
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Fundamentals of Procedural

Modeling

CSE328 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Modeling

CSE328 Lectures

• The subject of rendering covers techniques for
generating images of complex models, but says little
about the creation of those models

• Within computer graphics, the subject of modeling is as
complex as the subject of rendering

• The demands of modern computer graphics call for the
use of extremely complex models containing millions or
billions of primitives

• Examples include scenes in modern special effects
movies, or industrial models of buildings and vehicles

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Model Creation

CSE328 Lectures

Models are typically built using one or more of the
following methods

• Interactive modeling
– Model is constructed by a human using a software modeling tool

• Procedural modeling
– Model constructed by automatic procedure that may make use of

randomness for variety

• Scanning
– Model geometry is scanned from a real world example using a laser

scanner or similar device

• Computer vision
– Model geometry & material information is scanned from real world

example using multiple photographic camera angles (or video sequences)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Model Create / Delete

CSE328 Lectures

• The most basic operations are:

Vertex *CreateVertex();

void DeleteVertex(int v);

Triangle *CreateTriangle();

void DeleteTriangle(int t);

• Just about all higher-level modeling functions can be broken down into
these basic operations

• All higher-level functions go through these interfaces to create and
remove data

• These functions need to be fast and reliable

• The ‘delete’ operations can be done in different ways and are not as
simple as they might first look…

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Shape Primitives

CSE328 Lectures

• Many real world objects contain basic shapes
like spheres, boxes, cylinders, cones, etc.

• Sometimes, complex models can be built entirely
from these simple shapes

• Modeling tools should have functions for
creating a variety of primitive shapes like these

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Copy

CSE328 Lectures

• One of the most basic modeling tools is the simple copy
operation

• Models can be built up from multiple copies of simpler
shapes

• A copy operation would probably take a source and
destination object as well as a matrix as input

• It would add new vertices and triangles to the
destination object by transforming the vertices of the
source object by the matrix

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Duplicate

CSE328 Lectures

• The dupe or duplicate operation is a more complex variation
on copy

• There are several variations on dupe operations and there
really isn’t any standard on this stuff

• A common dupe operation might take a source object as
well as a group of points as input and generate a copy of the
source object at every point

• More complex dupe operations might take several source
objects as input and choose a random one to place at the
point and might apply additional randomness such as a
random rotation or slight variation in the scale

• This can be used to do things such as placing a bunch of
trees along the side of a road, for example

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Extrude / Lathe

CSE328 Lectures

• Many useful shapes can be constructed by extruding or
lathing a line (or curve)

• The extrude operation generates a surface by connecting
copies of the line that have been placed in a straight line

• The lathe operation works in a similar way, except the
copies are rotated around a circle

Extrude Lathe

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Modeling

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Path Extrude

CSE328 Lectures

• A powerful variation on extrusion is the path extrude operation

• With this one, we have one or more lines (or curves) that make
up a cross section and a second line (or curve) that makes up the
path

• The path extrusion connects several copies of the cross section
along the path that orient to the path as it turns

• This can be used to make a tree trunk, or a freeway overpass (or
tunnel), for example

• The cross section could also vary along the path to allow for
additional control

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Lofting

CSE328 Lectures

• There are also a variety of lofting tools that

can be used to create surfaces out of a set

of input lines (or curves)

• For example, various lofting tools can be

used to model shapes like boat hulls,

airplane wings, and car bodies

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Boolean

CSE328 Lectures

• Boolean operations can be used to compute

unions, intersections, and subtractions with

complex 3D shapes

• Many industrial models are build from Boolean

operations

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Basic Modeling Operations

CSE328 Lectures

• The modeling operations we have discussed so
far make up some of the most common functions
found in interactive modeling tools

• They are also the foundation of more automated
procedural modeling tools

• These operations have been used for many years
and continue to be useful

• One reason for their popularity is that they
directly relate to the way that many objects are
designed and built in the real world

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

“Implicit” vs. “Explicit” Procedural
Models
• Explicit approach:

– Directly generate the points that make up an

object

– Good for Z-buffer/OpenGL style rendering

• Implicit approach:

