Arbitrary Rotation

Arbitrary Rotation

More Examples

More complicated examples rotation about an arbitrary point
(1) translation

$$
\left[\begin{array}{ccc}
1 & 0 & -\mathbf{p}_{x} \\
0 & 1 & -\mathbf{p}_{y} \\
0 & 0 & 1
\end{array}\right]
$$

(2) rotation

$$
\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(3) translation again

$$
\left[\begin{array}{ccc}
1 & 0 & \mathbf{p}_{x} \\
0 & 1 & \mathbf{p}_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Important Properties

Two rotations are additive

$$
\mathbf{R}\left(\theta_{1}\right) \star \mathbf{R}\left(\theta_{2}\right)=\mathbf{R}\left(\theta_{1}+\theta_{2}\right)
$$

Two rotations are commutative

$$
\mathbf{R}\left(\theta_{1}\right) \star \mathbf{R}\left(\theta_{2}\right)=\mathbf{R}\left(\theta_{2}\right) \star \mathbf{R}\left(\theta_{1}\right)
$$

Two translations are commutative

$$
\mathbf{T}\left(\delta x_{1}, \delta y_{1}\right) \star \mathbf{T}\left(\delta x_{2}, \delta y_{2}\right)=\mathbf{T}\left(\delta x_{2}, \delta y_{2}\right) \star \mathbf{T}\left(\delta x_{1}, \delta y_{1}\right)
$$

Two scalings are commutative

$$
\mathbf{S}\left(s_{x_{1}}, s_{y_{1}}\right) \star \mathbf{S}\left(s_{x_{2}}, s_{y_{2}}\right)=\mathbf{S}\left(s_{x_{2}}, s_{y_{2}}\right) \star \mathbf{S}\left(s_{x_{1}}, s_{y_{1}}\right)
$$

What about
one rotation and one translation one rotation and one scaling one translation and one scaling

What about involving shearing?
Please verify your results

Coordinate Systems

Transformation between two different coordinate systems
Given objects in one coordinate system
Figure out their location(s) in the second coordinate system

Let's consider several simple cases !
One system is obtained from one translation of the second system
In coordinate system 1, a point has the following coordinates:

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]
$$

In coordinate system 2, the SAME point has the following coordinates:

$$
\mathbf{v}_{2}=\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]
$$

How to determine the matrix:

$$
\mathbf{M}_{1,2}=\mathbf{T}(\delta x, \delta y)
$$

so that this matrix transforms the coordinates of the SAME point
from CS-1 to CS-2:

$$
\mathbf{M}_{1,2} \mathbf{p}_{1}=\mathbf{p}_{2}
$$

Note that, $\mathrm{M}_{1,2}$ is derived by transforming
CS-2 to CS-1 using coordinate values in CS-1 !!!

$$
\begin{aligned}
& \mathbf{v}=\mathbf{v}_{2}-\mathbf{v}_{1} \\
& \delta x=x_{2}-x_{1} \\
& \delta y=y_{2}-y_{1}
\end{aligned}
$$

One system is obtained from one rotation of the second system

$$
\begin{gathered}
\mathbf{M}_{1,2} \mathbf{p}_{1}=\mathbf{p}_{2} \\
\mathbf{M}_{1,2}=\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

One translation and one rotation are involved!

$$
\begin{gathered}
\mathbf{M}_{1,2} \mathbf{p}_{1}=\mathbf{p}_{2} \\
\mathbf{M}_{1,2}=\left[\begin{array}{ccc}
\cos (\theta) & \sin (\theta) & 0 \\
-\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & \delta x \\
0 & 1 & \delta y \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Geometric Meaning of the above formulation ???
First, translation

$$
\mathrm{v}=\mathrm{v}_{2}-\mathrm{v}_{1}
$$

Please pay attention to the coordinates of v_{1} and v_{2} !!!

$$
T(\delta x, \delta y) \mathbf{p}_{1}=\mathbf{v}_{2}
$$

Note that, the value of v_{2}
is NOT the coordinates of p_{2} !!!
Second, rotation

$$
R(-\theta) \mathbf{v}_{2}=\mathbf{p}_{2}
$$

- Let us put them together

$$
R(-\theta) \star T(\delta x, \delta y) \star \mathbf{p}_{1}=\mathbf{p}_{2}
$$

Coordinate Systems

Coordinate Systems

Coordinate Systems

> (x1,y1)

Summary

Why transformation
Basis transformation operations
Composite transformation operations
Why homogeneous coordinates
Transformation matrices using homogeneous coordinates

Transformation between different coordinate systems

