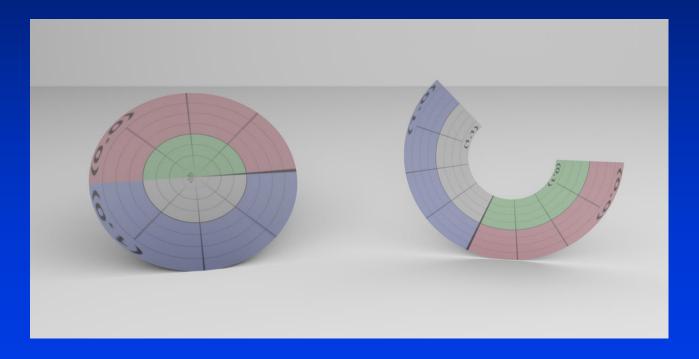
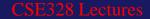
CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

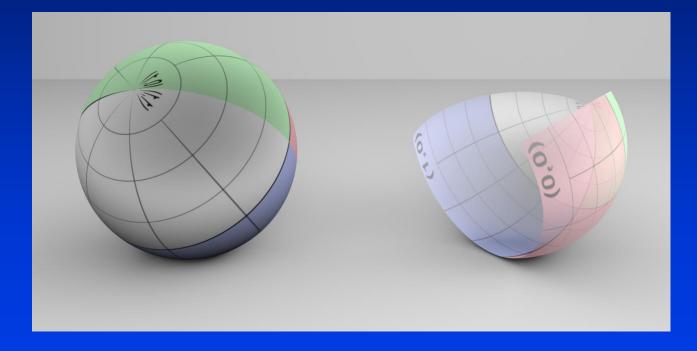
Hong Qin Department of Computer Science Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.stonybrook.edu http://www.cs.stonybrook.edu/~qin

Disk

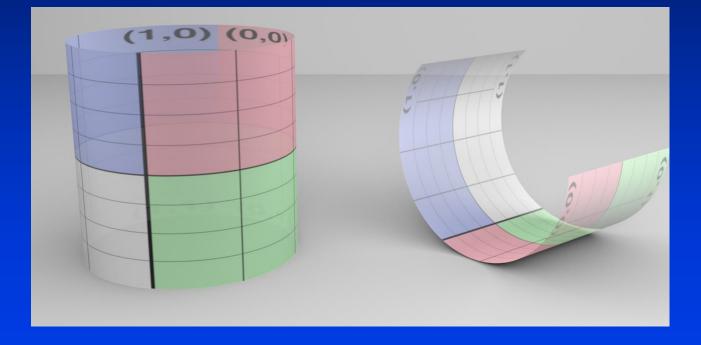




Sphere



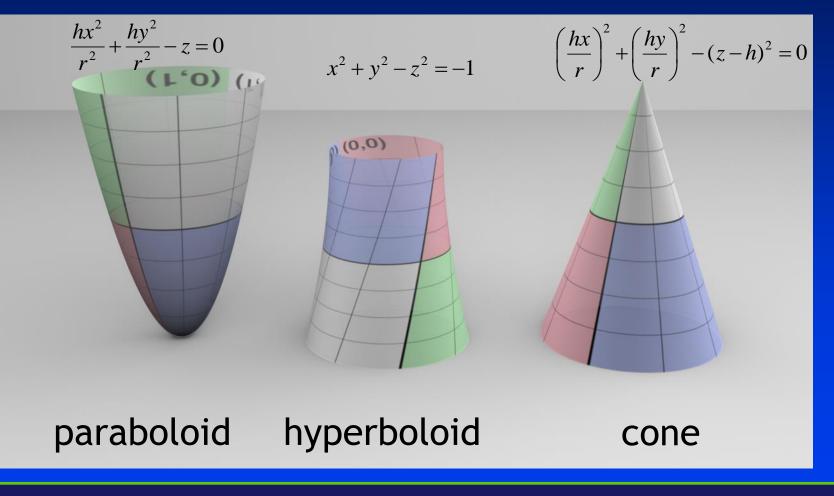
Cylinder



Department of Computer Science Center for Visual Computing

CSE328 Lectures

Other Quadrics



Department of Computer Science Center for Visual Computing

CSE328 Lectures

Parametric Surfaces

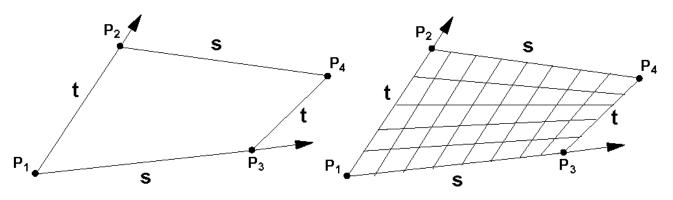
ST NY BR K

Department of Computer Science

Bilinear Patch

• Perhaps the easiest example is bilinear interpolation

Bi-lerp a (typically non-planar) quadrilateral

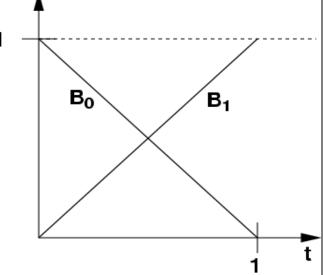


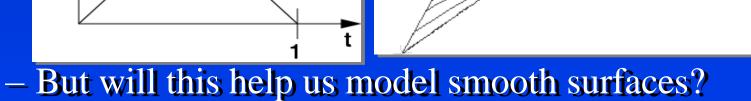
Notation: $\mathbf{L}(P_1, P_2, \alpha) \equiv (1 - \alpha)P_1 + \alpha P_2$

 $Q(s,t) = \mathbf{L}(\mathbf{L}(P_1, P_2, t), L(P_3, P_4, t), s)$

Bilinear Patch

 Smooth version of quadrilateral with non-planar vertices... (four points are NOT on the same plane)





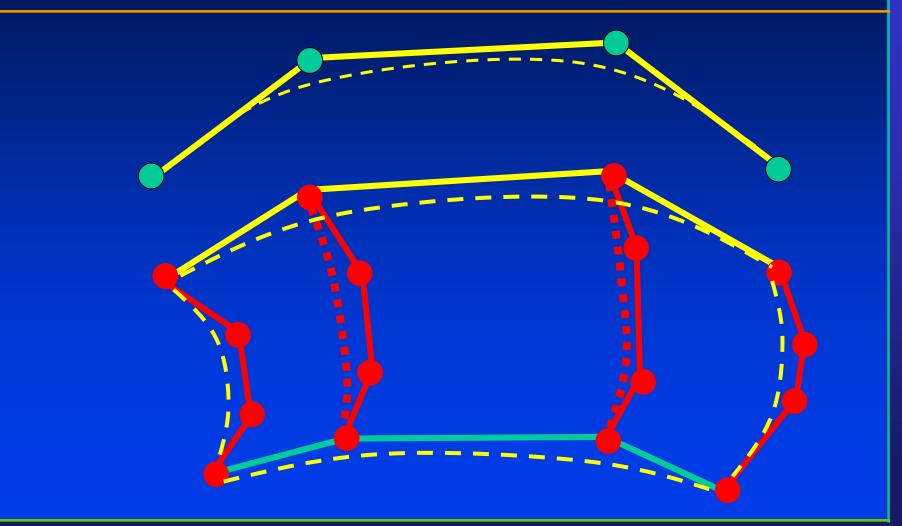
– Do we have control of the derivative at the edges?