– Answer questions about particular points

– Isocurve (2D) or Isosurface (3D)

– Good for ray-tracing/ray-casting

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Simple Explicit Procedural Model

• Begin with a regular mesh

• Perturb vertex geometry procedurally

(typically pseudo-randomly)

• Iterate this process until desired shape is

achieved

• Very general technique that can also be

used to add irregularity (“noise”) to arbitrary

mesh objects

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Randomness

CSE328 Lectures

• Procedural models often make use of some form of randomness

• A simple random number generator is usually sufficient for many
operations

• As computers can not usually generate true random numbers, they
typically make use of pseudorandom number generation algorithms

• A pseudorandom number generator outputs a sequence of
(apparently) random numbers based on some initial seed value

• In this sense, the sequence is repeatable, as one can always reset the
sequence

• For example, if a procedural model like a tree is built from by
making use of several random numbers (maybe hundreds), then the
entire tree can be rebuilt by just resetting the seed to its initial value

• If the seed is set to a different value, a different sequence of
numbers will be generated, resulting in a slightly different tree

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Noise

CSE328 Lectures

• Another form of randomness which is sometimes useful for procedural
modeling is noise

• Noise represents a distribution of randomness over some space (usually 2D or
3D)

• Noise is not entirely random, as two points nearby will have a similar value

• In this way, noise has a frequency associated with it

• By combining noise patterns of different frequencies, one can make more
complex turbulence patterns

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Fractals

CSE328 Lectures

• A fractal is a geometric object that is self-similar when

viewed at different scales

• For example, the shape of a coastline may appear as a

jagged line when we view a map of Long Island. As we

zoom in closer and closer, we see that there is more and

more detail at finer scales. We always see a jagged line

no matter how close we look at the coastline

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Fractals

CSE328 Lectures

• Fractals can be regular repeated patterns, or can be
irregular and incorporate randomness as well

• Random fractals are useful for creating a wide variety
of natural shapes such as mountain landscapes

• Even trees can be thought of as a fractal, as the
branching patterns are similar when one looks at the
main trunk down to the finest branches

• For procedural modeling, we may borrow some fractal
concepts, but we rarely deal with true mathematical
fractals with infinite detail

• We usually think of fractals as techniques for generating
randomness in some limited range of scales

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Fractals

CSE328 Lectures

• Consider a simple line fractal

• We start with a single line segment and then split it in the middle,

randomizing the height of the midpoint by some number in the [-r,r]

range

• We then split each of the new line segments at the middle and

randomize them by [-r/2,r/2]

• This process is repeated some desired number of steps, randomizing by

half as much each step

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Fractals

CSE328 Lectures

• A similar process can be applied to squares in the xy plane

• At each step, an xy square is subdivided into 4 squares, and the z

component of each new point is randomized

• By repeating this process recursively, we can generate a

mountain landscape

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Height Fields

CSE328 Lectures

• Landscapes are often constructed as height fields

• In a height field, we assume a regular grid in the ground plane
(for us, that is the xy plane)

• At each grid point, we store a height (z) value

• In this way, a large terrain can be stored in memory without
explicitly storing the x & y coordinates of the vertices or the
triangle connection information

• The terrain can be shaped by operations that modify the z
coordinates

• In a lot of ways, shaping the terrain is like rendering an image,
where the heights of the cells in the height fields can be
compared to the pixel colors in an image

• Similar tools can be used to shape the height field to the tools
used in rendering, such as the use of triangles or noise patterns

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Midpoint Displacement For Terrain

• Seed corners with values

• Perturb midpoint randomly from mean

• Recursion using a smaller window

• In 2D, best to use “diamond-square”

recursion (to prevent axis-aligned artifacts)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

One Example: Natural Terrain
Modeling

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Fractal Noise Terrain
• Use fractal noise to

generate terrain

• Can be made tile-able
over unit square:

Ftileable(x,y) = [

F(x,y) * (1-x) * (1-y) +

F(x-1,y) * x * (1-y) +

F(x-1,y-1) * x * y +

F(x,y-1) * (1-x) * y]

