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• The subject of rendering covers techniques for 
generating images of complex models, but says little 
about the creation of those models

• Within computer graphics, the subject of modeling is as 
complex as the subject of rendering

• The demands of modern computer graphics call for the 
use of extremely complex models containing millions or 
billions of primitives

• Examples include scenes in modern special effects 
movies, or industrial models of buildings and vehicles
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Models are typically built using one or more of the 
following methods

• Interactive modeling
– Model is constructed by a human using a software modeling tool

• Procedural modeling
– Model constructed by automatic procedure that may make use of 

randomness for variety

• Scanning
– Model geometry is scanned from a real world example using a laser 

scanner or similar device

• Computer vision
– Model geometry & material information is scanned from real world 

example using multiple photographic camera angles (or video sequences)
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• The most basic operations are:

Vertex *CreateVertex();

void DeleteVertex(int v);

Triangle *CreateTriangle();

void DeleteTriangle(int t);

• Just about all higher-level modeling functions can be broken down into 
these basic operations

• All higher-level functions go through these interfaces to create and 
remove data

• These functions need to be fast and reliable

• The ‘delete’ operations can be done in different ways and are not as 
simple as they might first look…
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• Many real world objects contain basic shapes 
like spheres, boxes, cylinders, cones, etc.

• Sometimes, complex models can be built entirely 
from these simple shapes

• Modeling tools should have functions for 
creating a variety of primitive shapes like these
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• One of the most basic modeling tools is the simple copy 
operation

• Models can be built up from multiple copies of simpler 
shapes

• A copy operation would probably take a source and 
destination object as well as a matrix as input

• It would add new vertices and triangles to the 
destination object by transforming the vertices of the 
source object by the matrix
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• The dupe or duplicate operation is a more complex variation 
on copy

• There are several variations on dupe operations and there 
really isn’t any standard on this stuff

• A common dupe operation might take a source object as 
well as a group of points as input and generate a copy of the 
source object at every point

• More complex dupe operations might take several source 
objects as input and choose a random one to place at the 
point and might apply additional randomness such as a 
random rotation or slight variation in the scale

• This can be used to do things such as placing a bunch of 
trees along the side of a road, for example
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• Many useful shapes can be constructed by extruding or 
lathing a line (or curve)

• The extrude operation generates a surface by connecting 
copies of the line that have been placed in a straight line

• The lathe operation works in a similar way, except the 
copies are rotated around a circle

Extrude Lathe
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• A powerful variation on extrusion is the path extrude operation

• With this one, we have one or more lines (or curves) that make 
up a cross section and a second line (or curve) that makes up the 
path

• The path extrusion connects several copies of the cross section 
along the path that orient to the path as it turns

• This can be used to make a tree trunk, or a freeway overpass (or 
tunnel), for example

• The cross section could also vary along the path to allow for 
additional control
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• There are also a variety of lofting tools that 

can be used to create surfaces out of a set 

of input lines (or curves)

• For example, various lofting tools can be 

used to model shapes like boat hulls, 

airplane wings, and car bodies
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• Boolean operations can be used to compute 

unions, intersections, and subtractions with 

complex 3D shapes

• Many industrial models are build from Boolean 

operations
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• The modeling operations we have discussed so 
far make up some of the most common functions 
found in interactive modeling tools

• They are also the foundation of more automated 
procedural modeling tools

• These operations have been used for many years 
and continue to be useful

• One reason for their popularity is that they 
directly relate to the way that many objects are 
designed and built in the real world
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“Implicit” vs. “Explicit” Procedural 
Models
• Explicit approach:

– Directly generate the points that make up an 

object

– Good for Z-buffer/OpenGL style rendering

• Implicit approach:

– Answer questions about particular points

– Isocurve (2D) or Isosurface (3D)

– Good for ray-tracing/ray-casting
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Simple Explicit Procedural Model

• Begin with a regular mesh

• Perturb vertex geometry procedurally 

(typically pseudo-randomly)