Department of Computer Science

Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

From Curve to Surface



Parametric Representations

- Hermit curves and surfaces (S.A.Coons[63] and J.C.Ferguson[64])
- Bézier curves and surfaces (P.Bézier[66] and P.de Casteljau[59])
- B-Splines (W.J.Gordon and R.F.Riesenfeld 70s)
- NURBS (Versprille 75)
- Mathematical foundations (M.G.Cox[72], C.de Boor[72], et al)

Parametric Representation

• Parametric curve functions

$$x = x(u), y = y(u), z = z(u)$$

Parametric surface functions

$$x = x(u, v), y = y(u, v), z = z(u, v)$$

Piece-wise polynomial blending

— control points

$$\gamma(t) = \sum_{i} p_{i} B(t-i)$$

Department of Comp Center for Visual (

Surfaces

- From curves to surfaces
- A simple curve example (Bezier)

$$\mathbf{c}(u) = \sum_{i=0}^{3} \mathbf{p}_{i} B_{i}(u)$$
$$u \in [0,1]$$

• Consider each control point now becoming a Bezier curve $r = \sum_{n=1}^{3} r_{n} R_{n}(n)$

$$\mathbf{p}_i = \sum_{j=0}^{3} \mathbf{p}_{i,j} B_j(v)$$
$$v \in [0,1]$$

Department of Computer Science

Surfaces

• Then, we have

$$\mathbf{s}(u,v) = \sum_{i=0}^{3} \left(\sum_{j=0}^{3} \mathbf{p}_{i,j} B_{j}(v)\right) B(u) = \sum_{i=0}^{3} \sum_{j=0}^{3} \mathbf{p}_{i,j} B_{i}(u) B_{j}(v)$$

• Matrix form

$$\mathbf{s}(u,v) = \begin{bmatrix} B_0(u) & B_1(u) & B_2(u) & B_3(u) \end{bmatrix} \begin{bmatrix} \mathbf{p}_{0,0} & \mathbf{p}_{0,1} & \mathbf{p}_{0,2} & \mathbf{p}_{0,3} \\ \mathbf{p}_{1,0} & \mathbf{p}_{1,1} & \mathbf{p}_{1,2} & \mathbf{p}_{1,3} \\ \mathbf{p}_{2,0} & \mathbf{p}_{2,1} & \mathbf{p}_{2,2} & \mathbf{p}_{2,3} \\ \mathbf{p}_{3,0} & \mathbf{p}_{3,1} & \mathbf{p}_{3,2} & \mathbf{p}_{3,3} \end{bmatrix} \begin{bmatrix} B_0(v) \\ B_1(v) \\ B_2(v) \\ B_2(v) \\ B_3(v) \end{bmatrix}$$

Department of Computer Science

Surfaces

• Further generalize to degree of n and m along two parametric directions

$$\mathbf{s}(u,v) = \sum_{i=0}^{n} \sum_{j=0}^{m} \mathbf{p}_{i,j} B_i^n(u) B_j^m(v)$$

- Question: which control points are interpolated?
- How about B-spline surfaces???

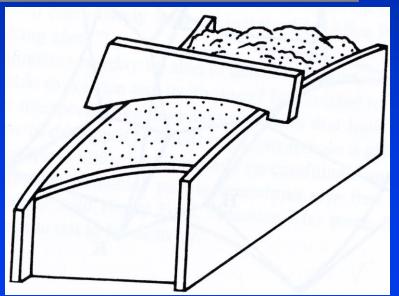
Department of Computer Science

Tensor-Product: Basic Concepts

• Direct generalization from two vectors:

						a_1b_1	a_2b_1	a_3b_1
$[a_1$	a_2	$a_3ig]\otimesig[b_1$	b_2	b_3	$b_4] =$	a_1b_2	a_2b_2	a_3b_2
						a_1b_3	a_2b_3	a_3b_3
						a_1b_4	a_2b_4	a_3b_4

 Similarly, we can define a surface as the tensor product of two curves....



Tensor Product Surfaces

- Where are they from?
- Monomial form
- Bezier surface

$$\mathbf{s}(u,v) = \sum_{i} \sum_{j} \mathbf{a}_{i,j} u^{i} v^{j}$$

$$\mathbf{s}(u,v) = \sum_{i} \sum_{j} \mathbf{p}_{i,j} B_i^m(u) B_j^n(v)$$

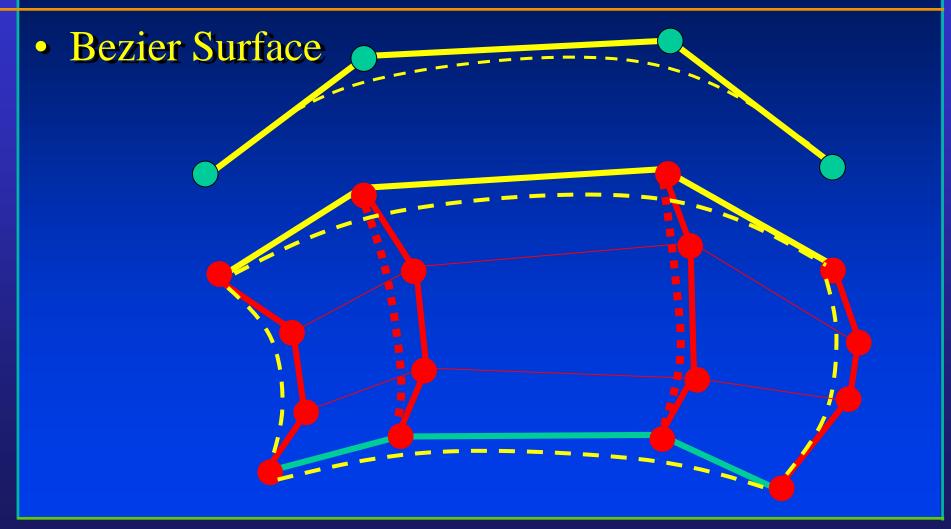
• B-spline surface

$$\mathbf{s}(u,v) = \sum_{i=0}^{m} \sum_{j=0}^{n} \mathbf{p}_{i,j} B_{i,k}(u) B_{j,l}(v)$$

