{c}^{\prime}(0.5) f_{3}(u)+\mathbf{c}(1) f_{4}(u)
$$

- Observations
- More intuitive, easy to control, polynomials

Lagrange Curve

- Point interpolation

Cubic Hermite Splines

Varying the Magnitude of the

Tangent Vector

```
y(t)
    4 \text { Tangent vector}
        direction R1}\mp@subsup{R}{1}{}\mathrm{ at point
        P for each curve
```

Tangent vector direction R_{4} at point P_{4}; magnitude fixed for each curve

Varying the Direction of the Tangent Vector

$x(t)$

Piecewise Polynomial Blending

Why Cubic Polynomials

- Lowest degree for specifying curve in space
- Lowest degree for specifying points to interpolate and tangents to interpolate
- Commonly used in computer graphics
- Lower degree has too little flexibility
- Higher degree is unnecessarily complex, exhibit undesired wiggles

Cubic Bezier Curves

- Four control points to Bezier curve
- Curve geometry

Cubic Bézier Curve

- 4 control points
- Curve passes through the first \& last control points
- Curve is tangent at \mathbf{P}_{0} to $\left(\mathbf{P}_{0}-\mathbf{P}_{1}\right)$ and at \mathbf{P}_{4} to $\left(\mathbf{P}_{4}-\mathbf{P}_{3}\right)$

Curve Mathematics (Cubic)

- Bezier curve

$$
\boldsymbol{c}(u)=\sum_{i=0}^{3} \mathbf{p}_{i} \boldsymbol{B}_{i}^{3}(u)
$$

- Control points and basis functions

$$
\begin{aligned}
& B_{0}^{3}(u)=(1-u)^{3} \\
& B_{1}^{3}(u)=3 u(1-u)^{2} \\
& B_{2}^{3}(u)=3 u^{2}(1-u) \\
& B_{3}^{3}(u)=u^{3}
\end{aligned}
$$

- Image and properties of basis functions

Cubic Bézier Basis Functions

$$
B_{1}(t)=(1-t)^{3} ; B_{2}(t)=3 t(1-t)^{2} ; B_{3}(t)=3 t^{2}(1-t) ; B_{4}(t)=t^{3}
$$

$$
Q(t)=(1-t)^{3} P_{1}+3 t(1-t)^{2} P_{2}+3 t^{2}(1-t) P_{3}+t^{3} P_{4}
$$

The Bernstein Polynomials $(\mathrm{n}=3)$

Recursive Evaluation

- Recursive linear interpolation

$$
\left. \mathbf{p}_{2}^{0} \quad \mathbf{p}_{3}^{0}\right)
$$

Recursive Subdivision Algorithm

- de Casteljau's algorithm for constructing Bézier curves

Basic Properties (Cubic)

- The curve passes through the first and the last points (end-point interpolation)
- Linear combination of control points and basis functions
- Basis functions are all polynomials
- Basis functions sum to one (partition of unity)
- All is functions are non-negative
- Convex hull (both necessary and sufficient)
- Predictability

Bezier Curves (Degree n)

- Curve: $c(u)=\sum_{i=0}^{n} p_{i} B_{i}^{n}(u)$
- Control points p_{i}
- Basis functions $B_{i}^{n}(u)$ are bernstein polynomials of degree n :

$$
\begin{aligned}
& B_{i}^{n}(u)=\binom{n}{i} u^{i}(1-u)^{n-i} \\
& \binom{n}{i}=\frac{n!}{(n-i)!i!}
\end{aligned}
$$

Recursive Computation:
 The De Casteljau Algorithm

$$
B_{i}^{n}(u)=(1-u) B_{i}^{n-1}(u)+u B_{i-1}^{n-1}(u)
$$

$$
\begin{aligned}
B_{i}^{n}(u) & =\binom{n}{i} u^{i}(1-u)^{n-i} \\
& =\binom{n-1}{/ i} u^{i}(1-u)^{n-i}+\binom{n-1}{i-1} u^{i}(1-u)^{n-i} \\
& =(1-u) B_{i}^{n-1}(u)+u B_{i-1}^{n-1}(u)
\end{aligned}
$$

