CSE/MAT371 QUIZ 2 Solutions Fall 2016 (20pts)

Problem 1 (6pts)

Given a formula A : $\forall x \exists y P(f(x, y), c)$ of the predicate language \mathcal{L} , and

two model structures $M_1 = (Z, I_1)$, $M_2 = (N, I_2)$ with the interpretations defined as follows.

 $P_{I_1}:=, f_{I_1}:+, c_{I_1}:0 \text{ and } P_{I_2}:>, f_{I_2}:\cdot, c_{I_2}:0.$

1. Show that $\mathbf{M}_1 \models A$

 A_{I_1} : $\forall_{x \in Z} \exists_{y \in Z} x + y = 0$ is a **true** statement; For each $x \in Z$ exists y = -x and $-x \in Z$ and x - x = 0.

2. Show that $\mathbf{M}_2 \not\models A$

 A_{I_2} : $\forall_{x \in N} \exists_{y \in N} x \cdot y > 0$ is a **false** statement for x = 0.

Problem 2 (4pts)

Consider a following set of formulas

 $\mathcal{S} = \{ (\forall x \ A(x) \Rightarrow \exists x \ A(x)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)), \quad ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x)))), \quad (\forall x \ P(x) \ (A(x) \cap B(x))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x)))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x)))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x)))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x)))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x)))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x)))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x)))), \quad (\forall x \ P(x, y) \Rightarrow (A(x) \cap B(x)))), \quad (\forall x \ P(x) \cap B(x))))$

 $\exists x(A(x) \Rightarrow B) \equiv (\forall xA(x) \Rightarrow B) \}$

Circle formulas that are predicate tautologies/ logical equivalences.

 $\not\models_p ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x))),$

All other formulas are are tautologies/logical equivalences.

Problem 4 (3pts)

Write a definition of the set $\mathcal F$ of formulas of a language $\mathcal L_{\{\sim,\rightarrow\}}$

Definition

The set \mathcal{F} of all formulas of a propositional language $\mathcal{L}_{\{\sim,\rightarrow\}}$

is the smallest set for which the following conditions are satisfied.

(1) $VAR \subseteq \mathcal{F}$ (atomic formulas);

(2) If $A, B \in \mathcal{F}$, then $\sim A \in \mathcal{F}$ and $(A \to B) \in \mathcal{F}$.

Problem 3 (3pts)

Given a formula $A : (\neg \mathbf{I} \neg a \Rightarrow (\neg \mathbf{C}a \cup (\mathbf{I}a \Rightarrow \neg \mathbf{I}b)))$

1. List the main connective and the degree of the formula A.

Main connective of the formula A is: \Rightarrow , the degree of the formula A is: 11.

2. List all sub-formulas of A of the degree 0 and 1.

All sub-formulas of A of the degree 0 are the atomic formulas a, b.

All sub-formulas of A of the degree 1 are: $\neg a$, Ca, Ia, Ib.

Problem 3 (4pts)

. Do not construct TTables!

You can use the short-hand notation when justifying your answers.

1. Prove that there is only one restricted counter-model for A.

Evaluation: $(\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)) = F$ if and only if $\neg a = T$ and $(\neg b \cup (b \Rightarrow \neg c)) = F$, iff $a = F, \neg b = F$ and $(b \Rightarrow \neg c) = F$, iff a = F, b = T and $(T \Rightarrow \neg c) = F$, iff a = F, b = T and $\neg c = F$ iff a = F, b = T and c = T

This proves that a = F, b = T and c = T is the ONLY restricted counter-model for A.

- 2. Prove that there are 7 restricted models for A.
- We have 2^3 of all possible restricted truth assignment for A; we proved that only one of them is a restricted countermodel, so there are $2^3 - 1 = 7$ restricted models for A.