## CSE/MAT371 QUIZ 2 Solutions Fall 2016 <br> (20pts)

Problem 1 (6pts)
Given a formula A: $\forall x \exists y P(f(x, y), c)$ of the predicate language $\mathcal{L}$, and
two model structures $\mathbf{M}_{\mathbf{1}}=\left(Z, I_{1}\right), \mathbf{M}_{\mathbf{2}}=\left(N, I_{2}\right)$ with the interpretations defined as follows.
$P_{I_{1}}:=, \quad f_{I_{1}}:+, \quad c_{I_{1}}: 0$ and $P_{I_{2}}:>, \quad f_{I_{2}}: \cdot, \quad c_{I_{2}}: 0$.

1. Show that $\mathbf{M}_{\mathbf{1}} \vDash A$
$A_{I_{1}}: \quad \forall x \in Z \exists_{y \in Z} x+y=0$ is a true statement;
For each $x \in Z$ exists $y=-x$ and $-x \in Z$ and $x-x=0$.
2. Show that $\mathbf{M}_{\mathbf{2}} \not \vDash A$
$A_{I_{2}}: \quad \forall_{x \in N} \exists_{y \in N} x \cdot y>0$ is a false statement for $x=0$.
Problem 2 (4pts)
Consider a following set of formulas

$$
\mathcal{S}=\{(\forall x A(x) \Rightarrow \exists x A(x)), \quad(\forall x P(x, y) \Rightarrow \exists x P(x, y)), \quad((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x))),
$$

$$
\exists x(A(x) \Rightarrow B) \equiv(\forall x A(x) \Rightarrow B)\}
$$

Circle formulas that are predicate tautologies/ logical equivalences.
$\not \forall_{p}((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x)))$,
All other formulas are are tautologies/logical equivalences.
Problem 4 (3pts)
Write a definition of the set $\mathcal{F}$ of formulas of a language $\mathcal{L}_{\{\sim, \rightarrow\}}$

## Definition

The set $\mathcal{F}$ of all formulas of a propositional language $\mathcal{L}_{\{\sim, \rightarrow\}}$
is the smallest set for which the following conditions are satisfied.
(1) $V A R \subseteq \mathcal{F}$ (atomic formulas);
(2) If $A, B \in \mathcal{F}$, then $\sim A \in \mathcal{F}$ and $(A \rightarrow B) \in \mathcal{F}$.

Problem 3 (3pts)

$$
\text { Given a formula } A:(\neg \mathbf{I} \neg a \Rightarrow(\neg \mathbf{C} a \cup(\mathbf{I} a \Rightarrow \neg \mathbf{I} b)))
$$

1. List the main connective and the degree of the formula A .

Main connective of the formula $A$ is: $\Rightarrow$, the degree of the formula $A$ is: 11 .
2. List all sub-formulas of A of the degree 0 and 1 .

All sub-formulas of $A$ of the degree 0 are the atomic formulas $a, b$.
All sub-formulas of A of the degree 1 are: $\neg a, \mathbf{C} a, \mathbf{I} a, \mathbf{I} b$.
Problem 3 (4pts)

## Do not construct TTables!

You can use the short-hand notation when justifying your answers.

1. Prove that there is only one restricted counter-model for A .

Evaluation: $(\neg a \Rightarrow(\neg b \cup(b \Rightarrow \neg c))=F$ if and only if
$\neg a=T$ and $(\neg b \cup(b \Rightarrow \neg c))=F$, iff
$a=F, \neg b=F$ and $(b \Rightarrow \neg c)=F$, iff
$a=F, b=T$ and $(T \Rightarrow \neg c)=F$, iff
$a=F, b=T$ and $\neg c=F$ iff
$a=F, b=T$ and $c=T$
This proves that $a=F, b=T$ and $c=T$ is the ONLY restricted counter-model for A.
2. Prove that there are 7 restricted models for A .

We have $2^{3}$ of all possible restricted truth assignment for A ; we proved that only one of them is a restricted countermodel, so there are $2^{3}-1=7$ restricted models for A .