General case

$$\mathbf{s}(u,v) = \sum_{i} \sum_{j} \mathbf{v}_{i,j} F_i(u) G_j(v)$$

Tensor Product Surface

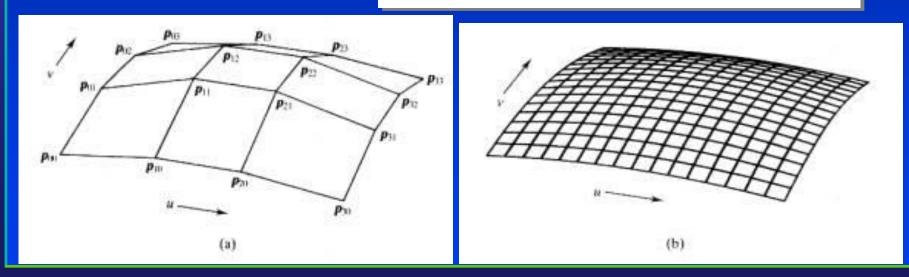


Department of Computer Science

Bicubic Bezier Patch

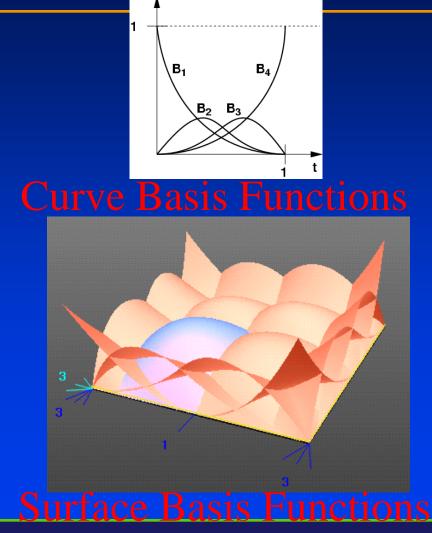
• How do we define a tensor-product bicubic Bezier surface? $Q(s,t) = CB(-CB(P_{00}, P_{01}, P_{02}, P_{03}, t),$

 $t) = CB(CB(P_{00}, P_{01}, P_{02}, P_{03}, t),$ $CB(P_{10}, P_{11}, P_{12}, P_{13}, t),$ $CB(P_{20}, P_{21}, P_{22}, P_{23}, t),$ $CB(P_{30}, P_{31}, P_{32}, P_{33}, t),$ s)

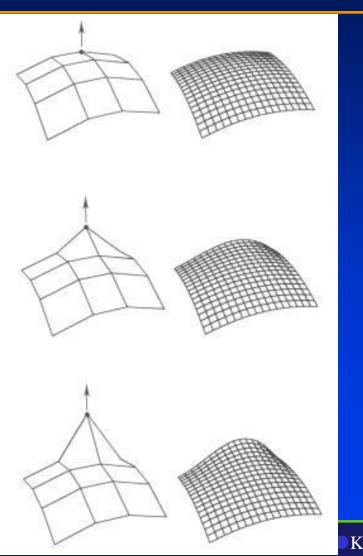


Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

Editing Bicubic Bezier Patches



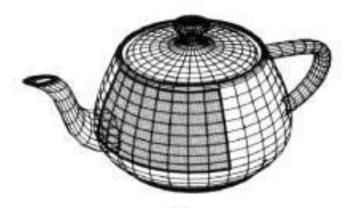
Department of Computer Science Center for Visual Computing

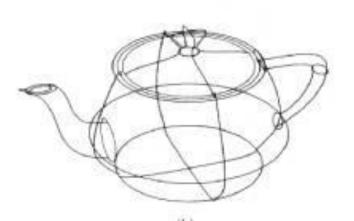


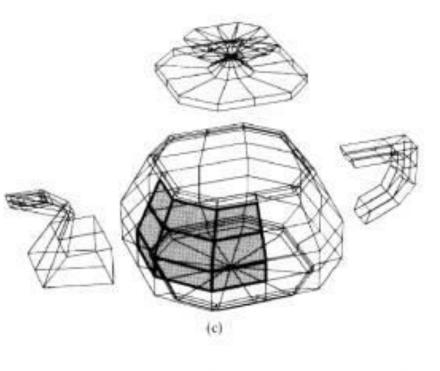
STATE UNIVERSITY OF NEW YORK

Modeling with Bicubic Bezier Patches

• Original teapot specified with Bezier patches





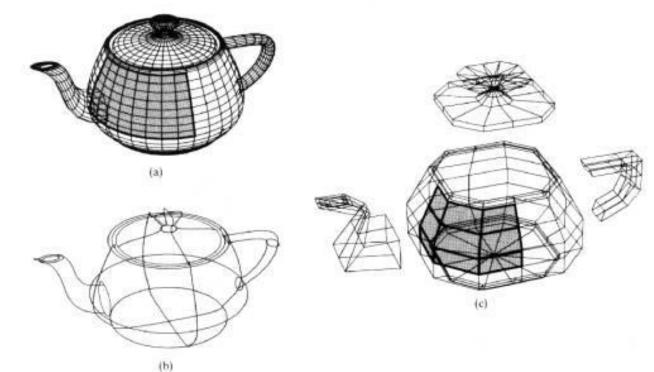


Depart

K

Modeling Difficulties

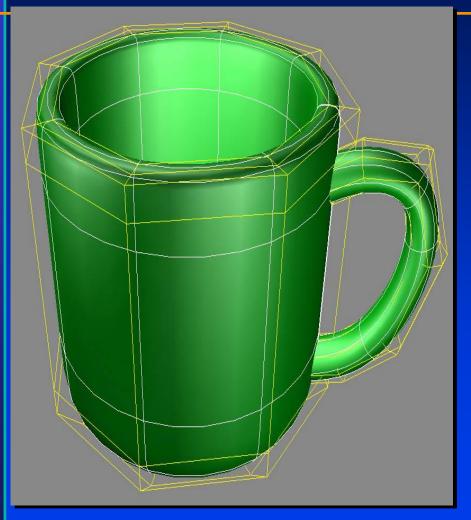
- Original teapot model:
- Intersecting surfaces at spout & handle, no bottom, a hole at the spout tip, a gap between lid & base

