CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

Hong Qin Department of Computer Science Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.stonybrook.edu http://www.cs.stonybrook.edu/~qin

Department of Computer Science Center for Visual Computing

- The earlier task allows us to draw line segments, polylines, curves, is it sufficient for 2D graphics?
- What are still missing for the rasterization task?
- Wireframe geometry and display is NOT enough
- We must have drawing routines to support the solid-shaded appearance (not only boundaries, but also all interior points of polygons)
- Scan conversion is achieving such goal

Department of Computer Science Center for Visual Computing ST NY BR K

Simple Algorithms

- We start from a simple triangle T: a = (x1,y1), b = (x2,y2), and c = (x3,y3)
- The task is to find all pixels inside T
- Naïve algorithm (the worst algorithm)
 - For each pixel p do
 - If p is inside T, then draw-point(p) end if
 - End for
- For a single triangle, we MUST traverse all pixels, the worst performance

Department of Computer Science Center for Visual Computing

Slight Improvement

- We start from a simple triangle T: v1=(x1,y1), v2=(x2,y2), and v3=(x3,y3)
- We compute its bounding box B (later we will investigate the hierarchical modeling for the bounding volume hierarchy) first
 - For each pixel p that is inside B do
 - If p is inside T, then draw-point(p) end if
 - End for

 Essentially, the scan conversion MUST solve this problem, given a T and a pixel (or point in general), can we determine: p is a part of T

STATE UNIVERSITY OF NEW YORK

Center for Visual Computing

Ray Casting (Ray Firing)

- We start from a simple triangle T: v1=(x1,y1), v2=(x2,y2), and v3=(x3,y3) and a point
 - -(1) draw a ray from p outward along any direction
 - (2) count the number of intersections of this ray with triangular boundaries for T
 - (3) If ODD, then p is inside T, otherwise, p is not a part of T
- Is this method correct?

Department of Computer Science Center for Visual Computing

Polygon Scan Conversion

Department of Computer Science Center for Visual Computing

- What happens if the ray pass through a vertex of a simple triangle T: (x1,y1), (x2,y2), and (x3,y3)
- How do you actually count the number of intersections with a triangular boundary?
- How do you actually compute the intersection?

- Mathematically speaking: f(x,y)=0; g(x,y)=0, simple solve them for possible solutions
- In reality (computer graphics), we don't really do the above way!
- Why?
- How do we handle this in computer graphics?

Department of Computer Science Center for Visual Computing

- First, consider a boundary of a polygon, we do NOT use its explicit representation at all. Instead, we use f(x,y)=ax+by+c=0;
- Second, consider a ray geometry, once again, we do NOT use its explicit representation at all. Instead we are using its parametric representation: ray(p, v) = p + v*t, where t is a spatial parameter, ray(p, v) works for (x,y) simultaneously!

Department of Computer Science Center for Visual Computing

Parametric equation

$$x(t) = x_0 + t(x_1 - x_0)$$

$$y(t) = y_0 + t(y_1 - y_0)$$

Vector expression

$$p(t) = p_0 + t(p_1 - p_0)$$

 $p(t) = (1 - t)p_0 + tp_1$

The parameter is between 0 and 1 to describe a line segment, the ray can be expressed in the same way

Department of Computer Science Center for Visual Computing

- Combine the two equations together (one is the implicit equation, another one is the parametric equation), f(ray(p,v))=0, where t is the ONLY parameter (to be solved)
- What is the geometric meaning of t?
- We are going to have more mathematically rigorous process on the parametric representation and its power and potential later in this course!

- We start from a simple triangle T: v1=(x1,y1), v2=(x2,y2), and v3=(x3,y3) and a point
- Consider the edge (v1v2) and formulate the implicit expression for this line

$$l_{1,2}(x,y) = a_{1,2}x + b_{1,2}y + c_{1,2}y$$

- Pick a sign so that the evaluation of v3 is negative!
- This defines a half-plane

$$h_{1,2} = \{(x,y) : l_{1,2}(x,y) <= 0\}$$

Department of Computer Science Center for Visual Computing

- We start from a simple triangle T: v1=(x1,y1), v2=(x2,y2), and v3=(x3,y3) and a point
- Repeat the similar process for two other edges (v1v2) and (v2v3)

$$T = h_{1,2} \cap h_{1,3} \cap h_{2,3}$$

- It is equivalent to say, a pixel (point) is a part of a triangle if this point belongs to three half-planes simultaneously
- What about Concave polygon?

