CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

Hong Qin Department of Computer Science State University of New York at Stony Brook (Stony **Brook University**) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.sunysb.edu http:///www.cs.sunysb.edu/~qin

> ST NY BR K STATE UNIVERSITY OF NEW YORK

Explicit Representation

- Consider one example: a function $f(\theta) = sin(\theta)$.
- This is the explicit description of a curve in 2 dimensions with parameter θ.
- This is an example of an unbounded curve (in that we can take values of θ from -∞...+∞. We'll limit our curve to the domain (0...2 π). This gives the following curve:

Explicit Representation

 We are used to seeing an equation of a curve defined by expressing one variable as a function of the other

$$y = x^{3}$$
$$y = \sqrt{4 - x^{2}}$$
$$y = f(x)$$

Department of Computer Science

CSE528 Lectures

- We are going to start the topic of parametric representation, especially for curves and surfaces
- But first, let us look at the concept of explicit, nonparametric representation

Department of Computer Science

ST NY BR K

Department of Computer Science

- The geometric and physical intuition: a *parameter* is a third, independent variable (for example, time).
- By introducing a parameter, x and y can be expressed as a function of the parameter, as opposed to functions of each other.
 - For example, F(t) = <f(t), g(t)>, where x= f(t) and y= g(t)
 F(t) = <cos(t), sin(t)> what is this curve and why is this parameterization useful?

- Each value of the parameter t determines a point, (f(t), g(t)), and the set of all points comprises the graph of the curve.
- Complicated curves are easily dealt with since the components f(t) and g(t) each becomes a function.
 For example, F(t)=<sin(3t), sin(4t)>
- From parametric representation to explicit representation

 Sometimes the parameter can be eliminated by
 solving one equation (say, x=f(t)) for the parameter t and
 substituting this expression into the other equation
 y=g(t). The result will be the parametric curve.
 ST_NYBROOK

STATE UNIVERSITY OF NEW YORK

Properties and Visualization

- A conceptual example:
 - Picture the xy-plane to be on the table and the z-axis coming straight up out of the table
 - Picture the parameterized 2-D path (cos(t), sin(t)) which is a circle on the table
 - Add a simple z-component such that the circle climbs off the table to form a helix (or corkscrew), z=t
- Mathematically:

– Add a simple linear term in the z-direction: F(t)=<cos(t), sin(t), t>

Visualization

- Please remember to make comparisons between parametric representations and the following equations:
 - Explicit representation:
 - y = f(x)
 - Implicit representation:
 - f(x,y) = 0

Department of Computer Science

- Please remember to make comparisons between parametric representations and the following equations:
 - Explicit representation:
 - y = f(x)
 - Implicit representation:
 - f(x,y) = 0

Department of Computer Science

- Why use parametric curves?
 - Why curves (rather than polylines)?
 - reduce the number of points
 - interactive manipulation is easier
 - Why parametric (as opposed to y,z=f(x))?
 - arbitrary curves can be easily represented
 - rotational invariance
 - Why parametric (rather than implicit)?
 - simplicity and efficiency

Line (Geometric Line)

Parametric representation

$$\mathbf{l}(\mathbf{p}_0, \mathbf{p}_1) = \mathbf{p}_0 + (\mathbf{p}_1 - \mathbf{p}_0)u$$
$$u \in [0, 1]$$

- Parametric representation is not unique
- In general $\mathbf{p}(u)$, $u \in [a, b]$

$$l(\mathbf{p}_0, \mathbf{p}_1) = 0.5(\mathbf{p}_1 + \mathbf{p}_0) + 0.5(\mathbf{p}_1 - \mathbf{p}_0)v$$

v \in [-1,1]

Re-parameterization (variable transformation)

$$v = (u - a)/(b - a)$$
$$u = (b - a)v + a$$
$$\mathbf{q}(v) = \mathbf{p}((b - a)v + a)$$
$$v \in [0,1]$$

ST NY BR K

Department of Computer Science

Basic Concepts

• Linear interpolation:

$$\mathbf{v} = \mathbf{v}_0(1-t) + \mathbf{v}_1(t)$$

 $\mathbf{v} \in [\mathbf{v}_0, \mathbf{v}_1], t \in [0,1]$

- Local coordinates:
- Re-parameterization:
- Affine transformation:

$$f(u), u = g(v), f(g(v)) = h(v)$$

$$f(ax+by) = af(x)+bf(y)$$
$$a+b=1$$

Polynomials

Continuity

Linear Interpolation

Simplest "curve" between two points

STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Parameterization: The Basic Concept

