Plane Equation

Given three points, they determine a plane

$$
\begin{aligned}
& \mathbf{p}_{a}=\left[\begin{array}{l}
x_{a} \\
y_{a} \\
z_{a}
\end{array}\right] \\
& \mathbf{p}_{b}=\left[\begin{array}{l}
x_{b} \\
y_{b} \\
z_{b}
\end{array}\right] \\
& \mathbf{p}_{c}=\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]
\end{aligned}
$$

where $\mathrm{p}_{a}, \mathrm{p}_{b}$, and p_{c} are not co-linear!
Normal of the plane

$$
\begin{gathered}
\mathbf{n}=\frac{\left(\mathbf{p}_{c}-\mathbf{p}_{a}\right) \times\left(\mathbf{p}_{b}-\mathbf{p}_{a}\right)}{\left|\left(\mathbf{p}_{c}-\mathbf{p}_{a}\right) \times\left(\mathbf{p}_{b}-\mathbf{p}_{a}\right)\right|} \\
\mathbf{n}=\left[\begin{array}{c}
A \\
B \\
C
\end{array}\right]
\end{gathered}
$$

Arbitrary point on the plane

$$
\mathbf{p}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Equation (implicit function)

$$
f(x, y, z)=0
$$

Plane equation derivation

$$
\begin{gathered}
\left(\mathbf{p}-\mathbf{p}_{a}\right) \star \mathbf{n}=0 \\
\left(x-x_{a}\right) A+\left(y-y_{a}\right) B+\left(z-z_{a}\right) C=0 \\
A x+B y+C z-\left(A x_{a}+B y_{a}+C z_{a}\right)=0 \\
A x+B y+C z+D=0
\end{gathered}
$$

where

$$
D=-\left(A x_{a}+B y_{a}+C z_{a}\right)
$$

Explicit expression (if C is non-zero)

$$
z=-\frac{1}{C}(A x+B y+D)
$$

This can be generalized to both x and y
Parametric representation

$$
\mathbf{p}(u, v)=\mathbf{p}_{a}+\left(\mathbf{p}_{b}-\mathbf{p}_{a}\right) u+\left(\mathbf{p}_{c}-\mathbf{p}_{a}\right) v
$$

Line-Plane intersection

$$
\begin{gathered}
\mathbf{l}(u)=\mathbf{p}_{0}+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u \\
(\mathbf{n}) \star\left(\mathbf{p}_{0}+\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) u\right)+d=0 \\
u=-\frac{\mathbf{n} \star \mathbf{p}_{0}}{\mathbf{n} \star \mathbf{p}_{1}-\mathbf{n} \star \mathbf{p}_{0}}=-\frac{\operatorname{plane}\left(\mathbf{p}_{0}\right)}{\operatorname{plane}\left(\mathbf{p}_{1}\right)-\operatorname{plane}\left(\mathbf{p}_{0}\right)}
\end{gathered}
$$

Parametric representation!

Plane and Intersection

Orthographic View Volume

View-volume plane equations

- left plane
- right plane
- bottom plane
- top plane
- front plane
- back plane

Assume all the normals point into the view volume

- $x-$ left $=0$
- $-x+$ right $=0$
- y - bottom $=0$
- $-\mathrm{y}+$ top $=0$
- z - near $=0$
- $z+$ far $=0$

Perspective View Volume

Again, six planes !

$$
\begin{aligned}
& x+(\text { left } * z) /(\text { near })=0 \\
& -x-(\text { right } * z) /(\text { near })=0 \\
& y+(\text { bottom } * z) /(\text { near })=0 \\
& -y-(\text { top } * z) /(\text { near })=0 \\
& -z-\text { near }=0 \\
& z+\text { far }=0
\end{aligned}
$$

3D Clipping

Make use of plane equations
Determine the sign of the plane equation
If plane $(\mathbf{p})>0$, then p is INSIDE!

Clipping operations

- point
- line
- polygon
- complicated objects

Clipping algorithms
View volume clipping
2D algorithms can be generalized to 3D

- Cohen-Sutherland line-clipping
- Sutherland-Hodgeman algorithm

View Volume Projection

View Volume Projection