$$l_{1,2}(p_x, p_y) <= 0$$

$$l_{1,3}(p_x, p_y) <= 0$$

$$l_{2,3}(p_x, p_y) <= 0$$

Department of Computer Science Center for Visual Computing

ST NY BR K STATE UNIVERSITY OF NEW YORK

Department of Computer Science Center for Visual Computing

Convex

- A polygon is convex if...
 - A line segment connecting any two points on the polygon is contained in the polygon.
 - If you can wrap a rubber band around the polygon and touch all of the sides, the polygon is convex

Department of Computer Science Center for Visual Computing

Concave Polygon

• We now consider a concave polygon T: (x1,y1), (x2,y2), (x3,y3), (xn, yn)

Department of Computer Science Center for Visual Computing

Scan-Converting a Polygon

- General approach: any ideas?
- One idea: *flood fill*
 - Draw polygon edges
 - Pick a point (x,y) inside and flood fill with DFS

{

flood_fill(x, y) {

Department of Computer Science Center for Visual Computing

Polygon Classification

- Simple convex
- Simple concave
- Non-simple (with self-intersection)
- Once again, a bounding box can help, and the idea of using ray-casting is also GOOD!
- However, these approaches would NOT take advantage of (spatial) coherence
- Adjacent pixels in the image space are likely sharing the similar graphics properties such as color and appearance

Sweeping Lines

• Our observation – spatial coherence

If $p \in T$, then neighboring pixels are probably in the triangle, too (Coherence)

Idea

- (1) sweep from top to bottom
- (2) maintain intersections of T and sweep-line "span"
- (3) paint pixels in the span

Department of Computer Science Center for Visual Computing

Sweep-line Algorithm

• Algorithm

Initialize x_l and x_r For each scan line covered by T do Paint pixels $(x_l, y), \ldots, \ldots, (x_r, y)$ on the current span Incrementally update x_l and x_r End for

• Question:

how do we update x_l and x_r ?

• Answer: please recall our line-drawing algorithm!

Department of Computer Science Center for Visual Computing

Polygon Classification

Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

More efficient algorithm For each scanline Identify all intersections $x_0, x_1, \ldots, x_{k-1}$ Sort intersections from left to right Fill pixels between consecutive pairs of intersection

$$(x_{2i}, y), (x_{2i+1}, y)$$

We must deal with "special cases" !

- horizontal lines
- intersecting a vertex (double intersection)
- unwanted intersection

- We must speed up the edge intersection detection
- Data structure for efficient implementation
 - A sorted edge table
 - The active edge list
 - From bottom to the top
- Practical polygon scan conversion based on polygon triangulation
- Extremely easy to handle for convex polygons
- Triangles are often particularly nice to work with because they are always planar and simple

Department of Computer Science Center for Visual Computing

Special Cases

Department of Computer Science Center for Visual Computing ST NY BR K

Scan-Line Approach

- More efficient way: use a scan-line rasterization algorithm
- For each y value, compute x intersections. Fill according to winding rule
- How to compute intersection points?
- How to handle shading?
- Some hardware can handle

Departmer multiple scanlines in parallel

Singularities (Special Cases)

- If a vertex lies on a scanline, does that count as 0, 1, or 2 crossings?
- How to handle singularities?
- One approach: don't allow. *Perturb* vertex coordinates
- OpenGL's approach: place pixel centers half way between integers (e.g. 3.5, 7.5), so

Departmes Canlines never hit vertices

Winding Test

- Most common way to tell if a point is in a polygon: the winding test
 - Define "winding number" w for a point: signed number of revolutions around the point when traversing boundary of polygon once
 - When is a point "inside" the polygon?

SITY OF NEW YORK

Department of Computer Center for Visual Comp

Rasterizing Polygons (Scan Conversion

- Polygons may be or may not be simple, convex, or even flat. How to render them?
- The most critical thing is to perform insideoutside testing: how to tell if a point is in a polygon?

Center for Visual Comp

OpenGL and Concave polygons

- OpenGL guarantees correct rendering only for simple, convex, planar polygons
- OpenGL tessellates concave polygons
- Tessellation depends on winding rule you tell OpenGL to use: Odd, Nonzero, Pos, Neg, ABS_GEQ_TWO

- At this point in the pipeline, we have only polygons and line segments. Render!
- To render, convert to pixels ("fragments") with integer screen coordinates (ix, iy), depth, and color
- Send fragments into fragment-processing pipeline

Department of Computer Science Center for Visual Computing

Department of Computer Science Center for Visual Computing