F.K. Musgrave

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Adding Water

• Use an elevation threshold (z < zwater)

F.K. Musgrave

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Terrain Example

F.K. Musgrave

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Terrain Example

F.K. Musgrave

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Terrain Example

F.K. Musgrave

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Terrain Example

F.K. Musgrave

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Height Fields

CSE328 Lectures

• The height field itself is an efficient data
structure for storing the shape of the terrain, but
it still must be converted to triangles to render

• We could simply generate a grid of triangles

• However, if we use a grid, we will end up with
too many triangles in flat regions and too high of
a triangle density off in the distance

• It would be better to perform some sort of
adaptive tessellation of the height field, much
like the tessellations used in patch rendering and
displacement mapping

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Quadtree Tessellation

CSE328 Lectures

• One way to triangulate height fields adaptively is through the use
of a quadtree

• The quadtree is a 2D data structure that is usually based on
rectangles or squares

• It works in a very similar way as the fractal subdivision we just
covered, except it can be used for triangulating height fields (or
Bezier patches…)

• We start with single square around our whole terrain

• We perform some sort of analysis on the square and determine if
it contains more detail than is adequately represented by a square

• If the detail is insufficient, the square is split into four smaller
squares, which are recursively tested

• Ultimately, squares are then split into two triangles

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Landscape

CSE328 Lectures

• By combining a variety of tools such as fractals, noise patterns,
triangle rasterization, and others, one can build up a set of tools
for modeling natural terrains (and man made modifications to
terrain)

• One can also run simulations of erosion to achieve additional
realism

• One can also use real world data of the Earth to model specific
regions

• Geographic data exists in many formats, but one of the more
useful ones is the DEM or digital elevation map, which is
essentially a height field for a rectangular region of the Earth’s
surface

• The USGS has DEM files for the entire continental US at 10
meter resolution, and for the entire world at 30 meter resolution,
available for free downloading!

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Fractals
• Mandelbrot set

–

– The boundary of the convergence region in the
complex plane is fractal

– To speed up, we use different color values according
to the number of iterations executed by the loop.

– Could zoom in/out of any particular regions

...3,2,1 0
2

1

0





 kzzz

zz

kk

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Modeling

L-Systems

Procedural Terrain

Procedural Behavior

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

L-Systems (Background)

• Developed by Aristid Lindenmayer to model the

development of plants

• Based on grammars

– based on parallel string-rewriting rules

• Excellent for modeling organic objects (plants)

and fractals

• Recent applications

– Cities, feathers, etc.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

L-Systems (Basic Example)
• Turtle Commands:

– Fx: move forward one step, drawing a line

– fx: move forward one step, without drawing a

line

– +x: turn left by angle ∂

– -x: turn right by angle ∂

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Turtle Commands

• Fx: move forward one step, drawing a line

• fx: move forward one step, without drawing a

line

• +x: turn left by angle ∂

• -x: turn right by angle ∂

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

L-Systems (Koch Snowflake)
• Axiom: F-F-F-F ∂:90 degrees

• FF-F+F+FF-F-F+F

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

L-Systems Example: Koch
Snowflake

• Axiom: F-F-F-F ∂ :90 degrees

• F -> F-F+F+FF-F-F+F

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

L-Systems (Dragon Curve)
• Axiom:Fl ∂:90 degrees n:10 iterations

• FlFl+Fr+

• FrFl-Fr-

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

L-Systems Grammar (Concepts)
• Begin with a set of “productions” (replacement rules)

and a “seed” axiom

• In parallel, all matching productions are replaced with
their right-hand sides

• Example:
– Rules:

• B -> ACA

• A -> B

– Axiom: AA

– Sequence: AA, BB, ACAACA, BCBBCB, etc.

• Strings are converted to graphics representations via
interpretation as turtle graphics commands

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Plants

• Complex systems

• Often, have a well defined structure

– Trunk

– Big branches

– Little branches

– Leaves

• High degree of “recursiveness”

– Grammars/compilers are good with this.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Grammar-based Models
• Generate description of geometric model by applying

production rules

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Grammar-based Models

• Useful for modeling plants

F  F[RF]F[LF]F,

where F: forward

R: turn right

L: turn left.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Grammar-based models

• Apply the rule randomly to occurrences of F.

