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Disk
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Sphere
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Cylinder
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Other Quadrics

CSE328 Lectures
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Parametric Surfaces
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Bilinear Patch

• Perhaps the easiest example is bilinear 

interpolation
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Bilinear Patch
• Smooth version of quadrilateral with 

non-planar vertices... (four points are NOT on the same 

plane)

– But will this help us model smooth surfaces?

– Do we have control of the derivative at the edges?
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From Curve to Surface
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Parametric Representations

• Hermit curves and surfaces (S.A.Coons[63] and 
J.C.Ferguson[64])

• Bézier curves and surfaces (P.Bézier[66] and 
P.de Casteljau[59])

• B-Splines (W.J.Gordon and R.F.Riesenfeld 70s)

• NURBS (Versprille 75)

• Mathematical foundations (M.G.Cox[72], C.de 
Boor[72], et al)
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CSE528 Lectures

Parametric Representation

• Parametric curve functions

• Parametric surface functions

• Piece-wise polynomial blending
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Surfaces

• From curves to surfaces

• A simple curve example (Bezier)

• Consider each control point now becoming a 

Bezier curve
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Surfaces

• Then, we have

• Matrix form
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Surfaces

• Further generalize to degree of n and m along 

two parametric directions

• Question: which control points are interpolated?

• How about B-spline surfaces???
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Tensor-Product: Basic Concepts

• Direct generalization from two vectors:

• Similarly, we can 

define a surface as 

the tensor product 

of two curves....
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Tensor Product Surfaces

• Where are they from?

• Monomial form

• Bezier surface

• B-spline surface 

• General case
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Tensor Product Surface

• Bezier Surface
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Bicubic Bezier Patch

• How do we define a tensor-product bicubic 

Bezier surface? 
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Editing Bicubic Bezier Patches

Curve Basis Functions

Surface Basis Functions
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CSE528 Lectures

Modeling with Bicubic Bezier Patches

• Original teapot specified with Bezier patches
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Modeling Difficulties

• Original teapot model:

• Intersecting surfaces at spout & handle, no bottom, a 

hole at the spout tip, a gap between  lid & base 
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NURBS Surface Examples
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Rectangular Surface
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Adjacent Bézier Patches

• Continuity conditions across the common, 

shared boundary
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Rendering Curves and Surfaces

• One way of rendering a curve/surface is to compute 

intersections with rays from the eye through each pixel.

– costly for real-time rendering

• Another approach is to evaluate the curve or surface at 

enough points to approximate it with standard flat 

objects (i.e. lines or polygons)

• Recursive subdivision techniques can also be used and 

are very efficient - good for adaptive rendering.
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Surface Normal
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Normals
We can differentiate with respect to u and v to obtain the 

normal at any point p
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Normals to Surfaces
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Regular Surface

• Generated from a set of control points. 
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The Utah Teapot:  32 Bezier 
Patches
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Utah Teapot: Polygon 
Representation
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Displaying Bezier Patch

• Given 16 control points (Bicubic Bezier Patch) 

and a tessellation resolution, create a triangle 

mesh

resolution:

5x5 vertices

resolution:

11x11 vertices

resolution:

41x41 vertices
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Rendering the Teapot
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Curve Network
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Transfinite Method and N-side Hole 
Filling
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Coons Patch
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Solid
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Parametric Solids

• Tricubic solid

• Bezier solid

• B-spline solid

• NURBS solid
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Free-Form Deformation
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Free-form Deformation
• Any geometric objects can be embedded into a space

• The surrounding space is represented by using 
commonly-used, popular splines

• Free-form deformation of the surrounding space

• All the embedded (geometric) objects are deformed 
accordingly, the quantitative measurement of 
deformation is obtained from the displacement vectors 
of the trivariate splines that define the surrounding 
space

• Essentially, the deformation is governed by the 
trivariate, volumetric splines

• Very popular in graphics and related fields
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Surrounding Space represented 
by Parametric Solids

• Tricubic solid

• Bezier solid

• B-spline solid

• NURBS solid
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Free-form Deformations
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Procedural Modeling

• Being applied to 

shape geometry

• For example, simple 

extrusion

• Extrude: grow a 2D 

shape in the third 

dimension

CSE328 Lectures
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Sweeping Objects
• Define a polygon by its edges

• Sweep it along a path

• The path taken by the edges form a surface - the sweep 
surface

• Special cases
– Translational sweeping – sweep along a straight line (extraction)

– Rotational sweeping – rotate profiling curves about an axis (surface of revolution)

CSE328 Lectures
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Surface of Revolution
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Surfaces of Revolution

• Geometric construction

– Specify a planar curve profile on y-z plane

– Rotate this profile with respect to z-axis

• Procedure-based model

• What kinds of shape can we model?

• Review: three dimensional rotation w.r.t. z-axis
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Surfaces of Revolution

• Mathematics: surfaces of revolution
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Sweeping

• Sweep a shape over a path to form a generalized 

cylinder

CSE528 Lectures
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Revolution

• Revolve a shape around an axis to create an 

object with rotational symmetry

CSE528 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

General Sweeping Objects

• The path maybe any curve

• The polygon that is swept may be transformed as it is 

moved along the path

– Scale, rotate with respect to path orientation, …

• One common way to specify is:

– Give a poly-line (sequence of line segments) as the path

– Give a poly-line as the shape to sweep

– Give a transformation to apply at the vertex of each path segment

• Difficult to avoid self-intersection

CSE328 Lectures
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Sweeping Objects: Rendering
• Convert to polygons

– Break path into short segments

– Create a copy of the sweep polygon at each segment

– Join the corresponding vertices between the polygons

– May need things like end-caps on surfaces of revolution 

and extrusions

• Normals come from sweep polygon and path 

orientation

• Sweep polygon defines one texture parameter, 

sweep path defines the other
CSE328 Lectures
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Tori Example

CSE328 Lectures

Vector3 points[2][8];

int start_i = 0;

int end_i = 1;

for ( int i = 0 ; i < 8 ; i++ )

points[start_i][i] = TorusPoint(7,i);

for ( int j = 0 ; j < 8 ; j++ ) {

glBegin(GL_TRIANGLE_STRIP);

for ( int i = 0 ; i < 8 ; i++ ) {

glVertex3fv(points[start_i][i];

points[end_i][i] = TorusPoint[j][i];

glVertex3fv(points[end_i][i];

}

glVertex3fv(points[start_i][0]);

glVertex3fv(points[end_i][0]);

glEnd();

int temp = start_i; start_i = end_i; end_i = temp;

}
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Ruled surfaces
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Ruled Surfaces
• Move one straight line along a curve, or join two 

parametric curves by straight lines

• Example: plane, cone, cylinder

• Cylindrical surface

• Surface equation

• Isoparametric lines

• Generalized cylinder

• Bending by roller
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57
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Developable Surfaces

• Deform a surface to planar shape without 

length/area changes

• Unroll a surface to a plane without 

stretching/distorting

• Example: cone, cylinder

• Developable surfaces vs. Ruled surfaces

• More examples???
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Developable Surface
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Developable Surfaces

CSE328 Lectures

Planar quad strip (Meshes)


