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] Explicit Representation

 Consider one example: a function f(6) = sin(6).

» This Is the explicit description of a curve in 2
dimensions with parameter 0.

 This i1s an example of an unbounded curve (in
that we can take values of 6 from -co...+00. We’ll
[imit our curve to the domain (0...2w). This
gives the following curve: |
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Explicit Representation

 \We are used to seeing an equation of a curve
defined by expressing one variable as a function
of the other
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Parametric Curves
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Parametric Representations

 \We are going to start the topic of parametric
representation, especially for curves and surfaces

 But first, let us look at the concept of explicit, non-
parametric representation
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Parametric Representations
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Parametric Representations

» The geometric and physical intuition: a parameter is a
third, independent variable (for example, time).

By Introducing a parameter, X and y can be expressed as
a function of the parameter, as opposed to functions of
each other.

— For example, F(t) = <f(t), g(t)>, where x= f(t) and y= g(t)

F(t) = <cos(t), sin(t)> - what is this curve and why Is this
parameterization useful?
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Parametric Representations

» Each value of the parameter t determines a point, (f(t),
g(t)), and the set of all points comprises the graph of the
curve.

e Complicated curves are easily dealt with since the
components f(t) and g(t) each becomes a function.

— For example, F(t)=<sin(3t), sin(4t)>
» From parametric representation to explicit representation
--- Sometimes the parameter can be eliminated by

solving one equation (say, x=f(t)) for the parameter t and
substituting this expression into the other equation
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Properties and Visualization

A conceptual example:

— Picture the xy-plane to be on the table and the z-axis
coming straight up out of the table

— Picture the parameterized 2-D path (cos(t), sin(t))
which is a circle on the table

— Add a simple z-component such that the circle climbs
off the table to form a helix (or corkscrew), z=t

» Mathematically:

— Add a simple linear term In the z-direction:
F(t)=<cos(t), sin(t), t>
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Visualization
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Parametric Curves

 Please remember to make comparisons between
parametric representations and the following
eguations:
— Explicit representation:
* y = f(x)
— Implicit representation:
s f(x,y) =0
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Parametric Curves

 Please remember to make comparisons between
parametric representations and the following
eguations:
— Explicit representation:
* y = f(x)
— Implicit representation:
s f(x,y) =0
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Parametric Curves

» Why use parametric curves?

— Why curves (rather than polylines)?
» reduce the number of points
* Interactive manipulation Is easier
— Why parametric (as opposed to y,z=f(x))?
* arbitrary curves can be easily represented
o rotational invariance

— Why parametric (rather than implicit)?
o simplicity and efficiency
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| Line (Geometric Line)

» Parametric representation (ST IEE(RI9T
ue<[0,]]

 Parametric representation Is not unigue
1(Po,P;) =0.5(P, +P,) +0.5(P; —Py)V

e In general
g VE[_l,l]
ucsjla,b]

» Re-parameterization (variable transformation)
v=(u—a)/(b—a)
u=(~(bb-—aVv+a

a(v) =p((b—a)v+a)
v [0,1]
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Basic Concepts

» Linear interpolation: AVEAVNGERIERYA(Y
Local coordinates: velvg, v, ]te[0]]

Re-parameterization: Ki (W),u=g(v), f(g(v))=h(v)
Affine transformation:

f (ax+Dby) =af (x) +bf (y)
Polynomials a+b=1

Continuity
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| Linear Interpolation

« Simplest "curve" between two points

ME) = gy k1l — O + g, (D,

W) =B L= 1)+ g (),
Z(t) = 812 (1 s t) T 82 (t)
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Parameterization:

x(u)=au®+bu’+cu+d,

y(u)=a,u®+bu’+cu+d,
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Splines

 For a 3D spline, we have 3 polynomials:

x(u)=au®+bu’+cu+d,

y(u)=au +hut+cu+d t>[xu) yu) zu)=l® v’ u 1

z(u)=au®+bu’+cu+d,

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Parametric Cubic Curves

He=agr+bt“+et+d,
yt) =a,t* + bt* +ct +d

Y2
2(0) = a.8° 4+ bt* ¥ cf 4+ d,;
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Interpolation vs. Approximation
Curves
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Parametric Polynomials

» High-order polynomials

» No intuitive insight for the curved shape
o Difficult for piecewise smooth curves
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Parametric Polynomials
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| Definition: What's a Spline?

