CSE328 Fundamentals of Computer
Graphics: Concepts, Theory,
Algorithms, and Applications

Hong Qin
Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-2424
Tel: (631)632-8450; Fax: (631)632-8334
gin@cs.stonybrook.edu
http://www.cs.stonybrook.edu/~gin

Department of Computer Science ST NY BR® K
Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Dis

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Cylinder

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Other Quadrics

paraboloid hyperboloid
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Parametric Surfaces
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Bilinear Patch

 Perhaps the easiest example iIs bilinear

Interpolation
Bi-lerp a (typically non-planar) quadrilateral

Notation: L(P1, Po,a) = (1 — o) P + abPs

Q(s,1) = L(L(Py, P, 1), L(FP3, Py, 1), 5)
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Bilinear Patch

» Smooth version of quadrilateral with
non-planar vertices... (four points are NOT on the same
plane)

— But will this help us model smooth surfaces?

— Do.we have control of-the derivative at-the edges?
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From Curve to Surface
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Parametric Representations

» Hermit curves and surfaces (S.A.Coons[63] and
J.C.Ferguson[64])

 Bezier curves and surfaces (P.Bezier[66] and
P.de Casteljau[59])

e B-Splines (W.J.Gordon and R.F.Riesenfeld 70s)
* NURBS (Versprille 75)

» Mathematical foundations (M.G.Cox[72], C.de
Boor[72], et al)
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| Parametric Representation

e Parametric curve functions

X=Xx(u),y=y(u),z=z(u)

e Parametric surface functions

X =Xx(u,v),y=y(u,v),z=1z(u,v)
e Plece-wise polynomial blending

/0= T pB-i)




Surfaces

* From curves to surfaces
» A simple curve example (Bezier)

c(u) = Zpi B; (u)

u<[0,1]
» Consider each control point now becoming a
Bezier curve
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Surfaces

» Then, we have s(u,v)=i(_§3:pi,jsj(v))5(u)=_§3:ipi,jBi(u)Bj(v)
o Matrix form

Poo

s(u,v) =[B,(u) B,(u) B,(u) B,(u)] Pio

P20
P30

=UMPM 'V’
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Surfaces

 Further generalize to degree of n and m along
two parametric directions

s(u,v) = Zn:ipi,j B (u)B"(v)

i=0 j=0

e Question: which control points are interpolated?
» How about B-spline surfaces???
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Tensor-Product: Basic Concepts

» Direct generalization from two vectors:

» Similarly, we can
define a surface as
the tensor product
of two CUurves....
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Tensor Product Surfaces

» Where are they from?
e Monomial form
e Bezier surface

s(u,v) = Zzpi,j B (u)B] (V)

« B-spline surface ECRURDIPNF=MOLMU

i=0 j=0

. General case s(u,v) =2 D Vi iR (U)G; (v)
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Tensor Product Surface

 Bezier Surface g——=———0,
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Bicubic Bezier Patch

« How do we define a tensor-product bicubic
Bezier surface?

Department of Computer Science ST NY BR K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



Bicubic Bezier Patches
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Modeling with Bicubic Bezier Patches

 Original teapot specified with Bezier patches




Modeling Difficulties

 Original teapot model:

» |ntersecting surfaces at spout & handle, no bottom, a
hole at the spout tip, a gap between lid & base
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NURBS Surface Examples
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Rectangular Surface
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| Adjacent Bezier Patches

 Continuity conditions across the common,
shared boundary




Rendering Curves and Surfaces

* One way of rendering a curve/surface Is to compute
Intersections with rays from the eye through each pixel.

— costly for real-time rendering

» Another approach is to evaluate the curve or surface at
enough points to approximate it with standard flat
objects (i.e. lines or polygons)

» Recursive subdivision technigues can also be used and
are very efficient - good for adaptive rendering.
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Surface Normal
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Normals

We can differentiate with respect to u and v to obtain the
normal at any point p

ox(u,v)/ou

PUN) _| oviuv)/ou
ou

oz(u,v)/ou

ox(u,v)/ov

apg:/,v) — | ay(u,v) /v

oz(u,v)/ov

op(u,v) oJp(u,v)

Nn= X

ou oV
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Normals to Surfaces
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Reqular Surface

» Generated from a set of control points.
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e Utah Teapot: ezier
Patches




'Utah Teapot: Polygon
Representation
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Displaying Bezier Patch

 Given 16 control points (Bicubic Bezier Patch)
and a tessellation resolutlon create a trlangle

= T=TE—
[ Openc ”FEE@ OpenGL Viewer "% BIETE] [ openGL Viewer ™
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'Rendering the Teapot
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Curve Network
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side Hole

Transfinite Method and N

Filling
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] Coons Patch

s(O,v),s(1,v)

s(u,0),s(u,l)
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Solid
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Parametric Solids