F  F*[RF]F*[LF]F*.

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Grammar-based Model: L-systems

• Grammar-based fractal-like models

• Describe an object by a string of symbols and provide a set of

production rules

• Incorporate notions such as branching, pruning, …

• Can also vary objects by randomly applying rules

• Demo:
http://www.cpsc.ucalgary.ca/Redirect/bmv/java/LSystems/LSys.html

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Grammar-based Models

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

L-Systems Grammar: Extensions
• Basic L-Systems have inspired a large number of

variations

• Context sensitive: productions look at
neighboring symbols

• Bracketed: save/restore state (for branches)

• Stochastic: choose one of n matching
productions randomly

• Parametric: variables can be passed between
productions

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

L-Systems For Plants

• L-Systems can capture a large array of plant species

• Designing rules for a specific species can be challenging

P. Prusiniewicz

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

PovTree

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

SpeedTree

• Fast procedural foliage is important

for real-time applications

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Trees

CSE328 Lectures

• Trees are a classic example of complex natural objects that
can be procedurally modeled

• There have been numerous research papers published on
various aspects of botanical modeling

• One recent paper focused on creating the detailed sub-
millimeter scale vein patterns seen on leaf surfaces

• By varying a number of key parameters, one can model a
wide variety of plants and trees to any level of detail desired

• Even with about 10 parameters, one can model a wide
variety of overall plant shapes, but real plant modeling
systems may allow hundreds of parameters as well as the
inclusion of custom geometric data to define leaf shapes or
branch cross sections…

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Terrain: Perlin Noise

• Noise Functions

– Seeded pseudo-random number generator

– Over Rn

– Approximation to Gaussian filtered noise

– Implemented as a pseudo-random spline

– The trick is to make it fast

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Perlin Noises in 1-D

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Perlin Noises in 2-D

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Hypertexture

• Implicit procedural model

• Treat the isosurface of a function as

the boundary of an object

• Above: fractal egg

Photo: K. Perlin

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Hypertexture Example

K. Perlin

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Hypertexture Example

K. Perlin

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Architexture

• Sweep the path

of a line

drawing with a

sphere

• Apply

hypertexture to

resulting shape

K. Perlin

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Roads

CSE328 Lectures

• Roads can be modeled as cross sections that get path extruded
along some curve

• The cross section can include lanes, curbs, sidewalks, and center
islands

• Intersections require special handling, but can still be generated
using a set of procedural techniques

• As with using DEMs for creating height fields, it is possible to
find road map data online that contains maps of many key
metropolitan areas. Often, the road map data is defined as a graph
of connected lines with additional information for each line
segment such as the number of lanes and the address range

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Roads

CSE328 Lectures

• Roads can be placed on height fields by placing the
control points of the road curves on the height field

• This will still require some local flattening for the road
and the area to the side of the road

• This can be achieved by essentially rendering road
triangles onto the height field, where a low detail road is
extruded and ‘rendered’ into the cells of the height field
to set their heights. Sides of roads can be blended using
techniques similar to alpha blending

• These operations can be used to modify the existing
shape the height field in a very similar way to how real
roads are constructed

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Roads

CSE328 Lectures

• Ideally, the road surface would be an extrusion and the open

terrain would be a height field

• They can be sewn together into a single triangle mesh in a similar

way to how trim curves are used in patch tessellation

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Buildings and Cities

CSE328 Lectures

• Buildings and other man-made structures can also be procedurally
modeled

• In addition to the overall shapes of buildings, there have been papers
for details such as exact brick placement including a variety of patterns

• There have also been research papers on automatically generating city
road map layouts based on terrain height fields

• From the road maps, city blocks are then subdivided into lots, which
have procedural buildings placed on them

• Details like street lights, trees, etc. can be placed along the roads

• In this way, entire cities can be build automatically

• Cities (and other complex models) can either be generated completely
randomly, or as a mix of random and non-random processes