» Smooth curve defined by some control points
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Interpolation Curves / Splines (Prior

‘

to the D|g|tal Representatlon)

The ducks and
spline are
used to make
tighter curves
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Interpolation vs. Approximation
Curves

» Interpolation curve — over constrained —
lots of (undesirable?) oscillations

ke

» Approximation curve — more reasonable?
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| Interpolating Splines: Applications

 |dea: Use key frames to indicate a series of positions
that must be “hit”

* For example:
— Camera location
— Path for character to follow
— Animation of walking, gesturing, or facial expressions
* Morphing
» Use splines for smooth interpolation
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How to Define a Curve?

» Specify a set of points for interpolation and/or
approximation with fixed or unfixed parameterization

Specify the derivatives at some locations

What Is the geometric meaning to specify derivatives?
A set of constraints

Solve constraint equations
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One Example

» Two end-vertices: ¢(0) and c(1)
* One mid-point: ¢(0.5)
» Tangent at the mid-point: ¢’(0.5)

e AsSSU mmk‘?
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| Cubic Polynomials

 Parametric representation (u is in [0,1])

x(u) ds a, & dy
y(u) |=| b, [u®+| b, [u®+| b, Ju+|b,
z(u) Cy C, C, Co

» Each components are treated independently.
» High-dimension curves can be easily defined
o Alternatively
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Cubic Polynomial Example

o Constraints: two end-points, one mid-point, and
tangent at the mid-point
x(0)=[0 0 0 1A
x(0.5)=[0.5 05° 05 1]A
x'(0.5) =[3(0.5)> 2(0.5) 1 0]A
x=[1 1 1 1]A

o In matrix form |[IRQ, 0 0O O
x(0.5) | |0.125 0.25 0.5

x(05)] | 075 1 1
x(1) 1 1 1
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| Solve this Linear Equation

 |nvert the Matrix 4 0 -4 47 x(0)
8 -4 6 -4 x(0.5)
-5 4 -2 1 |x(05)
1 O 0 O X(1)

« Rewrite the curve expression
x(u)=UM[x(0) x(0.5) x'(0.5) x@]

y(u)=UM[y(0) y(0.5) y'(0.5) y@®]
z(u)=UM[z(0) z(0.5) z'(0.5) z()[
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Basis Functions

» Special polynomials Frarayys

 \What Is the image of these basis functions?

» Polynomial curve can be defined by
c(u) =c(0) f,(u) +¢c(0.5) f, (u) +c'(0.5) f,(u) +c() f, (u)

» ODbservations
— More Intuitive, easy to control, polynomials
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Lagrange Curve

» Point interpolation
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| Cubic Hermite Splines

0)

C(0)

C(1)

C(1)
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arying the Magnitude of the
Tangent Vector

Tangent vector
direction R, at point
P,; magnitude varies
for each curve

Tangent vector
direction R, at point
P,; magnitude fixed
for each curve




arying the Direction o
Tangent Vector




Piecewise Polynomial Blending
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|| Why Cubic Polynomials

_owest degree for specifying curve in space

LLowest degree for specifying points to
Interpolate and tangents to Interpolate

Commonly used in computer graphics
LLower degree has too little flexibility

Higher degree Is unnecessarily complex, exhibit
undesired wiggles
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Cubic Bezier Curves

 Four control points to Bezier curve
» Curve geometry

-8

-
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Cubic Bézier Curve

4 control points
» Curve passes through the first & last control points
 Curve Is tangent at P, to (P,-P,) and at P, to (P,-P,)

-
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| Curve Mathematics (Cubic)

e Bezier curve

 Control points and basis functions
By (u) = @—u)?

B’(Uu) =3u(@—u)?

B>(u) =3u®(@—u)
BS(u) =u’
 Image and properties of basis functions
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Cubic Bezier Basis Functions

Q) ={1—6°FP +3t(1 —£)°F +38°(1 —£) Py + £° Fy
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rhe Bernstein Polynomials
(n=3)
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Recursive Evaluation

 Recursive linear interpolation
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Recursive Subdivision Algorithm

» de Casteljau's algorithm for constructing Bézier
curves

/‘\
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| Basic Properties (Cubic)

The curve passes through the first and the last
points (end-point interpolation)

Linear combination of control points and basis
functions

Basis functions are all polynomials

Basis functions sum to one (partition of unity)
All Is functions are non-negative

Convex hull (both necessary and sufficient)
Predictability
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| Bezier Curves (Degree n)

NGV c(u) = > pB"(u)
» Control points [

- Basis functions Zf)] are bernstein polynomials
of degree n:
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Recursive Computation:
The De Casteljau Algorithm

B"(u) =(1—u)B"(u) +uB™ (u)

= (1-u)B"*(u) +uB’;"(u)
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| Recursive Computation
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| Properties

 End point interpolation.
» Basis functions are non-negative.