• Iterate this process until desired shape is 

achieved

• Very general technique that can also be 

used to add irregularity (“noise”) to arbitrary 

mesh objects
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• Procedural models often make use of some form of randomness

• A simple random number generator is usually sufficient for many 
operations

• As computers can not usually generate true random numbers, they 
typically make use of pseudorandom number generation algorithms

• A pseudorandom number generator outputs a sequence of 
(apparently) random numbers based on some initial seed value

• In this sense, the sequence is repeatable, as one can always reset the 
sequence

• For example, if a procedural model like a tree is built from by 
making use of several random numbers (maybe hundreds), then the 
entire tree can be rebuilt by just resetting the seed to its initial value

• If the seed is set to a different value, a different sequence of 
numbers will be generated, resulting in a slightly different tree
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• Another form of randomness which is sometimes useful for procedural 
modeling is noise

• Noise represents a distribution of randomness over some space (usually 2D or 
3D)

• Noise is not entirely random, as two points nearby will have a similar value

• In this way, noise has a frequency associated with it

• By combining noise patterns of different frequencies, one can make more 
complex turbulence patterns
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• A fractal is a geometric object that is self-similar when 

viewed at different scales

• For example, the shape of a coastline may appear as a 

jagged line when we view a map of Long Island. As we 

zoom in closer and closer, we see that there is more and 

more detail at finer scales. We always see a jagged line 

no matter how close we look at the coastline
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• Fractals can be regular repeated patterns, or can be 
irregular and incorporate randomness as well

• Random fractals are useful for creating a wide variety 
of natural shapes such as mountain landscapes

• Even trees can be thought of as a fractal, as the 
branching patterns are similar when one looks at the 
main trunk down to the finest branches

• For procedural modeling, we may borrow some fractal 
concepts, but we rarely deal with true mathematical 
fractals with infinite detail

• We usually think of fractals as techniques for generating 
randomness in some limited range of scales
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• Consider a simple line fractal

• We start with a single line segment and then split it in the middle, 

randomizing the height of the midpoint by some number in the [-r,r] 

range

• We then split each of the new line segments at the middle and 

randomize them by [-r/2,r/2]

• This process is repeated some desired number of steps, randomizing by 

half as much each step
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• A similar process can be applied to squares in the xy plane

• At each step, an xy square is subdivided into 4 squares, and the z 

component of each new point is randomized

• By repeating this process recursively, we can generate a 

mountain landscape
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• Landscapes are often constructed as height fields

• In a height field, we assume a regular grid in the ground plane 
(for us, that is the xy plane)

• At each grid point, we store a height (z) value

• In this way, a large terrain can be stored in memory without 
explicitly storing the x & y coordinates of the vertices or the 
triangle connection information

• The terrain can be shaped by operations that modify the z 
coordinates

• In a lot of ways, shaping the terrain is like rendering an image, 
where the heights of the cells in the height fields can be 
compared to the pixel colors in an image

• Similar tools can be used to shape the height field to the tools 
used in rendering, such as the use of triangles or noise patterns
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Midpoint Displacement For Terrain

• Seed corners with values

• Perturb midpoint randomly from mean

• Recursion using a smaller window

• In 2D, best to use “diamond-square” 

recursion (to prevent axis-aligned artifacts) 
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One Example: Natural Terrain 
Modeling
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Fractal Noise Terrain
• Use fractal noise to 

generate terrain

• Can be made tile-able 
over unit square:

Ftileable(x,y) = [

F(x,y) * (1-x) * (1-y) +

F(x-1,y) * x * (1-y) + 

F(x-1,y-1) * x * y + 

F(x,y-1) * (1-x) * y]

F.K. Musgrave
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Adding Water

• Use an elevation threshold (z < zwater)

F.K. Musgrave
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Terrain Example

F.K. Musgrave
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Terrain Example

F.K. Musgrave
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Terrain Example

F.K. Musgrave
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Terrain Example