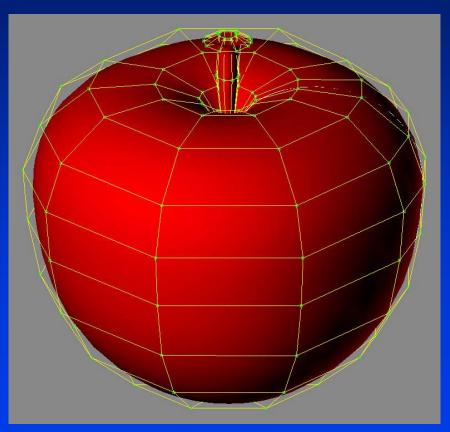


/ERSITY OF NEW YORK

Department of Computer Center for Visual Comp

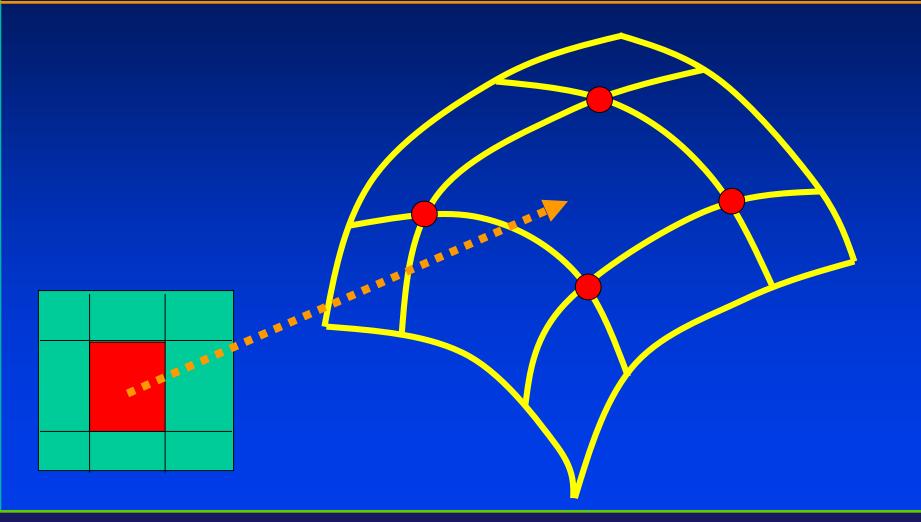
NURBS Surface Examples





ST NY BR K

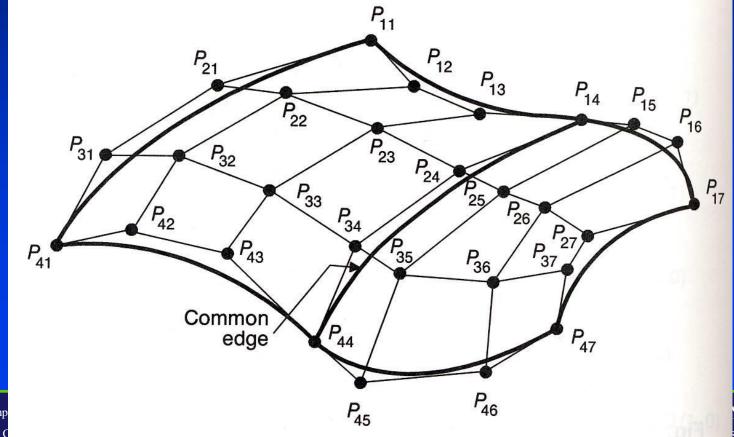
Rectangular Surface



ST NY BR K

Adjacent Bézier Patches

• Continuity conditions across the common, shared boundary



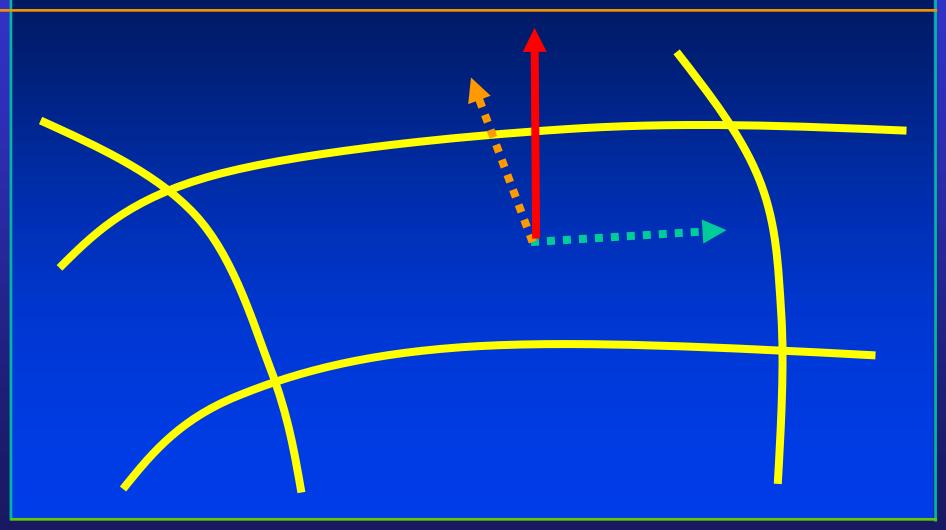
SITY OF NEW YORK

Department of Comp Center for Visual C

Rendering Curves and Surfaces

- One way of rendering a curve/surface is to compute intersections with rays from the eye through each pixel.
 – costly for real-time rendering
- Another approach is to evaluate the curve or surface at enough points to approximate it with standard flat objects (i.e. lines or polygons)
- Recursive subdivision techniques can also be used and are very efficient - good for adaptive rendering.

Surface Normal



ST NY BR K STATE UNIVERSITY OF NEW YORK

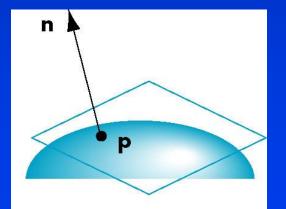
Normals

We can differentiate with respect to u and v to obtain the normal at any point **p**

$$\frac{\partial \mathbf{p}(u,v)}{\partial u} = \begin{bmatrix} \frac{\partial \mathbf{x}(u,v)}{\partial u} \\ \frac{\partial \mathbf{y}(u,v)}{\partial u} \\ \frac{\partial \mathbf{z}(u,v)}{\partial u} \end{bmatrix}$$

$$\frac{\partial \mathbf{p}(u,v)}{\partial v} = \begin{bmatrix} \frac{\partial \mathbf{x}(u,v)}{\partial v} \\ \frac{\partial \mathbf{y}(u,v)}{\partial v} \\ \frac{\partial \mathbf{z}(u,v)}{\partial v} \end{bmatrix}$$

$$\mathbf{n} = \frac{\partial \mathbf{p}(u, v)}{\partial u} \times \frac{\partial \mathbf{p}(u, v)}{\partial v}$$