» The summation of basis functions are unity
— Binomial Expansion Theorem:

1=[u+(@1-u)]" = Zn:(ln]u' (1-u)™

=0

 Convex hull: the curve Is bounded by the convex
hull defined by the control points.
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Properties

» Basis functions are non-negative

» The summation of all basis functions Is unity
» End-point interpolation [ ¢ TN
» Binomial expansion theorem

(A—uw)+u)" = Zn:(?}l' (1—u)""

« Convex hull: the curve Is bounded by the convex
hull defined by control points
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| Bezier Curve Rendering

 Use Its control polygon to approximate the curve
e Recursive subdivision till the tolerance is satisfied

» Algorithm go here

— |If the current control polygon is flat (with tolerance), then
output the line segments, else subdivide the curve at u=0.5

— Compute control points for the left half and the right half,
respectively

— Recursively call the same procedure for the left one and the
right one
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| High-Degree polynomials

« More degrees of freedom
» Easy to compute
o Infinitely differentiable
» Drawbacks:
— High-order
— Global control

— Expensive to compute, complex
— undulation
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Piecewise Polynomials

 Pilecewise --- different polynomials for different
parts of the curve

» Advantages --- flexible, low-degree

» Disadvantages --- how to ensure smoothness at
the joints (continuity)
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Piecewise Curves
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Piecewise Bezier Curves

O '\‘ -
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| Continuity

* One of the fundamental concepts

« Commonly used cases:

 Consider two curves: a(u) and b(u) (uis in [0,1])
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Continuity

 Continuity between two parametric curves:

— Geometric continuity

 GY: the two curves are connected

 G!: the two tangents have the same direction
— Parametric continuity

e CY: the two curves are connected
 C': the two tangents are equal
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| Positional Continuity

a(1) = b(0)
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| Derivative Continuity

a(1) = b(0)
a' (1) = b'(0)
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Geometric Continuity

e GO and G1
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| Obtaining Geometric Continuity G*
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Piecewise Hermite Curves

piecewise hermite curves
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Piecewise Bezier Curves
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Connecting Cubic Bezier Curves

« How can we guarantee CO continuity (no gaps between two
curves)?

e How can we guarantee C1 continuity (tangent vectors match)?

« Asymmetric: Curve goes through some control points but misses

others
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| Displaying Bezier Spline

A Bezier curve with 4 control points:
-Py Pp Py Py

 Can be split into 2 new Bezier curves:
B I:)O P’l P’Z P’3
B P’3 P’4 P’S P3

A Beézier curve
IS bounded by

the convex hull
of its control
points.
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Geometric NURBS

« Non-Uniform Rational B-Splines (NURBS)
e CAGD industry standard --- useful properties

 Degrees of freedom

— Control points
— Weights
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Rational Bezier Curve

 Projecting a Bezier cur¢e onto w=1 plane

o [
: [
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Revisit Two Important Concepts

 Perspective projection
» Homogeneous coordinates
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Perspective Projection

\{’fﬂ \
Cent.%'—::‘_'_".’_ly =========== -==

of Projection St

——
e T

View plane
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Consider Linear Case

(1-u)+ (u)
YoWs YW

Wo (1_ U) T Wl(u)

or

@d-u)+| ")
Yo Y1
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| [From Bezier Spline to NURBS

» B-splines (Bezier Spline)
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| Two Examples

» B-splines (Bezier Spline)

Quadratic:
(L-u)*
2(1—u)u
(u)*




] Consider Quadratic Case

|:XOWO :| 2 |:X1W1:| |:X2W2 j| 2
(1-u)” + 2(1—u)(u) + (u)
Y,W,

YW,
W, (1—u)® +w,2(1—u)(u) +w, (u)*

YoWo

or

(1-u)” + 2(1—u)(u) + (u)
Yo Y1 Y,
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NURBS for Analytic Shapes

 Conic sections
 Natural quadrics

« Extruded surfaces

e Ruled surfaces
 Surfaces of revolution
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NURBS Circle

¥ a,b,c.dedg
B w. =10.5,0.51,0.5,0.51

d

4 knot =[0,0,0,1,2,2,3,4,4,4]
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] NURBS Curve

» Geometric components
— Control points, parametric domain, weights, knots

» Homogeneous representation of B-splines
» Geometric meaning --- obtained from projection

 Properties of NURBS

— Represent standard shapes, invariant under
perspective projection, B-spline Is a special case,
weights as extra degrees of freedom, common
analytic shapes such as circles, clear geometric
meaning of weights
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