CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

Hong Qin

Department of Computer Science
Stony Brook University (SUNY at Stony Brook)
Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334
qin@cs.stonybrook.edu
http:///www.cs.stonybrook.edu/~qin

Scan Conversion

- The earlier task allows us to draw line segments, polylines, curves, is it sufficient for 2D graphics?
- What are still missing for the rasterization task?
- Wireframe geometry and display is NOT enough
- We must have drawing routines to support the solid-shaded appearance (not only boundaries, but also all interior points of polygons)
- Scan conversion is achieving such goal

Scan Conversion

Simple Algorithms

- We start from a simple triangle $\mathrm{T}: \mathrm{a}=(\mathrm{x} 1, \mathrm{y} 1), \mathrm{b}$ $=(\mathrm{x} 2, \mathrm{y} 2)$, and $\mathrm{c}=(\mathrm{x} 3, \mathrm{y} 3)$
- The task is to find all pixels inside T
- Naïve algorithm (the worst algorithm)
- For each pixel p do
- If p is inside T, then draw-point(p) end if
- End for
- For a single triangle, we MUST traverse all pixels, the worst performance

Slight Improvement

- We start from a simple triangle $\mathrm{T}: \mathrm{v} 1=(\mathrm{x} 1, \mathrm{y} 1)$, $\mathrm{v} 2=(\mathrm{x} 2, \mathrm{y} 2)$, and $\mathrm{v} 3=(\mathrm{x} 3, \mathrm{y} 3)$
- We compute its bounding box B (later we will investigate the hierarchical modeling for the bounding volume hierarchy) first
- For each pixel p that is inside B do
- If p is inside T, then draw-point(p) end if
- End for
- Essentially, the scan conversion MUST solve this problem, given a T' and a pixel (or point in general), can we determine: p -is-a-part-of-

Ray Casting (Ray Firing)

- We start from a simple triangle $\mathrm{T}: \mathrm{v} 1=(\mathrm{x} 1, \mathrm{y} 1)$, $\mathrm{v} 2=(\mathrm{x} 2, \mathrm{y} 2)$, and $\mathrm{v} 3=(\mathrm{x} 3, \mathrm{y} 3)$ and a point
- (1) draw a ray from p outward along any direction
- (2) count the number of intersections of this ray with triangular boundaries for T
- (3) If ODD, then p is inside T, otherwise, p is not a part of T
- Is this method correct?

Polygon Scan Conversion

Scan Conversion

- What happens if the ray pass through a vertex of a simple triangle $\mathrm{T}:(\mathrm{x} 1, \mathrm{y} 1),(\mathrm{x} 2, \mathrm{y} 2)$, and $(\mathrm{x} 3, \mathrm{y} 3)$
- How do you actually count the number of intersections with a triangular boundary?
- How do you actually compute the intersection?

Computing Intersections

- Mathematically speaking: $f(x, y)=0 ; g(x, y)=0$, simple solve them for possible solutions
- In reality (computer graphics), we don't really do the above way!
- Why?
- How do we handle this in computer graphics?

Computing Intersections

- First, consider a boundary of a polygon, we do NOT use its explicit representation at all. Instead, we use $f(x, y)=a x+b y+c=0$;
- Second, consider a ray geometry, once again, we do NOT use its explicit representation at all. Instead we are using its parametric representation: $\operatorname{ray}(\mathrm{p}, \mathrm{v})=\mathrm{p}+\mathrm{v}^{*} \mathrm{t}$, where t is a spatial parameter, ray(p, v) works for (x, y) simultaneously!

Computing Intersections

- Parametric equation

$$
\begin{aligned}
& x(t)=x_{0}+t\left(x_{1}-x_{0}\right) \\
& y(t)=y_{0}+t\left(y_{1}-y_{0}\right)
\end{aligned}
$$

- Vector expression

$$
\begin{aligned}
& \mathbf{p}(t)=\mathbf{p}_{0}+t\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right) \\
& \mathbf{p}(t)=(1-t) \mathbf{p}_{0}+t \mathbf{p}_{1}
\end{aligned}
$$

- The parameter is between 0 and 1 to describe a line segment, the ray can be expressed in the same way

Computing Intersections

- Combine the two equations together (one is the implicit equation, another one is the parametric equation), $f(\operatorname{ray}(\mathrm{p}, \mathrm{v}))=0$, where t is the ONLY parameter (to be solved)
- What is the geometric meaning of t ?
- We are going to have more mathematically rigorous process on the parametric representation and its power and potential later in this course!