Splines

• For a 3D spline, we have 3 polynomials:

$$\begin{aligned} x(u) &= a_{x}u^{3} + b_{x}u^{2} + c_{x}u + d_{x} \\ y(u) &= a_{y}u^{3} + b_{y}u^{2} + c_{y}u + d_{y} \\ z(u) &= a_{z}u^{3} + b_{z}u^{2} + c_{z}u + d_{z} \end{aligned} \right\} \rightarrow [x(u) \quad y(u) \quad z(u)] = \begin{bmatrix} u^{3} & u^{2} & u & 1 \end{bmatrix} \begin{bmatrix} a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \\ c_{x} & c_{y} & c_{z} \\ d_{x} & d_{y} & d_{z} \end{aligned} \right] \rightarrow \mathbf{p}(u) = \mathbf{u}.\mathbf{C}$$

12 unknowns 4 3D points required

Defines the variation in x with distance u along the curve

Department of Computer Science

Center for Visual Computing

p(u)

Parametric Cubic Curves

$$\begin{aligned} x(t) &= a_x t^3 + b_x t^2 + c_x t + d_x, \\ y(t) &= a_y t^3 + b_y t^2 + c_y t + d_y, \\ z(t) &= a_z t^3 + b_z t^2 + c_z t + d_z, \quad 0 \le t \le 1. \end{aligned}$$

Department of Computer Science

Interpolation vs. Approximation Curves

Interpolation curve must pass hrough control point

Approximation curve is influenced by control points

ST NY BR K

Department of Computer Science

Parametric Polynomials

• High-order polynomials

$$\mathbf{c}(\boldsymbol{u}) = \begin{bmatrix} \mathbf{a}_{0,x} \\ \mathbf{a}_{0,y} \\ \mathbf{a}_{0,z} \end{bmatrix} + \dots + \begin{bmatrix} \mathbf{a}_{i,x} \\ \mathbf{a}_{i,y} \\ \mathbf{a}_{i,z} \end{bmatrix} \boldsymbol{u}^{i} + \dots + \begin{bmatrix} \mathbf{a}_{n,x} \\ \mathbf{a}_{n,y} \\ \mathbf{a}_{n,z} \end{bmatrix} \boldsymbol{u}^{n}$$

No intuitive insight for the curved shape
Difficult for piecewise smooth curves

Parametric Polynomials

Department of Computer Science

Definition: What's a Spline?

- Smooth curve defined by some control points
- Moving the control points changes the curve

 $\mathbf{N}\mathbf{Y}$

STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Interpolation Curves / Splines (Prior to the Digital Representation)

The ducks and spline are used to make tighter curves

> NY BR K NIVERSITY OF NEW YORK

Department of Computer Center for Visual Comp duck

spline

Interpolation vs. Approximation Curves

• Interpolation curve – over constrained → lots of (undesirable?) oscillations

Department of Computer Science

Interpolating Splines: Applications

- Idea: Use key frames to indicate a series of positions that must be "hit"
- For example:
 - Camera location
 - Path for character to follow
 - Animation of walking, gesturing, or facial expressions
 - Morphing
- Use splines for smooth interpolation

Department of Computer Science

How to Define a Curve?

 Specify a set of points for interpolation and/or approximation with fixed or unfixed parameterization

$$\begin{bmatrix} x(u_i) \\ y(u_i) \\ z(u_i) \end{bmatrix}$$

$$\begin{bmatrix} x'(u_i) \\ y'(u_i) \\ z'(u_i) \end{bmatrix}$$

- Specify the derivatives at some locations
- What is the geometric meaning to specify derivatives?
- A set of constraints
- Solve constraint equations

One Example

- Two end-vertices: c(0) and c(1)
- One mid-point: c(0.5)
- Tangent at the mid-point: c'(0.5)
- Assuming 3D curve

Department of Computer Science

Cubic Polynomials

• Parametric representation (u is in [0,1])

$$\begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix} = \begin{bmatrix} a_3 \\ b_3 \\ c_3 \end{bmatrix} u^3 + \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix} u^2 + \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix} u + \begin{bmatrix} a_0 \\ b_0 \\ c_0 \end{bmatrix}$$

- Each components are treated independently
- High-dimension curves can be easily defined

• Alternatively $x(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \begin{bmatrix} a_3 & a_2 & a_1 & a_0 \end{bmatrix}^T = UA$ y(u) = UBz(u) = UC

> ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Cubic Polynomial Example

• Constraints: two end-points, one mid-point, and tangent at the mid-point

$$x(0) = \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix} A$$

$$x(0.5) = \begin{bmatrix} 0.5^3 & 0.5^2 & 0.5^1 & 1 \end{bmatrix} A$$

$$x'(0.5) = \begin{bmatrix} 3(0.5)^2 & 2(0.5) & 1 & 0 \end{bmatrix} A$$

$$x(1) = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix} A$$

In matrix form

$$\begin{array}{c} x(0) \\ x(0.5) \\ x'(0.5) \\ x(1) \end{array} \right] = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0.125 & 0.25 & 0.5 & 1 \\ 0.75 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Department of Computer Science

Solve this Linear Equation

• Invert the Matrix

$$A = \begin{bmatrix} -4 & 0 & -4 & 4 \\ 8 & -4 & 6 & -4 \\ -5 & 4 & -2 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x(0) \\ x(0.5) \\ x'(0.5) \\ x(1) \end{bmatrix}$$

Rewrite the curve expression

$$x(u) = UM[x(0) \quad x(0.5) \quad x'(0.5) \quad x(1)]^{T}$$

$$y(u) = UM[y(0) \quad y(0.5) \quad y'(0.5) \quad y(1)]^{T}$$

$$z(u) = UM[z(0) \quad z(0.5) \quad z'(0.5) \quad z(1)]^{T}$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Basis Functions

• Special polynomials

$$f_{1}(u) = -4u^{3} + 8u^{2} - 5u + 1$$

$$f_{2}(u) = -4u^{2} + 4u$$

$$f_{3}(u) = -4u^{3} + 6u^{2} - 2u$$

$$f_{4}(u) = 4u^{3} - 4u^{2} + 1$$

- What is the image of these basis functions?
- Polynomial curve can be defined by

 $\mathbf{c}(u) = \mathbf{c}(0)f_1(u) + \mathbf{c}(0.5)f_2(u) + \mathbf{c}'(0.5)f_3(u) + \mathbf{c}(1)f_4(u)$

Observations

- More intuitive, easy to control, polynomials

Lagrange Curve

• Point interpolation

Cubic Hermite Splines

ST NY BR K

Department of Computer Science

Varying the Magnitude of the Tangent Vector

Department of Co Center for Visu

Varying the Direction of the Tangent Vector

Piecewise Polynomial Blending

Department of Computer Science

Why Cubic Polynomials

- Lowest degree for specifying curve in space
- Lowest degree for specifying points to interpolate and tangents to interpolate
- Commonly used in computer graphics
- Lower degree has too little flexibility
- Higher degree is unnecessarily complex, exhibit undesired wiggles

Cubic Bezier Curves

- Four control points to Bezier curve
- Curve geometry

Cubic Bézier Curve

- 4 control points
- Curve passes through the first & last control points
- Curve is tangent at P_0 to $(P_0 P_1)$ and at P_4 to $(P_4 P_3)$

Department of Comp Center for Visual C

Curve Mathematics (Cubic)

• Bezier curve

$$\mathbf{c}(u) = \sum_{i=0}^{3} \mathbf{p}_{i} B_{i}^{3}(u)$$

Control points and basis functions

$$B_0^3(u) = (1-u)^3$$

$$B_1^3(u) = 3u(1-u)^2$$

$$B_2^3(u) = 3u^2(1-u)$$

$$B_3^3(u) = u^3$$

Image and properties of basis functions

Department of Computer Science

Cubic Bézier Basis Functions

$$B_1(t) = (1-t)^3; B_2(t) = 3t(1-t)^2; B_3(t) = 3t^2(1-t); B_4(t) = t^3$$

$$Q(t) = (1-t)^{3}P_{1} + 3t(1-t)^{2}P_{2} + 3t^{2}(1-t)P_{3} + t^{3}P_{4}$$

Department of Computer Science

The Bernstein Polynomials (n=3)

ST NY BR K STATE UNIVERSITY OF NEW YORK

Recursive Evaluation

• Recursive linear interpolation

$$(1-u) \quad (u)$$

$$\mathbf{p}_{0}^{0} \quad \mathbf{p}_{1}^{0} \quad \mathbf{p}_{2}^{0} \quad \mathbf{p}_{3}^{0}$$

$$\mathbf{p}_{0}^{1} \quad \mathbf{p}_{1}^{1} \quad \mathbf{p}_{2}^{1}$$

$$\mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2}$$

$$\mathbf{p}_{0}^{2} \quad \mathbf{p}_{1}^{2}$$

$$\mathbf{p}_{0}^{3} = \mathbf{c}(u)$$

ST NY BR K

Department of Computer Science

Recursive Subdivision Algorithm

 de Casteljau's algorithm for constructing Bézier curves

Basic Properties (Cubic)

