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Explicit Representation

• Consider one example: a function f() = sin().

• This is the explicit description of a curve in 2 

dimensions with parameter .  

• This is an example of an unbounded curve (in 

that we can take values of  from -...+.  We’ll 

limit our curve to the domain (0...2).  This 

gives the following curve:
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Explicit Representation

• We are used to seeing an equation of a curve 

defined by expressing one variable as a function 

of the other
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CSE528 Lectures

Parametric Curves



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Parametric Representations
• We are going to start the topic of parametric 

representation, especially for curves and surfaces

• But first, let us look at the concept of explicit, non-

parametric representation



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Parametric Representations
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Parametric Representations
• The geometric and physical intuition: a parameter is a 

third, independent variable (for example, time).

• By introducing a parameter, x and y can be expressed as 
a function of the parameter, as opposed to functions of 
each other.

– For example, F(t) = <f(t), g(t)>, where x= f(t) and y= g(t)

F(t) = <cos(t), sin(t)> - what is this curve and why is this 
parameterization useful?
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Parametric Representations
• Each value of the parameter t determines a point, (f(t), 

g(t)), and the set of all points comprises the graph of the 

curve.

• Complicated curves are easily dealt with since the 

components f(t) and g(t) each becomes a function.

– For example,  F(t)=<sin(3t), sin(4t)>

• From parametric representation to explicit representation 

--- Sometimes the parameter can be eliminated by 

solving one equation (say, x=f(t)) for the parameter t and 

substituting this expression into the other equation 

y=g(t).  The result will be the parametric curve.
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Properties and Visualization
• A conceptual example:

– Picture the xy-plane to be on the table and the z-axis 

coming straight up out of the table 

– Picture the parameterized 2-D path (cos(t), sin(t)) 

which is a circle on the table

– Add a simple z-component such that the circle climbs 

off the table to form a helix (or corkscrew), z=t

• Mathematically:

– Add a simple linear term in the z-direction: 
F(t)=<cos(t), sin(t), t>
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Visualization
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Parametric Curves

• Please remember to make comparisons between 

parametric representations and the following 

equations:

– Explicit representation:

• y = f(x)

– Implicit representation:

• f(x,y) = 0
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Parametric Curves

• Please remember to make comparisons between 

parametric representations and the following 

equations:

– Explicit representation:

• y = f(x)

– Implicit representation:

• f(x,y) = 0
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Parametric Curves

• Why use parametric curves?

– Why curves (rather than polylines)?

• reduce the number of points

• interactive manipulation is easier

– Why parametric (as opposed to y,z=f(x))?

• arbitrary curves can be easily represented

• rotational invariance

– Why parametric (rather than implicit)?

• simplicity and efficiency
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Line (Geometric Line)
• Parametric representation

• Parametric representation is not unique

• In general

• Re-parameterization (variable transformation)

]1,0[

)-(),( 01010





u

upppppl

]1,1[

010110





v

v)p0.5(p)p0.5(p)p,l(p

],[

),(

bau

u



p

]1,0[

))(()(

)(

)/()(









v

avabv

avabu

abauv

pq



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Basic Concepts
• Linear interpolation:

• Local coordinates: 

• Re-parameterization: 

• Affine transformation: 

• Polynomials

• Continuity
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Linear Interpolation
• Simplest "curve" between two points
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Splines
• For a 3D spline, we have 3 polynomials:

 up

Defines the variation in x with
distance u along the curve

12 unknowns
4 3D points required



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Parametric Cubic Curves
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Interpolation vs. Approximation 
Curves

Interpolation

curve must pass 

through control points

Approximation

curve is influenced 

by control points



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Parametric Polynomials
• High-order polynomials

• No intuitive insight for the curved shape

• Difficult for piecewise smooth curves

n

zn

yn

xn

i

zi

yi

xi

z

y

x

uuu























































,

,

,

,

,

,

,0

,0

,0

......)(

a

a

a

a

a

a

a

a

a

c



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Parametric Polynomials
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BSpline 

(approximation)

Definition:  What's a Spline?
• Smooth curve defined by some control points

• Moving the control points changes the curve

Interpolation Bézier (approximation)
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CSE528 Lectures

Interpolation Curves / Splines (Prior 
to the Digital Representation)
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Interpolation vs. Approximation 
Curves

• Interpolation curve – over constrained →
lots of  (undesirable?)  oscillations

• Approximation curve – more reasonable?
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Interpolating Splines: Applications 
• Idea: Use key frames to indicate a series of positions 

that must be “hit” 

• For example:

– Camera location

– Path for character to follow

– Animation of walking, gesturing, or facial expressions

• Morphing

• Use splines for smooth interpolation
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How to Define a Curve?
• Specify a set of points for interpolation and/or 

approximation with fixed or unfixed parameterization

• Specify the derivatives at some locations

• What is the geometric meaning to specify derivatives?

• A set of constraints

• Solve constraint equations
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One Example

• Two end-vertices: c(0) and c(1)

• One mid-point: c(0.5)

• Tangent at the mid-point: c’(0.5)

• Assuming 3D curve
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Cubic Polynomials

• Parametric representation (u is in [0,1])

• Each components are treated independently

• High-dimension curves can be easily defined

• Alternatively
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Cubic Polynomial Example

• Constraints: two end-points, one mid-point, and 

tangent at the mid-point

• In matrix form
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Solve this Linear Equation

• Invert the Matrix

• Rewrite the curve expression
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Basis Functions

• Special polynomials

• What is the image of these basis functions?