• Additional data exists for cities that describe locations and overall
outlines of buildings, placement of power & telephone lines, train
tracks, and other data

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

L-Systems for Cities [Parish01]

• Start with a single street

• Branch & extend w/ parametric L-System

• Parameters of the string are tweaked by

goals/constraints

• Goals control street direction, spacing

• Constraints allow for parks, bridges, road loops

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

L-Systems for Cities (2)

• Once we have streets, we can form buildings

with another L-System

• Building shapes are represented as CSG

operations on simple shapes

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Proper Placement

CSE328 Lectures

• There have been various research papers that have addressed the
issue of prop placement as a procedural modeling tool

• To place plants, for example, we do not just want to randomly
scatter them around

• Models have been designed that take the shape of the terrain
into consideration and determine plant locations based on
properties such as wetness, light exposure, and other geographic
properties

• In addition, simulations can be run that model the changes in the
ecosystem over time and allow for different plant groups to
spread about the terrain

• Man-made objects can also be automatically placed in terrains.
Objects such as street lights, traffic lights, houses, street signs,
and more can be placed automatically in a city based on the
basic road map and terrain layouts

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Using Noise in 3-D to Animate 2-D
Flows

• Treating time as another spatial dimension

• Examples

– Corona [K. Perlin]

• http://www.noisemachine.com/talk1/imgs/flame500.html

– Clouds [K. Perlin]

• http://www.noisemachine.com/talk1/imgs/clouds500.html

http://www.noisemachine.com/talk1/imgs/flame500.html
http://www.noisemachine.com/talk1/imgs/clouds500.html

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Animation

• Fluid simulation

• Particle systems

• Flocking/crowd simulations

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Flocking (Boids)
• Simulate the movement of a flock of birds in 3-space

• Separation: move to avoid crowding local neighbors

• Alignment: steer towards average heading of neighbors

• Cohesion: steer towards average position of neighbors

• Limited senses: only neighbors in forward-facing arc are
observable

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Hair [Chang02]
• Generate a model with a few hundred guide

hairs

• Each hair is a rigid chain w/ revolute joints

• Use breakable springs between nearby hairs

to simulate hairstyles

• Create triangle strips between adjacent hairs

to simulate collisions

• Interpolate between guide hairs to produce

many other hairs

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Hair (Examples)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Flow-Based Video Synthesis
And Editing [Bhat04]
• Allows animator to easily create loops and

variants of flowing natural phenomena (water,

smoke, etc)

• Artist draws a set of flow lines on the original

image

• Algorithm computes textures for a particle

system that uses these flow lines

• Sequence of textures is transformed to

prevent linear discontinuities

• Artist can then draw additional flow lines to

create new variants

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Planets

E. DeGuili

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Procedural Planets

R. Fry

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Planets

Y. Dinda

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Planets

F.K. Musgrave

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Games: Spore

• Multiple sub-games of creature/civilization gameplay

• Editors for creatures, buildings, vehicles

• Procedural behavior, animation, and texturing (driven by

player-created models)

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Modeling

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Procedural Modeling: Summary

• Procedural techniques are very powerful

• Use with care

– Physical validation is rare

• For some objects, procedure is the answer

– Plants

• Can complement physics-based methods

– Adding high frequency details

• General recommendation: add noise to your
models to make them more “natural”

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Cellular Automata
• Simple example - game of life

• The rules:

– Binary state on a 2D grid: cell / no cell

– If too few or too many cells surround a cell, it dies

– If two cells surround empty space, a cell is born

• Very simple rules produce complex behavior

– Stable patterns

– Moving stable patterns

– Oscillations

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Complex Cellular Automata
• Can have more than one cell system interacting

• Rules can be arbitrary

– Model the needed behavior

• The result is (usually) a distribution of some property

– Binary result, need extra step

• The art is in creating the rules

– Take from differential equations

– Take from general intuition

• Too many cell -> overcrowding -> dies

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Lattice Boltzman Machine

• Extension of cellular automata

• Can simulate more natural phenomena besides

clouds

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Other Range Scanning Tool

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