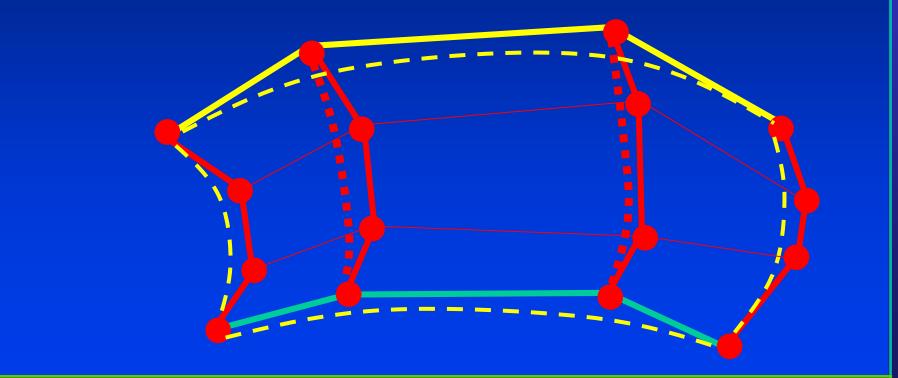


Normals to Surfaces

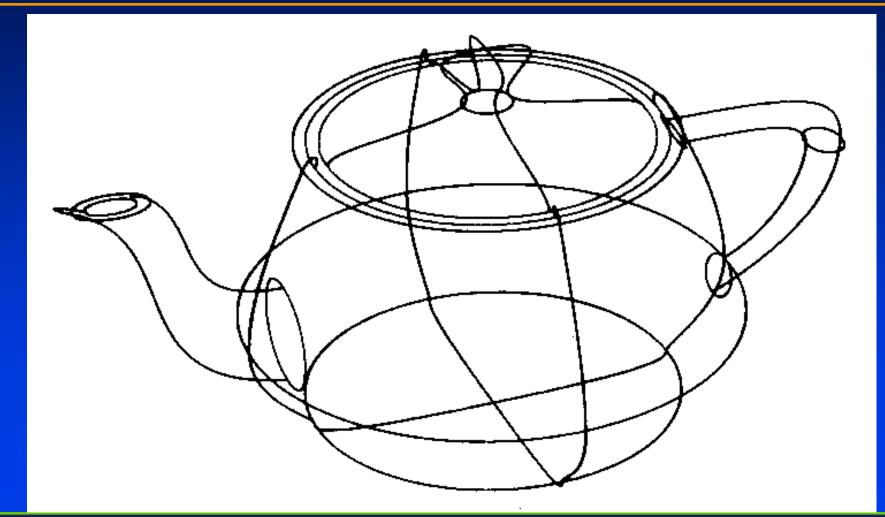
 $\frac{\partial}{\partial s}Q(s,t) = T^{\mathrm{T}} \bullet M^{\mathrm{T}} \bullet G \bullet M \bullet \frac{\partial}{\partial s}S$ $= T^{\mathrm{T}} \bullet M^{\mathrm{T}} \bullet \boldsymbol{G} \bullet \boldsymbol{M} \bullet \begin{bmatrix} 3s^2 & 2s & 1 & 0 \end{bmatrix}^{\mathrm{T}}$ $\frac{\partial}{\partial t}Q(s,t) = \frac{\partial}{\partial t}\left(T^{\mathrm{T}}\right) \bullet M^{\mathrm{T}} \bullet G \bullet M \bullet S$ $= \begin{bmatrix} 3t^2 & 2t & 1 & 0 \end{bmatrix}^{\mathrm{T}} \bullet M^{\mathrm{T}} \bullet \mathbf{G} \bullet M \bullet S$ $\frac{\partial}{\partial s}Q(s,t) \times \frac{\partial}{\partial t}Q(s,t)$ — normal vector

Regular Surface

• Generated from a set of control points.

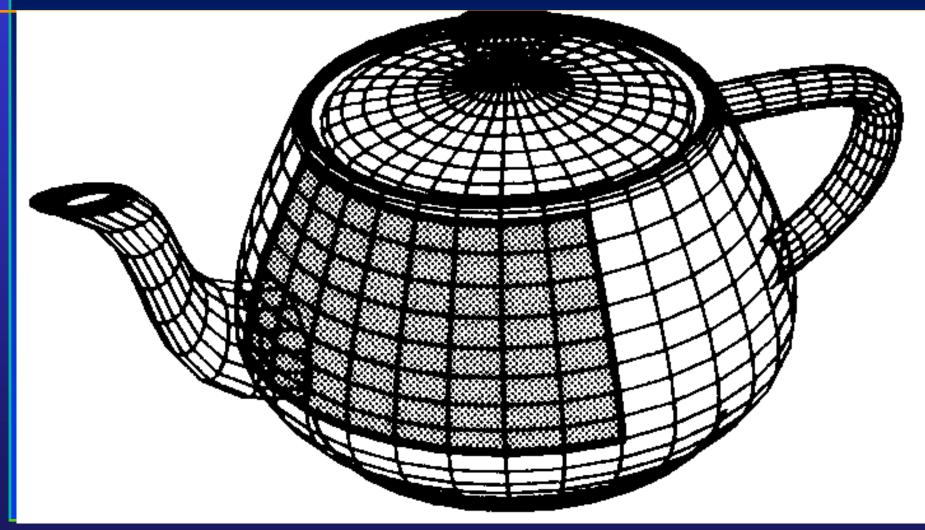


The Utah Teapot: 32 Bezier Patches



ST NY BR K STATE UNIVERSITY OF NEW YORK

Utah Teapot: Polygon Representation

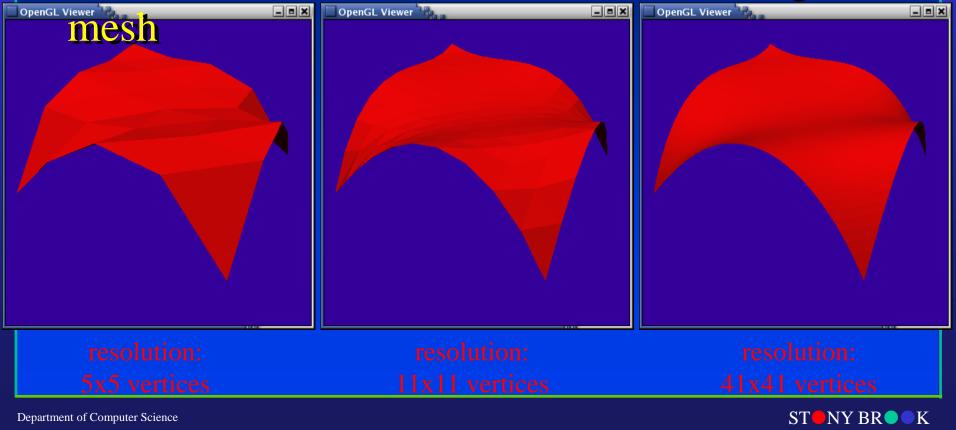


ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Displaying Bezier Patch

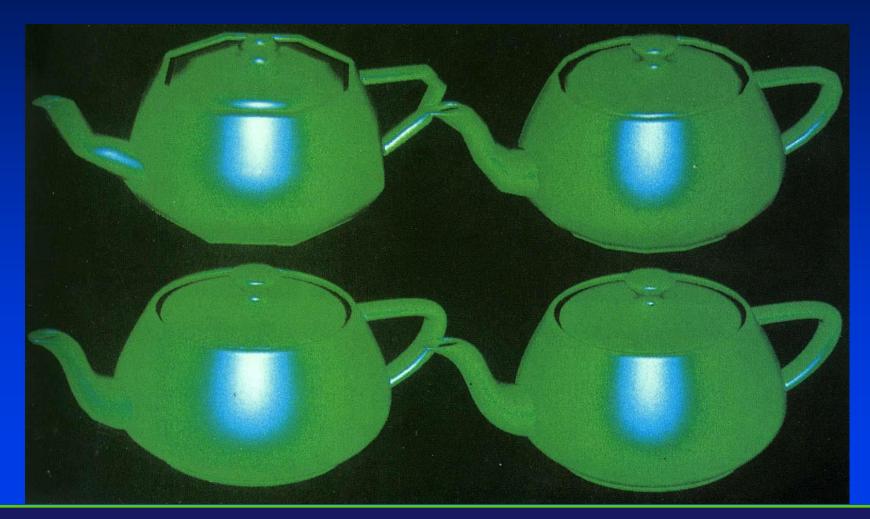
• Given 16 control points (Bicubic Bezier Patch) and a tessellation resolution, create a triangle



