CSE328 Fundamentals of Computer Graphics: Concepts, Theory, Algorithms, and Applications

Hong Qin Department of Computer Science Stony Brook University (SUNY at Stony Brook) Stony Brook, New York 11794-2424 Tel: (631)632-8450; Fax: (631)632-8334 qin@cs.stonybrook.edu http://www.cs.stonybrook.edu/~qin

Subdivision Surfaces

Subdivision surface

(different levels of refinement)

Department of Computer Science

Subdivision Schemes in Interactive Surface Design

ST NY BR K

Department of Computer Science

Basic Idea of Subdivision

- Start from an initial control polygon.
- Recursively refine it by some rules.
- A smooth surface (curve) in the limit.

Department of Computer Science

ST NY BR K

Department of Computer Science

ST NY BR K

ST NY BR K

ST NY BR K

Chaikin's Algorithm

• A set of control points to define a polygon

$$\mathbf{p}_0^0, \mathbf{p}_1^0, \mathbf{p}_2^0, ..., \mathbf{p}_n^0$$

- Subdivision process (more control vertices)
- Rules (corner chopping)

$$\mathbf{p}_{2i}^{k+1} = \frac{3}{4}\mathbf{p}_{i}^{k} + \frac{1}{4}\mathbf{p}_{i+1}^{k}$$
$$\mathbf{p}_{2i+1}^{k+1} = \frac{1}{4}\mathbf{p}_{i}^{k} + \frac{3}{4}\mathbf{p}_{i+1}^{k}$$

$$\mathbf{p}_{0}^{k}, \mathbf{p}_{1}^{k}, \mathbf{p}_{2}^{k}, ..., \mathbf{p}_{2^{k}n}^{k}$$

NY BR

STATE UNIVERSITY OF NEW YORK

• **Properties:**

 quadratic B-spline curve, C1 continuous, tangent to each edge at its mid-point

Department of Computer Science

Chaikin's Algorithm

Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

Cubic Spline

• Subdivision rules

$$\mathbf{p}_{2i}^{k+1} = \frac{1}{2}\mathbf{p}_{i}^{k} + \frac{1}{2}\mathbf{p}_{i+1}^{k}$$
$$\mathbf{p}_{2i+1}^{k+1} = \frac{1}{4}\left(\frac{1}{2}\mathbf{p}_{i}^{k} + \frac{1}{2}\mathbf{p}_{i+2}^{k}\right) + \frac{3}{4}\mathbf{p}_{i+1}^{k}$$

- C2 cubic B-spline curve
- Corner-chopping
- No interpolation

Curve Interpolation

• Control points

$$\mathbf{p}_{-2}^{0}, \mathbf{p}_{-1}^{0}, \mathbf{p}_{0}^{0}, \dots \mathbf{p}_{n+2}^{0}$$

• Rules:

$$\mathbf{p}_{2i}^{k+1} = \mathbf{p}_{i}^{k}, -1 \le i \le 2^{k} n + 1$$

$$\mathbf{p}_{2i+1}^{k+1} = (\frac{1}{2} + w)(\mathbf{p}_{i}^{k} + \mathbf{p}_{i+1}^{k}) - w(\mathbf{p}_{i-1}^{k} + \mathbf{p}_{i+2}^{k}),$$

$$-1 \le i \le 2^{k} n$$

 $\mathbf{N}\mathbf{V}$

STATE UNIVERSITY OF NEW YORK

- At each stage, we keep all the OLD points and insert NEW points "in between" the OLD ones
- Interpolation!
- The behaviors and properties of the limit curve depend on the parameter w

Generalize to SIX-point interpolatory scheme!

Curve Interpolation

ST NY BR K

Polygonal Meshes

Advantages:

- Very general.
- Can describe very fine detail accurately.
- Direct hardware implementation.

Disadvantages:

- Heavy weight representation.
- A simplification algorithm is always needed.

Subdivision Schemes

Advantages:

- Arbitrary topology.
- Level of detail.
- Unified representation.

Disadvantages:

 Difficult for analysis of properties like smoothness and continuity.

Midedge Scheme

Midedge Scheme

(b)

(d)

Catmull-Clark Scheme

Initial mesh

Step 1

Step 2

Limit surface

Catmull-Clark Scheme

Face point:

the average of all the points defining the old face.

Edge point:

•

the average of two old vertices and two new face points of the faces adjacent to the edge.

Vertex point: (F+2E+(n-3)V)/n

F: the average of the new face points of all faces adjacent to the old vertex.

E: the average of the midpoints of all adjacent edges.

V: the old vertex.

Department of Computer Science

"Geri's Game"

Department of Computer Science Center for Visual Computing ST NY BR K STATE UNIVERSITY OF NEW YORK

Mesh Structure

ST NY BR K STATE UNIVERSITY OF NEW YORK

Interpolation Scheme

Initial mesh

One refinement step

Two refinement steps

Department of Computer Science Center for Visual Computing ST NY BR K

Modeling Sharp Features

Department of Computer Science

Piecewise Smooth Subdivision

(b)

(d) Hoppe et al. Siggraph 94

Hybrid Subdivision Scheme

(a)

(b)

(c)

(d)

DeRose et al. Siggraph 98

Hierarchical Editing

ST NY BR K STATE UNIVERSITY OF NEW YORK

Catmull-Clark Surface Example

Department of Computer Science Center for Visual Computing ST NY BR K

Catmull-Clark Patches

ST NY BR K

Interactive Sculpting

More Examples

Subdivision Solids

ST NY BR K

Scenes and Sculptures

ST NY BR K STATE UNIVERSITY OF NEW YORK