Recursive Computation

$$
\begin{aligned}
& \mathbf{p}_{i}^{0}=\mathbf{p}_{i}, i=0,1,2, \ldots n \\
& \mathbf{p}_{i}^{j}=(1-u) \mathbf{p}_{i}^{j-1}+u \mathbf{p}_{i+1}^{j-1} \\
& \mathbf{c}(u)=\mathbf{p}_{0}^{n}(u)
\end{aligned}
$$

Properties

- End point interpolation.
- Basis functions are non-negative.
- The summation of basis functions are unity
- Binomial Expansion Theorem:

$$
1=[u+(1-u)]^{n}=\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

- Convex hull: the curve is bounded by the convex hull defined by the control points.

Properties

- Basis functions are non-negative
- The summation of all basis functions is unity
- End-point interpolation $\mathbf{c}(\mathbf{O})=\mathbf{p}_{0}, \mathbf{c}(\mathbf{1})=\mathbf{p}_{n}$
- Binomial expansion theorem

$$
((1-u)+u)^{n}=\sum_{i=0}^{n}\binom{n}{i} u^{i}(1-u)^{n-i}
$$

- Convex hull: the curve is bounded by the convex hull defined by control points

Bezier Curve Rendering

- Use its control polygon to approximate the curve
- Recursive subdivision till the tolerance is satisfied
- Algorithm go here
- If the current control polygon is flat (with tolerance), then output the line segments, else subdivide the curve at $\mathrm{u}=0.5$
- Compute control points for the left half and the right half, respectively
- Recursively call the same procedure for the left one and the right one

High-Degree polynomials

- More degrees of freedom
- Easy to compute
- Infinitely differentiable
- Drawbacks:
- High-order
- Global control
- Expensive to compute, complex
- undulation

Piecewise Polynomials

- Piecewise --- different polynomials for different parts of the curve
- Advantages --- flexible, low-degree
- Disadvantages --- how to ensure smoothness at the joints (continuity)

Piecewise Curves

Piecewise Bezier Curves

Continuity

- One of the fundamental concepts
- Commonly used cases:

- Consider two curves: $a(u)$ and $b(u)$ (u is in [0,1])

Continuity

- Continuity between two parametric curves:
- Geometric continuity
- $\mathrm{G}^{0}:$ the two curves are connected
- G^{1} : the two tangents have the same direction
- Parametric continuity
- C^{0} : the two curves are connected
- \mathbf{C}^{1} : the two tangents are equal

Positional Continuity

$\mathbf{a}(1)=\mathbf{b}(0)$

Derivative Continuity

$\mathbf{a}(1)=\mathbf{b}(0)$
 $\mathbf{a}^{\prime}(1)=\mathbf{b}^{\prime}(0)$

Geometric Continuity

- G0 and G1

Obtaining Geometric Continuity G1

$$
\left[\begin{array}{l}
P_{1} \\
P_{4} \\
R_{1} \\
R_{4}
\end{array}\right] \text { and }\left[\begin{array}{c}
P_{4} \\
P_{7} \\
k R_{4} \\
R_{7}
\end{array}\right] \text {, with } k>0 .
$$

for parametric continuity $\mathrm{C}^{1}, \mathrm{k}=1$

Piecewise Hermite Curves

piecewise hermite curves

Piecewise Bezier Curves

Connecting Cubic Bézier Curves

- How can we guarantee C0 continuity (no gaps between two curves)?
- How can we guarantee C1 continuity (tangent vectors match)?
- Asymmetric: Curve goes through some control points but misses others