- The curve passes through the first and the last points (end-point interpolation)
- Linear combination of control points and basis functions
- Basis functions are all polynomials
- Basis functions sum to one (partition of unity)
- All is functions are non-negative
- Convex hull (both necessary and sufficient)
- Predictability

Bezier Curves (Degree n)

• **Curve:**
$$c(u) = \sum_{i=0}^{n} p_i B_i^n(u)$$

- Control points p_i
- Basis functions $B_i^n(u)$ are bernstein polynomials of degree n:

$$B_i^n(u) = \binom{n}{i} u^i (1-u)^{n-i}$$
$$\binom{n}{i} = \frac{n!}{(n-i)!i!}$$

Department of Computer Science

Recursive Computation: The De Casteljau Algorithm

$$B_i^n(u) = (1-u)B_i^{n-1}(u) + uB_{i-1}^{n-1}(u)$$

$$B_{i}^{n}(u) = \binom{n}{i} u^{i} (1-u)^{n-i}$$

= $\binom{n-1}{i} u^{i} (1-u)^{n-i} + \binom{n-1}{i-1} u^{i} (1-u)^{n-i}$
= $(1-u)B_{i}^{n-1}(u) + uB_{i-1}^{n-1}(u)$

Department of Computer Science

Recursive Computation

$$\mathbf{p}_{i}^{0} = \mathbf{p}_{i}, i = 0, 1, 2, ... n$$
$$\mathbf{p}_{i}^{j} = (1 - u)\mathbf{p}_{i}^{j-1} + u\mathbf{p}_{i+1}^{j-1}$$
$$\mathbf{c}(u) = \mathbf{p}_{0}^{n}(u)$$

ST NY BR K

Properties

- End point interpolation.
- Basis functions are non-negative.
- The summation of basis functions are unity

 Binomial Expansion Theorem:

$$1 = [u + (1 - u)]^{n} = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1 - u)^{n - i}$$

Convex hull: the curve is bounded by the convex hull defined by the control points.

Properties

- Basis functions are non-negative
- The summation of all basis functions is unity
- End-point interpolation $\mathbf{c}(0) = \mathbf{p}_0, \mathbf{c}(1) = \mathbf{p}_n$
- Binomial expansion theorem

$$((1-u)+u)^{n} = \sum_{i=0}^{n} \binom{n}{i} u^{i} (1-u)^{n-i}$$

 Convex hull: the curve is bounded by the convex hull defined by control points

Bezier Curve Rendering

- Use its control polygon to approximate the curve
- Recursive subdivision till the tolerance is satisfied
- Algorithm go here
 - If the current control polygon is flat (with tolerance), then output the line segments, else subdivide the curve at u=0.5
 - Compute control points for the left half and the right half, respectively
 - Recursively call the same procedure for the left one and the right one

High-Degree polynomials

- More degrees of freedom
- Easy to compute
- Infinitely differentiable
- Drawbacks:
 - High-order
 - Global control
 - Expensive to compute, complex
 - undulation

Piecewise Polynomials

- Piecewise ---- different polynomials for different parts of the curve
- Advantages ---- flexible, low-degree
- Disadvantages ---- how to ensure smoothness at the joints (continuity)

Department of Computer Science

Piecewise Curves

Piecewise Bezier Curves

Department of Computer Science

Continuity

- One of the fundamental concepts
- Commonly used cases:

$$C^0, C^1, C^2$$

• Consider two curves: a(u) and b(u) (u is in [0,1])

Department of Computer Science

Continuity

- Continuity between two parametric curves:
 - Geometric continuity
 - G⁰: the two curves are connected
 - G¹: the two tangents have the same direction
 - Parametric continuity
 - C⁰: the two curves are connected
 - C¹: the two tangents are equal

Department of Computer Science

Positional Continuity

$$\mathbf{a}(1) = \mathbf{b}(0)$$

ST NY BR K

Department of Computer Science

Derivative Continuity

$$a(1) = b(0)$$

 $a'(1) = b'(0)$

Department of Computer Science

Geometric Continuity

• **G0** and **G1**

ST NY BR

STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Obtaining Geometric Continuity G¹

$$\begin{bmatrix} P_1 \\ P_4 \\ R_1 \\ R_4 \end{bmatrix} \text{ and } \begin{bmatrix} P_4 \\ P_7 \\ kR_4 \\ R_7 \end{bmatrix}, \text{ with } k > 0.$$

for parametric continuity C^1 , k = 1

ST NY BR K

Piecewise Hermite Curves

piecewise hermite curves

ST NY BR K

Piecewise Bezier Curves

Department of Computer Science

Connecting Cubic Bézier Curves

- How can we guarantee C0 continuity (no gaps between two curves)?
- How can we guarantee C1 continuity (tangent vectors match)?
- Asymmetric: Curve goes through some control points but misses others