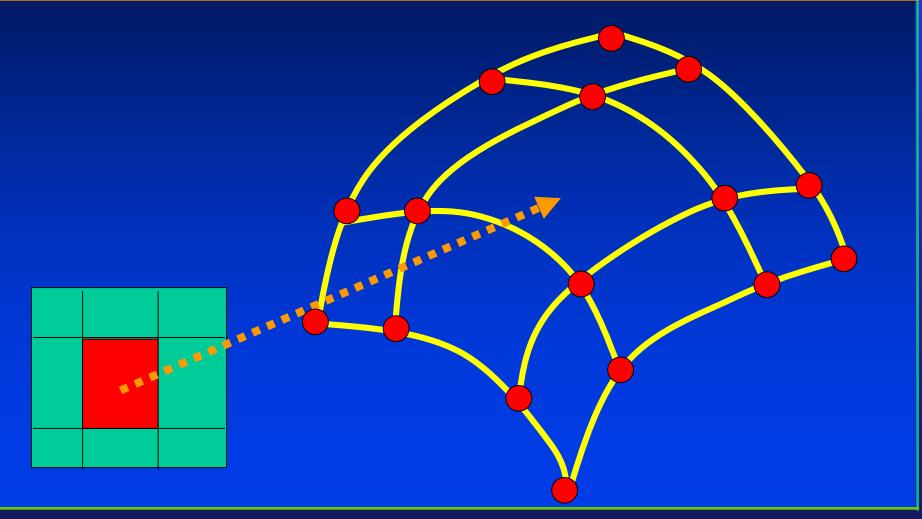
Center for Visual Computing

STATE UNIVERSITY OF NEW YORK

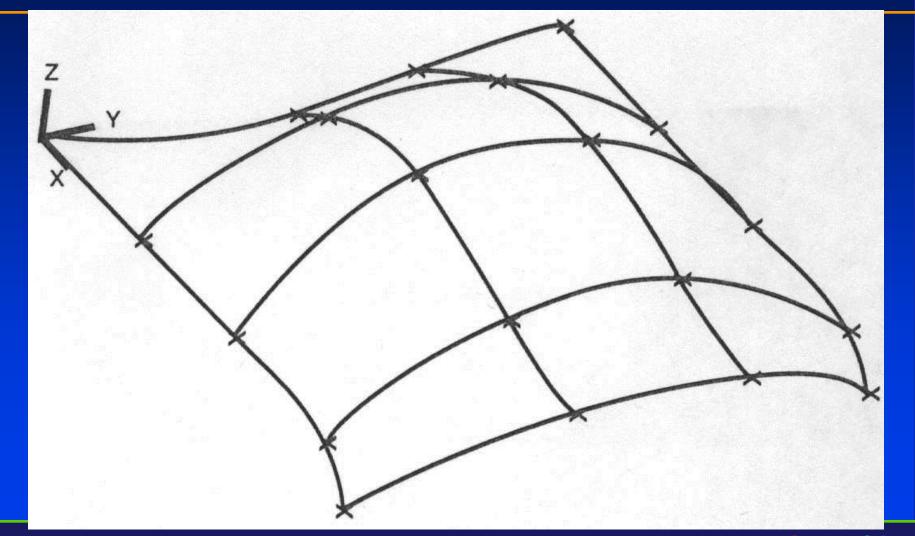
Rendering the Teapot



Curve Network



ST NY BR K STATE UNIVERSITY OF NEW YORK



Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

Transfinite Method and N-side Hole Filling

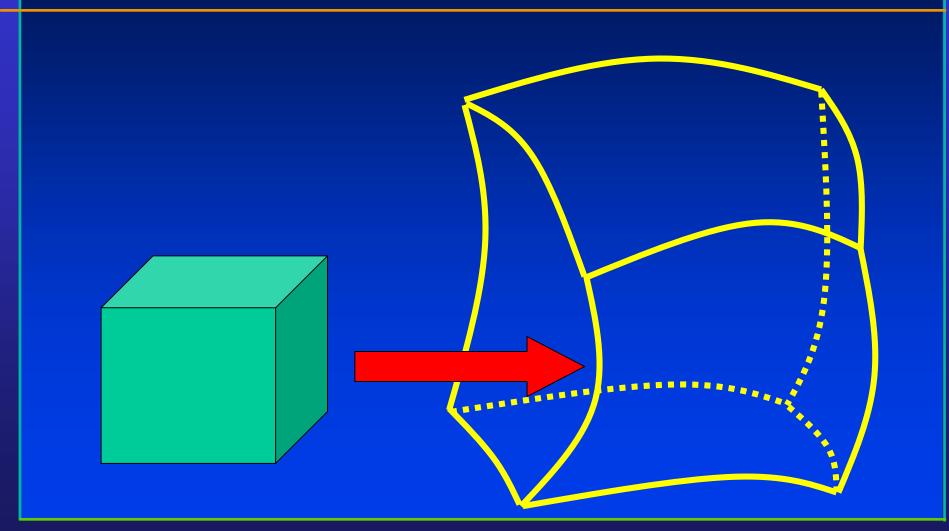
Department of Computer Science

Coons Patch

s(0, v), s(1, v)s(u, 0), s(u, 1)

Department of Computer Science

Solid



ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Parametric Solids

• Tricubic solid

$$\mathbf{p}(u, v, w) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} \mathbf{a}_{ijk} u^{i} v^{j} w^{k}$$
$$u, v, w \in [0,1]$$

• Bezier solid

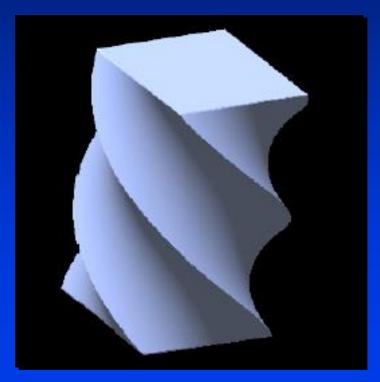
$$\mathbf{p}(u, v, w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_i(u) B_j(v) B_k(w)$$

