CSE/MAT371 QUIZ 4 SOLUTIONS Fall 2016

QUESTION 1 (10pts)

- Let *S* be the following proof system: $S = (\mathcal{L}_{\{\Rightarrow,\cap,\neg\}}, \mathcal{F}, LA = \{((A \cap B) \Rightarrow B)\} (r) \xrightarrow{A}{(B \Rightarrow A)}),$ where *A*, *B* are any formulas from \mathcal{F}
- 1. Verify whether S is sound/not sound under classical semantics. Use shorthand notation.
- **Solution:** Axiom $((A \cap B) \Rightarrow B)$ is basic tautology. The rule (r) is **sound** because if we assume that A=T, we get that $(B \Rightarrow A) = T$ for any formula B. This proves that S is **sound**.
- **2.** Prove, by constructing a **formal proof** $B_1, ..., B_n$ that $\vdash_S (\neg A \Rightarrow ((A \cap A) \Rightarrow A))$.

Solution: Here is the formal proof.

 B_1 : $((A \cap A) \Rightarrow A)$ Axiom for B=A

 B_1 : $(\neg A \Rightarrow ((A \cap A) \Rightarrow A))$ rule (r) for $B = \neg A$ applied to B_1 .

3. Does above point **2.** prove that $\models (\neg A \Rightarrow ((A \cap A) \Rightarrow A))?$

Solution: yes, it does because we proved in the point 2. that the system S is sound.

QUESTION 2 (10pts)

Consider the Hilbert system $H_1 == (\mathcal{L}_{\{\Rightarrow\}}, \mathcal{F}, \{A1, A2\}, (MP) \frac{A; (A \Rightarrow B)}{B})$ where

 $A1; (A \Rightarrow (B \Rightarrow A)), \quad A2: ((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))) \text{ and } A, B \text{ are any formulas from } \mathcal{F}.$

Use **Deduction Theorem** to prove $(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_1} (A \Rightarrow C)$

Solution: $(A \Rightarrow B), (B \Rightarrow C) \vdash_{H_1} (A \Rightarrow C)$ if and only if (by Deduction Theorem) $(A \Rightarrow B), (B \Rightarrow C), A \vdash_{H_1} C$

Here is a formal proof of C from $(A \Rightarrow B), (B \Rightarrow C), A$:

- $B_1 \quad (A \Rightarrow B) \quad \text{Hyp}$
- B_2 A Hyp
- B_3 B MP on B_2 , B_1
- $B_4 \quad (B \Rightarrow C) \quad \text{Hyp}$
- B_5 C MP on B_3, B_4