CSE/MAT371 QUIZ 3 SOLUTIONS Fall 2016

Problem 1 (5pts) Complete the following definition.
Given a non-empty set $\mathcal{G} \subseteq \mathcal{F}$ of a language $\mathcal{L}=\mathcal{L}_{\{\neg, \Rightarrow\}}$, a truth assignment $v: V A R \longrightarrow\{T, F\}$, and classical semantics, we say that v is a model for the set \mathcal{G} and write it $v \vDash \mathcal{G}$ if and only if ...

Solution We say: $v \vDash \mathcal{G}$ if and only if $v \vDash A\left(\right.$ or $\left.v^{*}(A)=T\right)$ for all formulas $A \in \mathcal{G}$.
Problem 2 (8pts) Given a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$. We know that $v: V A R \longrightarrow\{F, \perp, T\}$ is such that $v^{*}((a \cap b) \Rightarrow(a \Rightarrow c))=\perp$ under \mathbf{H} semantics defined as follows.

For any $(x, y) \in\{T, \perp, F\} \times\{T, \perp, F\}$ we put $\cup(x, y)=x \cup y=\max \{x, y\}, \quad \cap(x, y)=x \cap y=\min \{x, y\}$,
$\Rightarrow(x, y)=x \Rightarrow y=\left\{\begin{array}{ll}T & \text { if } x \leq y \\ y & \text { otherwise }\end{array} \quad\right.$ and for any $x \in\{T, \perp, F\}$ we put $\neg x=x \Rightarrow F$
Evaluate $v^{*}(A)$ for a formula A: $((b \Rightarrow a) \Rightarrow(a \Rightarrow \neg c)) \cup(a \Rightarrow b)$

Use shorthand notation.

Solution We write TTables

\Rightarrow	F	\perp	T
F	T	T	T
\perp	F	T	T
T	F	\perp	T

\neg	F	\perp	T
	T	F	F

and observe that $v^{*}((a \cap b) \Rightarrow(a \Rightarrow c))=\perp$ under \mathbf{H} semantics if and only if (using a shorthand notation) $(a \cap b)=T$ and $(a \Rightarrow c)=\perp$ if and only if $a=T, b=T$ and $(T \Rightarrow c)=\perp$ if and only if $c=\perp$
I.e. we have that $v^{*}((a \cap b) \Rightarrow(a \Rightarrow c))=\perp$ if and only if $a=T, b=T, c=\perp$

Now we can we evaluate

$$
v^{*}(((b \Rightarrow a) \Rightarrow(a \Rightarrow \neg c)) \cup(a \Rightarrow b))=(((T \Rightarrow T) \Rightarrow(T \Rightarrow \neg \perp)) \cup(T \Rightarrow T))=((T \Rightarrow(T \Rightarrow F)) \cup T)=T
$$

Problem 3

1. Given a formula $A=((a \cap \neg c) \Rightarrow(\neg a \cup b))$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.

Find a formula B of a language $\mathcal{L}_{\{\neg, \Rightarrow\}}$, such that $A \equiv B . \quad$ List all proper logical equivalences used at at each step.
Solution :

$$
A=((a \cap \neg c) \Rightarrow(\neg a \cup b)) \equiv((a \cap \neg c) \Rightarrow(a \Rightarrow b)) \equiv(\neg(a \Rightarrow \neg \neg c) \Rightarrow(a \Rightarrow b)) \equiv(\neg(a \Rightarrow c) \Rightarrow(a \Rightarrow b))=B
$$

Equivalences used: 1. $(\neg A \cup B) \equiv(A \Rightarrow B)$, 2. $(A \cap B) \equiv \neg(A \Rightarrow \neg B)$, 3. $\neg \neg A \equiv A$.
2. Prove that $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \Rightarrow\}}$

Solution We have to prove that $\mathcal{L}_{\{\neg, \Rightarrow\}} \equiv \mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$.
Condition $\mathbf{C 1}$ holds because $\{\neg, \Rightarrow\} \subseteq\{\neg, \cap, \cup, \Rightarrow\}$.

Condition C2 holds because of the Substitution Theorem and because of the following logical equivalences for any for any formulas A, B

$$
(A \cap B) \equiv \neg(A \Rightarrow \neg B) \quad \text { and } \quad(A \cup B) \equiv(\neg A \Rightarrow B)
$$

Reminder We define the equivalence of languages as follows:
Given two languages: $\mathcal{L}_{1}=\mathcal{L}_{C O N_{1}}$ and $\mathcal{L}_{2}=\mathcal{L}_{C O N_{2}}$, for $C O N_{1} \neq C O N_{2}$, we say that they are logically equivalent, i.e. $\mathcal{L}_{1} \equiv \mathcal{L}_{2} \quad$ if and only if the following conditions $\mathbf{C 1}, \mathbf{C} 2$ hold.

C1: For every formula A of \mathcal{L}_{1}, there is a formula B of \mathcal{L}_{2}, such that $A \equiv B$,
C2: For every formula C of \mathcal{L}_{2}, there is a formula D of \mathcal{L}_{1}, such that $C \equiv D$.