• **B-spline solid**
$$\mathbf{p}(u,v,w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)$$

• NURBS solid

$$\mathbf{p}(u, v, w) = \frac{\sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}{\sum_{i} \sum_{j} \sum_{k} \sum_{k} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}$$

Free-Form Deformation



Free-form Deformation

- Any geometric objects can be embedded into a space
- The surrounding space is represented by using commonly-used, popular splines
- Free-form deformation of the surrounding space
- All the embedded (geometric) objects are deformed accordingly, the quantitative measurement of deformation is obtained from the displacement vectors of the trivariate splines that define the surrounding space
- Essentially, the deformation is governed by the trivariate, volumetric splines
- Very popular in graphics and related fields

Surrounding Space represented by Parametric Solids

• Tricubic solid

$$\mathbf{p}(u, v, w) = \sum_{i=0}^{3} \sum_{j=0}^{3} \sum_{k=0}^{3} \mathbf{a}_{ijk} u^{i} v^{j} w^{k}$$
$$u, v, w \in [0,1]$$

• Bezier solid

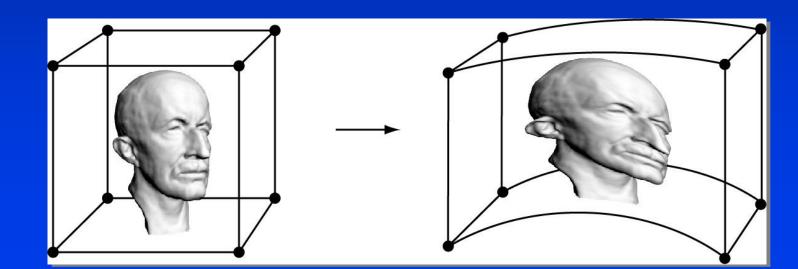
$$\mathbf{p}(u, v, w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_i(u) B_j(v) B_k(w)$$

• **B-spline solid**
$$\mathbf{p}(u,v,w) = \sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)$$

• NURBS solid

$$\mathbf{p}(u, v, w) = \frac{\sum_{i} \sum_{j} \sum_{k} \mathbf{p}_{ijk} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}{\sum_{i} \sum_{j} \sum_{k} \sum_{k} q_{ijk} B_{i,I}(u) B_{j,J}(v) B_{k,K}(w)}$$

Free-form Deformations

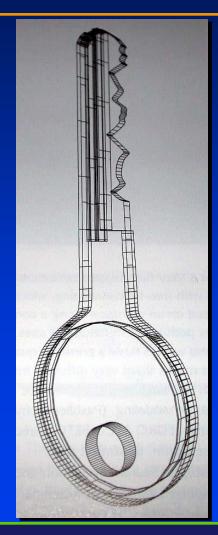


ST NY BR K

Department of Computer Science

Procedural Modeling

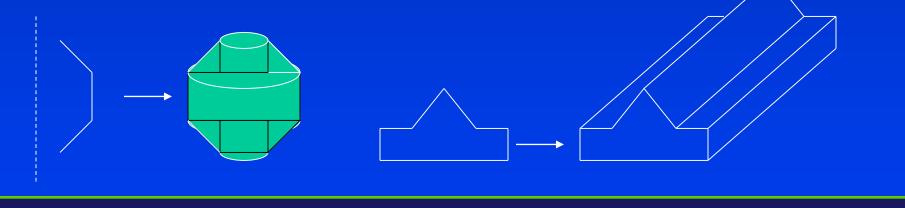
- Being applied to shape geometry
- For example, simple extrusion
- Extrude: grow a 2D shape in the third dimension



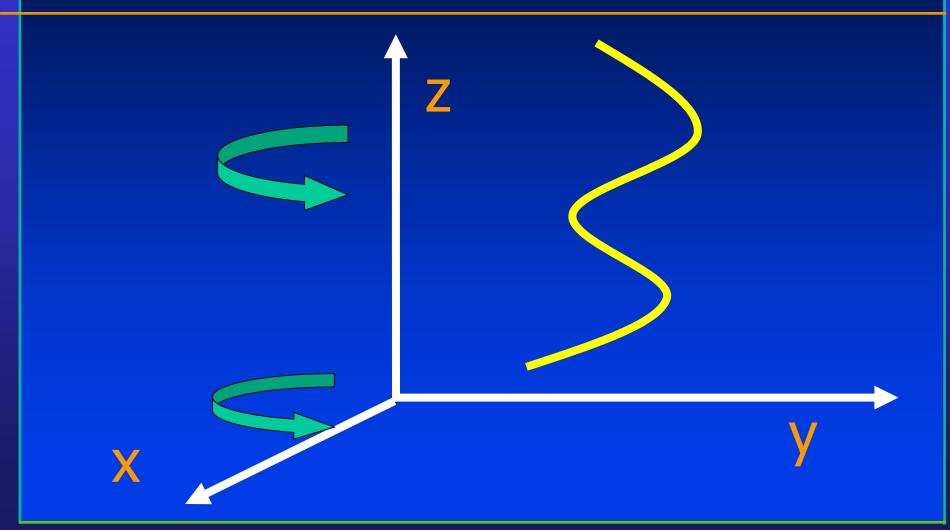
Department of Computer Science Center for Visual Computing

Sweeping Objects

- Define a polygon by its edges
- Sweep it along a path
- The path taken by the edges form a surface the sweep surface
- Special cases
 - Translational sweeping sweep along a straight line (extraction)
 - Rotational sweeping rotate profiling curves about an axis (surface of revolution)



Surface of Revolution



Department of Computer Science Center for Visual Computing ST NY BR K

Surfaces of Revolution

- Geometric construction
 - Specify a planar curve profile on y-z plane
 - Rotate this profile with respect to z-axis
- Procedure-based model
- What kinds of shape can we model?
- Review: three dimensional rotation w.r.t. z-axis

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Surfaces of Revolution

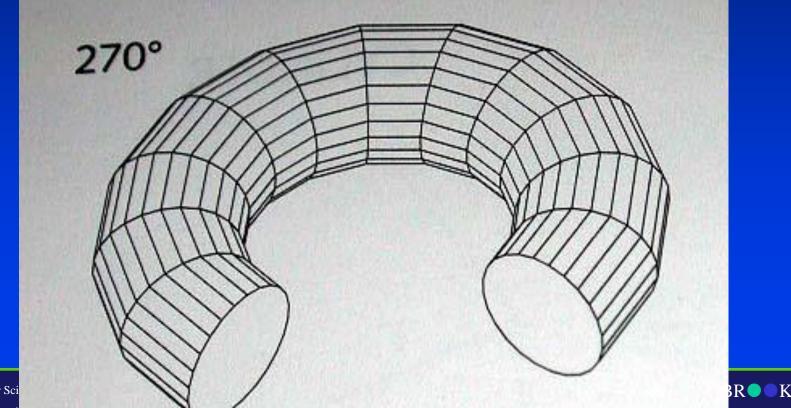
• Mathematics: surfaces of revolution

$$\mathbf{c}(u) = \begin{bmatrix} 0\\ y(u)\\ z(u) \end{bmatrix}$$
$$\mathbf{s}(u,v) = \begin{bmatrix} -y(u)\sin(v)\\ y(u)\cos(v)\\ z(u) \end{bmatrix}$$