F.K. Musgrave
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• The height field itself is an efficient data 
structure for storing the shape of the terrain, but 
it still must be converted to triangles to render

• We could simply generate a grid of triangles

• However, if we use a grid, we will end up with 
too many triangles in flat regions and too high of 
a triangle density off in the distance

• It would be better to perform some sort of 
adaptive tessellation of the height field, much 
like the tessellations used in patch rendering and 
displacement mapping
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• One way to triangulate height fields adaptively is through the use 
of a quadtree

• The quadtree is a 2D data structure that is usually based on 
rectangles or squares

• It works in a very similar way as the fractal subdivision we just 
covered, except it can be used for triangulating height fields (or 
Bezier patches…)

• We start with single square around our whole terrain

• We perform some sort of analysis on the square and determine if 
it contains more detail than is adequately represented by a square

• If the detail is insufficient, the square is split into four smaller 
squares, which are recursively tested

• Ultimately, squares are then split into two triangles
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• By combining a variety of tools such as fractals, noise patterns, 
triangle rasterization, and others, one can build up a set of tools 
for modeling natural terrains (and man made modifications to 
terrain)

• One can also run simulations of erosion to achieve additional 
realism

• One can also use real world data of the Earth to model specific 
regions

• Geographic data exists in many formats, but one of the more 
useful ones is the DEM or digital elevation map, which is 
essentially a height field for a rectangular region of the Earth’s 
surface

• The USGS has DEM files for the entire continental US at 10 
meter resolution, and for the entire world at 30 meter resolution, 
available for free downloading!



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Fractals
• Mandelbrot set

–

– The boundary of the convergence region in the 
complex plane is fractal

– To speed up, we use different color values according 
to the number of iterations executed by the loop.

– Could zoom in/out of any particular regions
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Procedural Modeling

L-Systems

Procedural Terrain

Procedural Behavior
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L-Systems (Background)

• Developed by Aristid Lindenmayer to model the 

development of plants

• Based on grammars 

– based on parallel string-rewriting rules

• Excellent for modeling organic objects (plants) 

and fractals

• Recent applications

– Cities, feathers, etc. 
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L-Systems (Basic Example)
• Turtle Commands:

– Fx: move forward one step, drawing a line

– fx: move forward one step, without drawing a 

line

– +x: turn left by angle ∂

– -x: turn right by angle ∂
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Turtle Commands

• Fx: move forward one step, drawing a line

• fx: move forward one step, without drawing a 

line

• +x: turn left by angle ∂

• -x: turn right by angle ∂
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L-Systems (Koch Snowflake)
• Axiom: F-F-F-F   ∂:90 degrees

• FF-F+F+FF-F-F+F
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L-Systems Example: Koch 
Snowflake

• Axiom: F-F-F-F ∂ :90 degrees

• F -> F-F+F+FF-F-F+F
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L-Systems (Dragon Curve)
• Axiom:Fl ∂:90 degrees    n:10 iterations

• FlFl+Fr+

• FrFl-Fr-
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L-Systems Grammar (Concepts)
• Begin with a set of “productions” (replacement rules) 

and a “seed” axiom

• In parallel, all matching productions are replaced with 
their right-hand sides

• Example:
– Rules:

• B -> ACA

• A -> B

– Axiom: AA

– Sequence: AA, BB, ACAACA, BCBBCB, etc.

• Strings are converted to graphics representations via 
interpretation as turtle graphics commands



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Plants 

• Complex systems

• Often, have a well defined structure

– Trunk

– Big branches

– Little branches

– Leaves

• High degree of “recursiveness”

– Grammars/compilers are good with this.
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Grammar-based Models
• Generate description of geometric model by applying

production rules
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Grammar-based Models

• Useful for modeling plants

F  F[RF]F[LF]F, 

where F: forward

R: turn right

L: turn left.
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Grammar-based models

• Apply the rule randomly to occurrences of F.