Displaying Bezier Spline

- A Bezier curve with 4 control points:
 - $P_0 P_1 P_2 P_3$
- Can be split into 2 new Bezier curves:

A Bézier curve is bounded by the convex hull of its control points.

Geometric NURBS

- Non-Uniform Rational B-Splines (NURBS)
- CAGD industry standard ---- useful properties
- Degrees of freedom
 - Control points
 - Weights

Department of Computer Science

Rational Bezier Curve

Projecting a Bezier curve onto w=1 plane

ST NY BR K

Department of Computer Science

Revisit Two Important Concepts

- Perspective projection
- Homogeneous coordinates

Department of Computer Science

Perspective Projection

Department of Computer Science

Consider Linear Case

$$\begin{bmatrix} x_{0}w_{0} \\ y_{0}w_{0} \end{bmatrix} (1-u) + \begin{bmatrix} x_{1}w_{1} \\ y_{1}w_{1} \end{bmatrix} (u)$$

$$w_{0}(1-u) + w_{1}(u)$$
or
$$\begin{bmatrix} x_{0} \\ y_{0} \end{bmatrix} (1-u) + \begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix} (u)$$

ST NY BR K

Department of Computer Science

From Bezier Spline to NURBS

• B-splines (Bezier Spline)

$$\mathbf{c}(u) = \sum_{i=0}^{n} \begin{bmatrix} \mathbf{p}_{i,x} \\ \mathbf{p}_{i,y} \\ \mathbf{p}_{i,z} \\ 1 \end{bmatrix} B_{i,k}(u)$$

• NURBS (curve)

$$\mathbf{c}(u) = \frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i,k}(u)}{\sum_{i=0}^{n} w_{i} B_{i,k}(u)}$$

Department of Computer Science
Two Examples

• B-splines (Bezier Spline)

$$\mathbf{c}(u) = \sum_{i=0}^{n} \begin{bmatrix} \mathbf{p}_{i,x} \\ \mathbf{p}_{i,y} \\ \mathbf{p}_{i,z} \\ 1 \end{bmatrix}} B_{i,k}(u)$$

• NURBS (curve)

$$\mathbf{c}(u) = \frac{\sum_{i=0}^{n} \mathbf{p}_{i} w_{i} B_{i,k}(u)}{\sum_{i=0}^{n} w_{i} B_{i,k}(u)}$$

Department of Computer Science Center for Visual Computing Linear :

(1 - u)

(u)

Quadratic :

 $(1-u)^2$

2(1-u)u

 $(u)^2$

Consider Quadratic Case

$$\begin{bmatrix} x_{0}w_{0} \\ y_{0}w_{0} \end{bmatrix} (1-u)^{2} + \begin{bmatrix} x_{1}w_{1} \\ y_{1}w_{1} \end{bmatrix} 2(1-u)(u) + \begin{bmatrix} x_{2}w_{2} \\ y_{2}w_{2} \end{bmatrix} (u)^{2}$$

$$w_{0}(1-u)^{2} + w_{1}2(1-u)(u) + w_{2}(u)^{2}$$
or
$$\begin{bmatrix} x_{0} \\ y_{0} \end{bmatrix} (1-u)^{2} + \begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix} 2(1-u)(u) + \begin{bmatrix} x_{2} \\ y_{2} \end{bmatrix} (u)^{2}$$

ST NY BR K

Department of Computer Science Center for Visual Computing

NURBS for Analytic Shapes

- Conic sections
- Natural quadrics
- Extruded surfaces
- Ruled surfaces
- Surfaces of revolution

Department of Computer Science

Center for Visual Computing

NURBS Circle

ST NY BR K

Department of Computer Science

Center for Visual Computing

NURBS Curve

- Geometric components
 - Control points, parametric domain, weights, knots
- Homogeneous representation of B-splines
- Geometric meaning ---- obtained from projection
- Properties of NURBS

 Represent standard shapes, invariant under perspective projection, B-spline is a special case, weights as extra degrees of freedom, common analytic shapes such as circles, clear geometric meaning of weights

Department of Computer Science