Scan Conversion

- We start from a simple triangle $\mathrm{T}: \mathrm{v} 1=(\mathrm{x} 1, \mathrm{y} 1)$, $\mathrm{v} 2=(\mathrm{x} 2, \mathrm{y} 2)$, and $\mathrm{v} 3=(\mathrm{x} 3, \mathrm{y} 3)$ and a point
- Consider the edge (v1v2) and formulate the implicit expression for this line

$$
l_{1,2}(x, y)=a_{1,2} x+b_{1,2} y+c_{1,2}
$$

- Pick a sign so that the evaluation of v3 is negative!
- This defines a half-plane

$$
h_{1,2}=\left\{(x, y): l_{1,2}(x, y)<=0\right\}
$$

Scan Conversion

- We start from a simple triangle $T: ~ v 1=(x 1, y 1)$, v2=(x2,y2), and v3=(x3,y3) and a point
- Repeat the similar process for two other edges (v1v2) and (v2v3)

$$
T=h_{1,2} \cap h_{1,3} \cap h_{2,3}
$$

- It is equivalent to say, a pixel (point) is a part of a triangle if this point belongs to three half-planes simultaneously

$$
l_{1,2}\left(p_{x}, p_{y}\right)<=0
$$

- What about Concave polygon?

$$
\begin{aligned}
& l_{1,3}\left(p_{x}, p_{y}\right)<=0 \\
& l_{2,3}\left(p_{x}, p_{y}\right)<=0
\end{aligned}
$$

Convex

Not Convex

Convex

- A polygon is convex if...
- A line segment connecting any two points on the polygon is contained in the polygon.
- If you can wrap a rubber band around the polygon and touch all of the sides, the polygon is convex

Concave Polygon

- We now consider a concave polygon $\mathrm{T}:(\mathrm{x} 1, \mathrm{y} 1)$, $(x 2, y 2),(x 3, y 3), \ldots \ldots(x n, y n)$

Scan-Converting a Polygon

- General approach: any ideas?
- One idea: flood fill
- Draw polygon edges
- Pick a point (x, y) inside and flood fill with DFS

$$
\text { flood_fill }(\mathrm{x}, \mathrm{y}) \text {) \{ }
$$

$$
\begin{aligned}
& \text { if (read_pixel }(x, y))==\text { white) }) \text { \{ } \\
& \text { write_pixel }(x, y, \text { black }) \text {; } \\
& \text { flood_fill }(x-1, y) \text {; } \\
& \text { flood_fill }(x+1, y) \text {; } \\
& \text { flood_fill }(x, y-1) \text {; } \\
& \text { flood_fill }(x, y+1) \text {; }
\end{aligned}
$$

Polygon Classification

- Simple convex
- Simple concave
- Non-simple (with self-intersection)
- Once again, a bounding box can help, and the idea of using ray-casting is also GOOD!
- However, these approaches would NOT take advantage of (spatial) coherence
- Adjacent pixels in the image space are likely sharing the similar graphics properties such as color and appearance

Sweeping Lines

- Our observation - spatial coherence If $p \in T$, then neighboring pixels are probably in the triangle, too (Coherence)
- Idea
(1) sweep from top to bottom
(2) maintain intersections of T and sweep-line "span"
(3) paint pixels in the span

Sweep-line Algorithm

- Algorithm

Initialize x_{l} and x_{r}

For each scan line covered by T do Paint pixels $\left(x_{l}, y\right), \ldots, \ldots,\left(x_{r}, y\right)$ on the current span
Incrementally update x_{l} and x_{r} End for

- Question: how do we update x_{l} and x_{r} ?
- Answer: please recall our line-drawing algorithm!

Polygon Classification

[^0]
Scan Conversion

More efficient algorithm

For each scanline
Identify all intersections $x_{0}, x_{1}, \ldots, x_{k-1}$
Sort intersections from left to right
Fill pixels between consecutive pairs of intersection

$$
\left(x_{2 i}, y\right),\left(x_{2 i+1}, y\right)
$$

We must deal with "special cases" !

- horizontal lines
- intersecting a vertex (double intersection)
- unwanted intersection

Scan Conversion

- We must speed up the edge intersection detection
- Data structure for efficient implementation
- A sorted edge table
- The active edge list
- From bottom to the top
- Practical polygon scan conversion - based on polygon triangulation
- Extremely easy to handle for convex polygons
- Triangles are often particularly nice to work with because they are always planar and simple

Special Cases

Scan-Line Approach

- More efficient way: use a scan-line rasterization algorithm
- For each y value, compute x intersections. Fill according to winding rule
- How to compute intersection
 points?
- How to handle shading?
- Some hardware can handle

Singularities (Special Cases)

- If a vertex lies on a scanline, does that count as 0,1 , or 2 crossings?
- How to handle singularities?
- One approach: don't allow. Perturb vertex coordinates
- OpenGL's approach: place pixel centers half way between integers (e.g. 3.5, 7.5), so

Winding Test

- Most common way to tell if a point is in a polygon: the winding test
- Define "winding number" w for a point: signed number of revolutions around the point when traversing boundary of polygon once
- When is a point "inside" the polygon?

Rasterizing Polygons (Scan Conversion

- Polygons may be or may not be simple, convex, or even flat. How to render them?
- The most critical thing is to perform insideoutside testing: how to tell if a point is in a polygon?

OpenGL and Concave polygons

- OpenGL guarantees correct rendering only for simple, convex, planar polygons
- OpenGL tessellates concave polygons
- Tessellation depends on winding rule you tell OpenGL to use: Odd, Nonzero, Pos, Neg, ABS_GEQ_TWO

Scan Conversion

- At this point in the pipeline, we have only polygons and line segments. Render!
- To render, convert to pixels ("fragments") with integer screen coordinates (ix, iy), depth, and color
- Send fragments into fragment-processing pipeline
\square
\square

Center for Visual Computing

[^0]: STONY BROOK
 STATE UNIVERSITY OF NEW YORK