F  F*[RF]F*[LF]F*.
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Grammar-based Model: L-systems

• Grammar-based fractal-like models

• Describe an object by a string of symbols and provide a set of 

production rules

• Incorporate notions such as branching, pruning, …

• Can also vary objects by randomly applying rules

• Demo:
http://www.cpsc.ucalgary.ca/Redirect/bmv/java/LSystems/LSys.html
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Grammar-based Models
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L-Systems Grammar: Extensions
• Basic L-Systems have inspired a large number of 

variations

• Context sensitive: productions look at 
neighboring symbols

• Bracketed: save/restore state (for branches)

• Stochastic: choose one of n matching 
productions randomly

• Parametric: variables can be passed between 
productions
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L-Systems For Plants

• L-Systems can capture a large array of plant species

• Designing rules for a specific species can be challenging

P. Prusiniewicz
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PovTree
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SpeedTree

• Fast procedural foliage is important 

for real-time applications
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• Trees are a classic example of complex natural objects that 
can be procedurally modeled

• There have been numerous research papers published on 
various aspects of botanical modeling

• One recent paper focused on creating the detailed sub-
millimeter scale vein patterns seen on leaf surfaces

• By varying a number of key parameters, one can model a 
wide variety of plants and trees to any level of detail desired

• Even with about 10 parameters, one can model a wide 
variety of overall plant shapes, but real plant modeling 
systems may allow hundreds of parameters as well as the 
inclusion of custom geometric data to define leaf shapes or 
branch cross sections…
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Procedural Terrain: Perlin Noise

• Noise Functions

– Seeded pseudo-random number generator

– Over Rn

– Approximation to Gaussian filtered noise 

– Implemented as a pseudo-random spline 

– The trick is to make it fast 
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Perlin Noises in 1-D
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Hypertexture

• Implicit procedural model

• Treat the isosurface of a function as 

the boundary of an object

• Above: fractal egg

Photo: K. Perlin
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Hypertexture Example

K. Perlin
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Hypertexture Example

K. Perlin
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Architexture

• Sweep the path 

of a line 

drawing with a 

sphere

• Apply 

hypertexture to 

resulting shape

K. Perlin
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Roads
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• Roads can be modeled as cross sections that get path extruded 
along some curve

• The cross section can include lanes, curbs, sidewalks, and center 
islands

• Intersections require special handling, but can still be generated 
using a set of procedural techniques

• As with using DEMs for creating height fields, it is possible to 
find road map data online that contains maps of many key 
metropolitan areas. Often, the road map data is defined as a graph 
of connected lines with additional information for each line 
segment such as the number of lanes and the address range
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• Roads can be placed on height fields by placing the 
control points of the road curves on the height field

• This will still require some local flattening for the road 
and the area to the side of the road

• This can be achieved by essentially rendering road 
triangles onto the height field, where a low detail road is 
extruded and ‘rendered’ into the cells of the height field 
to set their heights. Sides of roads can be blended using 
techniques similar to alpha blending

• These operations can be used to modify the existing 
shape the height field in a very similar way to how real 
roads are constructed
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• Ideally, the road surface would be an extrusion and the open 

terrain would be a height field

• They can be sewn together into a single triangle mesh in a similar 

way to how trim curves are used in patch tessellation
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Buildings and Cities
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• Buildings and other man-made structures can also be procedurally 
modeled

• In addition to the overall shapes of buildings, there have been papers 
for details such as exact brick placement including a variety of patterns

• There have also been research papers on automatically generating city 
road map layouts based on terrain height fields

• From the road maps, city blocks are then subdivided into lots, which 
have procedural buildings placed on them

• Details like street lights, trees, etc. can be placed along the roads

• In this way, entire cities can be build automatically

• Cities (and other complex models) can either be generated completely 
randomly, or as a mix of random and non-random processes

• Additional data exists for cities that describe locations and overall 
outlines of buildings, placement of power & telephone lines, train 
tracks, and other data
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L-Systems for Cities [Parish01]