Department of Computer Science

Sweeping

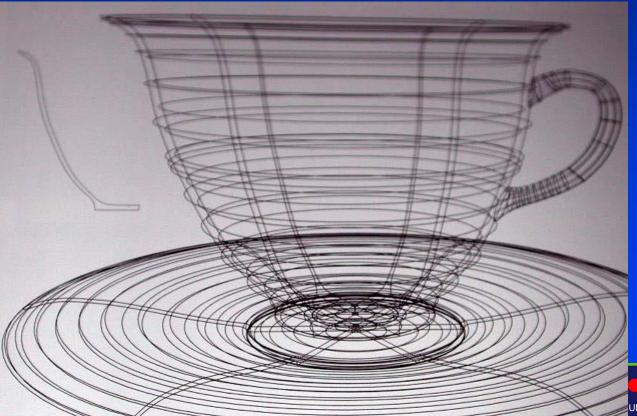
• Sweep a shape over a path to form a generalized cylinder



OF NEW YORK

Revolution

• Revolve a shape around an axis to create an object with rotational symmetry



Department of Computer Science Center for Visual Computing •NY BR•K UNIVERSITY OF NEW YORK

General Sweeping Objects

- The path maybe any curve
- The polygon that is swept may be transformed as it is moved along the path
 - Scale, rotate with respect to path orientation,
- One common way to specify is:
 - Give a poly-line (sequence of line segments) as the path
 - Give a poly-line as the shape to sweep
 - Give a transformation to apply at the vertex of each path segment
- Difficult to avoid self-intersection

Sweeping Objects: Rendering

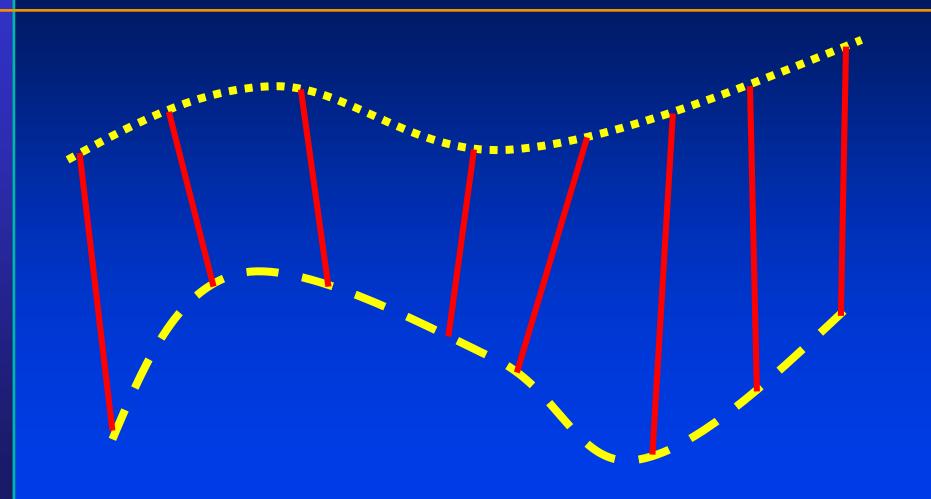
- Convert to polygons
 - Break path into short segments
 - Create a copy of the sweep polygon at each segment
 - Join the corresponding vertices between the polygons
 - May need things like end-caps on surfaces of revolution and extrusions
- Normals come from sweep polygon and path orientation
- Sweep polygon defines one texture parameter, sweep path defines the other

Department of Computer Science Center for Visual Computing

Tori Example

```
Vector3 points[2][8];
           start i = 0;
int
           end i = 1;
int
for ( int i = 0 ; i < 8 ; i++ )
  points[start i][i] = TorusPoint(7,i);
for (int j = 0; j < 8; j++) {
  glBegin(GL TRIANGLE STRIP);
  for (int i = 0; i < 8; i++) {
      glVertex3fv(points[start i][i];
      points[end i][i] = TorusPoint[j][i];
      glVertex3fv(points[end i][i];
  glVertex3fv(points[start i][0]);
  glVertex3fv(points[end i][0]);
  glEnd();
  int temp = start i; start i = end i; end i = temp;
```


Ruled surfaces



Ruled Surfaces

- Move one straight line along a curve, or join two parametric curves by straight lines
- Example: plane, cone, cylinder
- Cylindrical surface
- Surface equation

$$\mathbf{s}(u, v) = (1 - v)\mathbf{a}(u) + v\mathbf{b}(u)$$

$$\mathbf{s}(u, v) = (1 - v)\mathbf{s}(u, 0) + v\mathbf{s}(u, 1)$$

$$\mathbf{s}(u, v) = \mathbf{p}(u) + v\mathbf{q}(u)$$

- Isoparametric lines
- Generalized cylinder
- Bending by roller

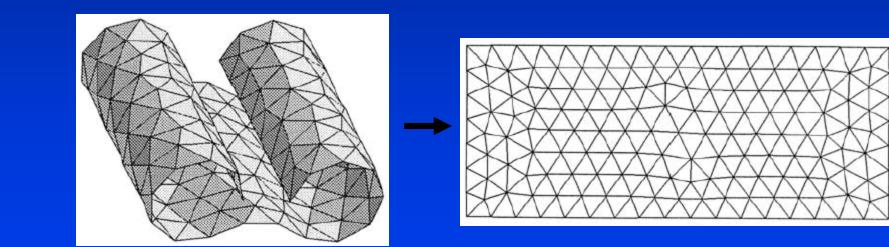


Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

Developable Surfaces

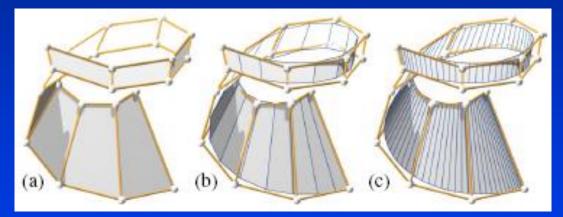
- Deform a surface to planar shape without length/area changes
- Unroll a surface to a plane without stretching/distorting
- Example: cone, cylinder
- Developable surfaces vs. Ruled surfaces
- More examples???

Developable Surface



Developable Surfaces

Planar quad strip (Meshes)



Department of Computer Science Center for Visual Computing