Displaying Bezier Spline

- A Bezier curve with 4 control points:

$$
\begin{array}{llll}
-P_{0} & P_{1} & P_{2} & P_{3}
\end{array}
$$

- Can be split into 2 new Bezier curves:

$$
\begin{array}{llll}
-P_{0} & P_{1}^{\prime} & P_{2}^{\prime} & P_{33}^{\prime} \\
-P_{3}^{\prime} & P_{4}^{\prime} & P_{5}^{\prime} & P_{33}
\end{array}
$$

Geometric NURBS

- Non-Uniform Rational B-Splines (NURBS)
- CAGD industry standard --- useful properties
- Degrees of freedom
- Control points
- Weights

Rational Bezier Curve

- Projecting a Bezier curye onto w=1 plane

Revisit Two Important Concepts

- Perspective projection
- Homogeneous coordinates

Perspective Projection

Consider Linear Case

$$
\begin{aligned}
& \frac{\left[\begin{array}{l}
x_{0} w_{0} \\
y_{0} w_{0}
\end{array}\right](1-u)+\left[\begin{array}{l}
x_{1} w_{1} \\
y_{1} w_{1}
\end{array}\right](u)}{w_{0}(1-u)+w_{1}(u)} \\
& \text { or } \\
& {\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right](1-u)+\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right](u)}
\end{aligned}
$$

From Bezier Spline to NURBS

- B-splines (Bezier Spline)
- NURBS (curve)

$$
\mathbf{c}(\boldsymbol{u})=\sum_{i=0}^{n}\left[\begin{array}{c}
\mathbf{p}_{i, x} \\
\mathbf{p}_{i, y} \\
\mathbf{p}_{i, z} \\
\mathbf{1}
\end{array}\right] \boldsymbol{B}_{i, k}(\boldsymbol{u})
$$

$$
\mathbf{c}(u)=\frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} \boldsymbol{B}_{i, k}(u)}{\sum_{i=0}^{n} w_{i} \boldsymbol{B}_{i, k}(\boldsymbol{u})}
$$

Two Examples

- B-splines (Bezier Spline)

$$
\mathbf{c}(u)=\sum_{i=0}^{n}\left[\begin{array}{c}
\mathbf{p}_{i, x} \\
\mathbf{p}_{i, y} \\
\mathbf{p}_{i, z} \\
1
\end{array}\right] \boldsymbol{B}_{i, k}(u)
$$

$(1-u)$ (u)

- NURBS (curve)

Quadratic:

$$
\mathbf{c}(u)=\frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} \boldsymbol{B}_{i, k}(u)}{\sum_{i=0}^{n} w_{i} \boldsymbol{B}_{i, k}(u)}
$$

$$
\begin{aligned}
& (1-u)^{2} \\
& 2(1-u) u \\
& (u)^{2}
\end{aligned}
$$

Consider Quadratic Case

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{0} w_{0} \\
y_{0} w_{0}
\end{array}\right](1-u)^{2}+\left[\begin{array}{l}
x_{1} w_{1} \\
y_{1} w_{1}
\end{array}\right] 2(1-u)(u)+\left[\begin{array}{l}
x_{2} w_{2} \\
y_{2} w_{2}
\end{array}\right](u)^{2}} \\
& w_{0}(1-u)^{2}+w_{1} 2(1-u)(u)+w_{2}(u)^{2} \\
& o r \\
& {\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right](1-u)^{2}+\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right] 2(1-u)(u)+\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right](u)^{2}}
\end{aligned}
$$

NURBS for Analytic Shapes

- Conic sections
- Natural quadrics
- Extruded surfăces
- Ruled surfáces
- Surfáces of revolution

NURBS Circle

NURBS Curve

- Geometric components
- Control points, parametric domain, weights, knots
- Homogeneous representation of B-splines
- Geometric meaning --- obtained from projection
- Properties of NURBS
- Represent standard shapes, invariant under perspective projection, B-spline is a special case, weights as extra degrees of freedom, common analytic shapes such as circles, clear geometric meaning of weights