• Start with a single street

• Branch & extend w/ parametric L-System

• Parameters of the string are tweaked by 

goals/constraints

• Goals control street direction, spacing

• Constraints allow for parks, bridges, road loops
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L-Systems for Cities (2)

• Once we have streets, we can form buildings 

with another L-System

• Building shapes are represented as CSG 

operations on simple shapes
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Proper Placement
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• There have been various research papers that have addressed the 
issue of prop placement as a procedural modeling tool

• To place plants, for example, we do not just want to randomly 
scatter them around

• Models have been designed that take the shape of the terrain 
into consideration and determine plant locations based on 
properties such as wetness, light exposure, and other geographic 
properties

• In addition, simulations can be run that model the changes in the 
ecosystem over time and allow for different plant groups to 
spread about the terrain

• Man-made objects can also be automatically placed in terrains. 
Objects such as street lights, traffic lights, houses, street signs, 
and more can be placed automatically in a city based on the 
basic road map and terrain layouts
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Using Noise in 3-D to Animate 2-D 
Flows

• Treating time as another spatial dimension

• Examples

– Corona [K. Perlin]

• http://www.noisemachine.com/talk1/imgs/flame500.html

– Clouds [K. Perlin]

• http://www.noisemachine.com/talk1/imgs/clouds500.html

http://www.noisemachine.com/talk1/imgs/flame500.html
http://www.noisemachine.com/talk1/imgs/clouds500.html
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Procedural Animation

• Fluid simulation

• Particle systems

• Flocking/crowd simulations
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Procedural Flocking (Boids)
• Simulate the movement of a flock of birds in 3-space

• Separation: move to avoid crowding local neighbors

• Alignment: steer towards average heading of neighbors

• Cohesion: steer towards average position of neighbors

• Limited senses: only neighbors in forward-facing arc are 
observable



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Procedural Hair [Chang02]
• Generate a model with a few hundred guide 

hairs

• Each hair is a rigid chain w/ revolute joints

• Use breakable springs between nearby hairs 

to simulate hairstyles

• Create triangle strips between adjacent hairs 

to simulate collisions

• Interpolate between guide hairs to produce 

many other hairs
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Procedural Hair (Examples)
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Flow-Based Video Synthesis 
And Editing [Bhat04]
• Allows animator to easily create loops and 

variants of flowing natural phenomena (water, 

smoke, etc)

• Artist draws a set of flow lines on the original 

image

• Algorithm computes textures for a particle 

system that uses these flow lines

• Sequence of textures is transformed to 

prevent linear discontinuities

• Artist can then draw additional flow lines to 

create new variants
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Procedural Planets

E. DeGuili
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Procedural Planets

R. Fry
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Procedural Planets

Y. Dinda
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Procedural Planets

F.K. Musgrave
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Games: Spore

• Multiple sub-games of creature/civilization gameplay

• Editors for creatures, buildings, vehicles

• Procedural behavior, animation, and texturing (driven by 

player-created models)
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Procedural Modeling: Summary

• Procedural techniques are very powerful

• Use with care

– Physical validation is rare

• For some objects, procedure is the answer

– Plants

• Can complement physics-based methods

– Adding high frequency details

• General recommendation: add noise to your 
models to make them more “natural”
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Cellular Automata
• Simple example - game of life

• The rules:

– Binary state on a 2D grid: cell / no cell

– If too few or too many cells surround a cell, it dies

– If two cells surround empty space, a cell is born

• Very simple rules produce complex behavior

– Stable patterns

– Moving stable patterns

– Oscillations
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Complex Cellular Automata
• Can have more than one cell system interacting

• Rules can be arbitrary

– Model the needed behavior

• The result is (usually) a distribution of some property

– Binary result, need extra step

• The art is in creating the rules

– Take from differential equations

– Take from general intuition

• Too many cell -> overcrowding -> dies
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Lattice Boltzman Machine

• Extension of cellular automata

• Can simulate more natural phenomena besides 

clouds
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Other Range Scanning Tool
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