• Polynomial curve can be defined by

• Observations

– More intuitive, easy to control, polynomials
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Lagrange Curve

• Point interpolation
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Cubic Hermite Splines

C(0)

C’(0)

C(1)

C’(1)
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CSE528 Lectures

Varying the Magnitude of the 
Tangent Vector
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CSE528 Lectures

Varying the Direction of the 
Tangent Vector
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Piecewise Polynomial Blending
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Why Cubic Polynomials

• Lowest degree for specifying curve in space

• Lowest degree for specifying points to 

interpolate and tangents to interpolate

• Commonly used in computer graphics

• Lower degree has too little flexibility

• Higher degree is unnecessarily complex, exhibit 

undesired wiggles
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Cubic Bezier Curves

• Four control points to Bezier curve

• Curve geometry
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CSE528 Lectures

Cubic Bézier Curve
• 4 control points

• Curve passes through the first & last control points

• Curve is tangent at P0 to (P0-P1) and at P4 to (P4-P3)
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Curve Mathematics (Cubic)

• Bezier curve

• Control points and basis functions

• Image and properties of basis functions
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Cubic Bézier Basis Functions
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The Bernstein Polynomials 
(n=3)
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Recursive Evaluation

• Recursive linear interpolation
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Recursive Subdivision Algorithm

• de Casteljau's algorithm for constructing Bézier 

curves
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Basic Properties (Cubic)
• The curve passes through the first and the last 

points (end-point interpolation)

• Linear combination of control points and basis 
functions

• Basis functions are all polynomials

• Basis functions sum to one (partition of unity)

• All is functions are non-negative

• Convex hull (both necessary and sufficient)

• Predictability
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Bezier Curves (Degree n)

• Curve:

• Control points

• Basis functions           are bernstein polynomials 

of degree n:

 


n

i

n

ii uBpuc
0

)()(

ip

)(uBn

i

!)!(

!

)1()(

iin

n

i

n

uu
i

n
uB inin

i




















 



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Recursive Computation:
The De Casteljau Algorithm
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Recursive Computation
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Properties
• End point interpolation.

• Basis functions are non-negative.

• The summation of basis functions are unity

– Binomial Expansion Theorem:

• Convex hull: the curve is bounded by the convex 
hull defined by the control points.
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Properties

• Basis functions are non-negative

• The summation of all basis functions is unity

• End-point interpolation

• Binomial expansion theorem

• Convex hull: the curve is bounded by the convex 

hull defined by control points
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Bezier Curve Rendering
• Use its control polygon to approximate the curve

• Recursive subdivision till the tolerance is satisfied

• Algorithm go here

– If the current control polygon is flat (with tolerance), then 

output the line segments, else subdivide the curve at u=0.5

– Compute control points for the left half and the right half, 

respectively

– Recursively call the same procedure for the left one and the 

right one
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High-Degree polynomials

• More degrees of freedom

• Easy to compute

• Infinitely differentiable

• Drawbacks:

– High-order

– Global control

– Expensive to compute, complex

– undulation
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Piecewise Polynomials

• Piecewise --- different polynomials for different 

parts of the curve

• Advantages --- flexible, low-degree

• Disadvantages --- how to ensure smoothness at 

the joints (continuity)
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Piecewise Curves
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Piecewise Bezier Curves
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Continuity

• One of the fundamental concepts

• Commonly used cases:

• Consider two curves: a(u) and b(u) (u is in [0,1])

210 ,, CCC
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Continuity

• Continuity between two parametric curves:

– Geometric continuity

• G0: the two curves are connected

• G1: the two tangents have the same direction

– Parametric continuity

• C0: the two curves are connected

• C1: the two tangents are equal
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Positional Continuity
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Derivative Continuity
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Geometric Continuity

• G0 and G1
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Obtaining Geometric Continuity G1

for parametric continuity C1, k = 1
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Piecewise Hermite Curves
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Piecewise Bezier Curves
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Connecting Cubic Bézier Curves

• How can we guarantee C0 continuity (no gaps between two 

curves)?

• How can we guarantee C1 continuity (tangent vectors match)?

• Asymmetric:  Curve goes through some control points but misses 

others
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Displaying Bezier Spline
• A Bezier curve with 4 control points: 

– P0 P1 P2 P3

• Can be split into 2 new Bezier curves: 

– P0 P’1 P’2 P’3

– P’3 P’4 P’5 P3

A Bézier curve 

is bounded by 

the convex hull 

of its control 

points. 
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Geometric NURBS

• Non-Uniform Rational B-Splines (NURBS)

• CAGD industry standard --- useful properties

• Degrees of freedom

– Control points

– Weights
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Rational Bezier Curve

• Projecting a Bezier curve onto w=1 plane
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Revisit Two Important Concepts

• Perspective projection

• Homogeneous coordinates
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Perspective Projection
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Consider Linear Case
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From Bezier Spline to NURBS

• B-splines (Bezier Spline)

• NURBS (curve)
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Two Examples
• B-splines (Bezier Spline)

• NURBS (curve)
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Consider Quadratic Case

2

2

2

1

12

0

0

2

21

2

0

2

22

22

11

112

00

00

)())(1(2)1(

)())(1(2)1(

)())(1(2)1(

u
y

x
uu

y

x
u

y

x

or

uwuuwuw

u
wy

wx
uu

wy

wx
u

wy

wx



























































STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

NURBS for Analytic Shapes

• Conic sections

• Natural quadrics

• Extruded surfaces

• Ruled surfaces

• Surfaces of revolution
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NURBS Circle
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NURBS Curve
• Geometric components

– Control points, parametric domain, weights, knots

• Homogeneous representation of B-splines

• Geometric meaning --- obtained from projection

• Properties of NURBS

– Represent standard shapes, invariant under 
perspective projection, B-spline is a special case, 
weights as extra degrees of freedom, common 
analytic shapes such as circles, clear geometric 
meaning of weights


