
STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

CSE328 Fundamentals of Computer 
Graphics: Theory, Algorithms, and 

Applications

Hong Qin

Department of Computer Science

Stony Brook University (SUNY at Stony Brook)

Stony Brook, New York 11794-2424

Tel: (631)632-8450; Fax: (631)632-8334

qin@cs.stonybrook.edu

http://www.cs.stonybrook.edu/~qin



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

• The earlier task allows us to draw line segments, 

polylines, curves, is it sufficient for 2D graphics?

• What are still missing for the rasterization task?

• Wireframe geometry and display is NOT enough

• We must have drawing routines to support the 

solid-shaded appearance (not only boundaries, 

but also all interior points of polygons)

• Scan conversion is achieving such goal

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Simple Algorithms

• We start from a simple triangle T: a = (x1,y1), b 

= (x2,y2), and c = (x3,y3)

• The task is to find all pixels inside T

• Naïve algorithm (the worst algorithm)

– For each pixel p do 

– If p is inside T, then draw-point(p) end if

– End for

• For a single triangle, we MUST traverse all 

pixels, the worst performance
CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Slight Improvement
• We start from a simple triangle T: v1=(x1,y1), 

v2=(x2,y2), and v3=(x3,y3)

• We compute its bounding box B (later we will investigate 

the hierarchical modeling for the bounding volume 

hierarchy) first

– For each pixel p that is inside B do 

– If p is inside T, then draw-point(p) end if

– End for

• Essentially, the scan conversion MUST solve this 

problem, given a T and a pixel (or point in general), can 

we determine: p is a part of T
CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Ray Casting (Ray Firing)

• We start from a simple triangle T: v1=(x1,y1), 

v2=(x2,y2), and v3=(x3,y3) and a point

– (1) draw a ray from p outward along any direction

– (2) count the number of intersections of this ray with 

triangular boundaries for T

– (3) If ODD, then p is inside T, otherwise, p is not a 

part of T

• Is this method correct?

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygon Scan Conversion

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

• What happens if the ray pass through a vertex of a 

simple triangle T: (x1,y1), (x2,y2), and (x3,y3)

• How do you actually count the number of 

intersections with a triangular boundary?

• How do you actually compute the intersection?

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• Mathematically speaking: f(x,y)=0; g(x,y)=0, 

simple solve them for possible solutions

• In reality (computer graphics), we don’t really do 

the above way!

• Why?

• How do we handle this in computer graphics?

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• First, consider a boundary of a polygon, we do 

NOT use its explicit representation at all. Instead, 

we use f(x,y)=ax+by+c=0; 

• Second, consider a ray geometry, once again, we 

do NOT use its explicit representation at all. 

Instead we are using its parametric representation: 

ray(p, v) = p + v*t, where t is a spatial parameter, 

ray(p, v) works for (x,y) simultaneously!

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• Parametric equation

• Vector expression

• The parameter is between 0 and 1 to describe a line 

segment, the ray can be expressed in the same way 

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Computing Intersections

• Combine the two equations together (one is the 

implicit equation, another one is the parametric 

equation), f(ray(p,v))=0, where t is the ONLY 

parameter (to be solved)

• What is the geometric meaning of t?

• We are going to have more mathematically 

rigorous process on the parametric representation 

and its power and potential later in this course!

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion
• We start from a simple triangle T: v1=(x1,y1), 

v2=(x2,y2), and v3=(x3,y3) and a point

• Consider the edge (v1v2) and formulate the implicit 

expression for this line

• Pick a sign so that the evaluation of v3 is negative!

• This defines a half-plane

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion
• We start from a simple triangle T: v1=(x1,y1), v2=(x2,y2), and 

v3=(x3,y3) and a point

• Repeat the similar process for two other edges (v1v2) and (v2v3)

• It is equivalent to say, a pixel (point) is a part of a triangle if this 

point belongs to three half-planes simultaneously

• What about Concave polygon?

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Convex

Not Convex



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Convex

• A polygon is convex if…

– A line segment connecting any two points on the 

polygon is contained in the polygon.

– If you can wrap a rubber band around the polygon 

and touch all of the sides, the polygon is convex



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Concave Polygon

• We now consider a concave polygon T: (x1,y1), 

(x2,y2), (x3,y3), …… (xn, yn)

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Scan-Converting a Polygon

• General approach: any ideas?

• One idea: flood fill
– Draw polygon edges

– Pick a point (x,y) inside and flood fill with DFS

flood_fill(x,y) {

if (read_pixel(x,y)==white) {

write_pixel(x,y,black);

flood_fill(x-1,y);

flood_fill(x+1,y);

flood_fill(x,y-1);

flood_fill(x,y+1);

} }



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygon Classification
• Simple convex

• Simple concave

• Non-simple (with self-intersection)

• Once again, a bounding box can help, and the idea of 

using ray-casting is also GOOD!

• However, these approaches would NOT take advantage 

of (spatial) coherence

• Adjacent pixels in the image space are likely sharing the 

similar graphics properties such as color and appearance

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Sweeping Lines

• Our observation – spatial coherence

• Idea

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Sweep-line Algorithm

• Algorithm

• Question:

• Answer: please recall our line-drawing algorithm! 

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Polygon Classification

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Scan Conversion
• We must speed up the edge intersection detection

• Data structure for efficient implementation

– A sorted edge table

– The active edge list

– From bottom to the top

• Practical polygon scan conversion – based on polygon 

triangulation

• Extremely easy to handle for convex polygons

• Triangles are often particularly nice to work with because 

they are always planar and simple
CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

Special Cases

CSE328 Lectures



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Scan-Line Approach
• More efficient way: use a scan-line rasterization 

algorithm

• For each y value, compute x

intersections. Fill according 

to winding rule

• How to compute intersection

points?

• How to handle shading?

• Some hardware can handle 

multiple scanlines in parallel



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Singularities (Special Cases)
• If a vertex lies on a scanline,

does that count as 0, 1, or 2 

crossings?

• How to handle singularities?

• One approach: don’t allow. 

Perturb vertex coordinates

• OpenGL’s approach: place pixel

centers half way between 

integers (e.g. 3.5, 7.5), so

scanlines never hit vertices



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Winding Test

• Most common way to tell if a point is in a 

polygon: the winding test

– Define “winding number” w for a point: signed 

number of revolutions around the point when 

traversing boundary of polygon once

– When is a point “inside” the polygon?



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Rasterizing Polygons (Scan Conversion 

• Polygons may be or may not be simple, convex, 

or even flat. How to render them?

• The most critical thing is to perform inside-

outside testing: how to tell if a point is in a 

polygon? 



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

Winding Rules



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE528 Lectures

OpenGL and Concave polygons
• OpenGL guarantees correct rendering only for simple, 

convex, planar polygons

• OpenGL tessellates concave polygons

• Tessellation depends on winding rule you tell OpenGL 

to use: Odd, Nonzero, Pos, Neg, ABS_GEQ_TWO



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures

Scan Conversion

• At this point in the pipeline, we have only 

polygons and line segments. Render!

• To render, convert to pixels (“fragments”) with 

integer screen coordinates (ix, iy), depth, and 

color

• Send fragments into fragment-processing 

pipeline



STNY BRK
STATE UNIVERSITY OF NEW YORK

Department of Computer Science

Center for Visual Computing

CSE328 Lectures