» Tricubic solid [N U,

i=0 j=0 k=0

u,v,we|[0,1]

p(u,v,w) = Zzzpijk B, (u)B; (v)B, (w)

o Bezier solid

4 B-Spline solid p(u’V’W)zzzzpijkBi,l(U)Bj,J(V)Bk,K(W)

« NURBS solid 2.2 2 P B (B, 5 (B (W)

P S S B B, B ()
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Free-Form Deformation
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] Free-form Deformation

» Any geometric objects can be embedded into a space

 The surrounding space Is represented by using
commonly-used, popular splines

 Free-form deformation of the surrounding space

 All the embedded (geometric) objects are deformed
accordingly, the quantitative measurement of
deformation Is obtained from the displacement vectors
of the trivariate splines that define the surrounding
space

» Essentially, the deformation is governed by the
trivariate, volumetric splines

 \ery popular in graphics and related fields
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Surrounding Space represented
by Parametric Solids

» Tricubic solid [N U,

i=0 j=0 k=0
u,v,we|[0,1]

o Bezier solid

p(u,v,w) = Zzzpijk B, (u)B; (v)B, (w)

4 B-Spline solid p(u’V’W)zzzzpijkBi,l(U)Bj,J(V)Bk,K(W)

« NURBS solid 2222 P B (W)B, ; (V) By i (W)

p(UVW)—m
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Free-form Deformations
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Procedural Modeling

» Being applied to
shape geometry

» For example, simple
extrusion

 Extrude: grow a 2D
shape In the third
dimension
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Sweeping Objects

» Define a polygon by its edges

« Sweep It along a path

» The path taken by the edges form a surface - the sweep
surface
» Special cases

— Translational sweeping — sweep along a straight line (extraction)
— Rotational sweeping — rotate profiling curves about an axis (surface of revolution)

wr A_.
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Surface of Revolution

X y
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W Surfaces of Revolution

» Geometric construction
— Specify a planar curve profile on y-z plane
— Rotate this profile with respect to z-axis

* Procedure-based model
 \What kinds of shape can we model?
e Review: three dimensional rotation w.r.t. z-axis

X' cos(@d) —sin(@) O x
y'l=|sin(@) cos(@d) O]y
Z' 0 0 11| z
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W Surfaces of Revolution

 Mathematics: surfaces of revolution

0
c(u) =| y(u)
z(u)

—y(u)sin(v)
s(u,v) [ y(u) cos(v) ]

z(u)
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| Sweeping

e Sweep a shape over a path to form a generalized
cylinder




Revolution

 Revolve a shape around an axis to create an
object with rotational symmetry
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| General Sweeping Objects

» The path maybe any curve

» The polygon that Is swept may be transformed as it Is
moved along the path

— Scale, rotate with respect to path orientation, ...

» One common way to specify Is:

— Give a poly-line (sequence of line segments) as the path
— Give a poly-line as the shape to sweep
— Give a transformation to apply at the vertex of each path segment

o Difficult to avold self-intersection
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| Sweeping Objects: Rendering

» Convert to polygons
— Break path into short segments
— Create a copy of the sweep polygon at each segment
— Join the corresponding vertices between the polygons
— May need things like end-caps on surfaces of revolution
and extrusions
» Normals come from sweep polygon and path
orientation

» Sweep polygon defines one texture parameter,
. sweep-path-defines.the-other
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Tori Example

Vector3 points[2] [8];

int start 1 = 0;

int end 1 = 1;

for ( int 1 =0 ; 1 < 8 ; 1++ )
points[start i][1] = TorusPoint (7,1);

for ( int j =0 ; 73 < 8 ; j++ ) {

glBegin (GL TRIANGLE STRIP);

for ( int 1 =0 ; 1 < 8 ; 1i++ ) |
glVertex3fv (points[start i][1];
points[end 1][1] = TorusPoint[J][1];
glVertex3fv (points[end 1][1];

}

glVertex3fv (points[start 1][0]);

glVertex3fv (points[end 1][0]);

glEnd() ;

int temp =

start i1; start 1 = end 1; end 1

}

temp;
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Ruled surfaces
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Ruled Surfaces

« Move one straight line along a curve, or join two
parametric curves by straight lines

» Example: plane, cone, cylinder

» Cylindrical surface BURIEEESEOEREIN)

» Surface eguation s(u,Vv) = (L—V)s(u,0) + vs(u,1)
s(u,v) =p(u) +vq(u)

o |soparametric lines
» Generalized
» Bending by
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Developable Surfaces

» Deform a surface to planar shape without
length/area changes

 Unroll a surface to a plane without
stretching/distorting

» Example: cone, cylinder
» Developable surfaces vs. Ruled surfaces
» More examples???
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evelopable Surface
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| Developable Surfaces

Planar quad strip (Meshes)

Department of Computer Science ST NYBR® K

Center for Visual Computing STATE UNIVERSITY OF NEW YORK



