CSE/MAT371 QUIZ 1 SOLUTIONS Fall 2017

Problem 1

Write the following natural language statement:
From the fact that each natural number is greater than zero we deduce that: it is not possible that Anne is a boy or, if it is possible that Anne is not a boy, then it is necessary that it is not true that each natural number is greater than zero
in the following two ways.

1. As a formula $A_{1} \in \mathcal{F}_{1}$ of a language $\mathcal{L}_{\{\neg, \square, \diamond, \cap, \cup, \Rightarrow\}}$

Solution

Propositional Variables: a, b, where
a denotes statement: each natural number is greater than zero,
b denotes statement: Anne is a boy
Propositional Modal Connectives: \square, \diamond
\diamond denotes statement: it is possible that, \square denotes statement: it is necessary that
Translation The formula A_{1} is

$$
(a \Rightarrow(\neg \diamond b \cup(\diamond \neg b \Rightarrow \square \neg a)))
$$

2. As a formula $A_{2} \in \mathcal{F}_{2}$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

Solution

Propositional Variables: a, b, c, d where
a denotes statement: each natural number is greater than zero,
b denotes statement: possible that Anne is a boy
c denotes statement: possible that Anne is not a boy
d denotes statement: necessary that it is not true that each natural number is greater than zero
Formula A_{2} is

$$
(a \Rightarrow(\neg b \cup(c \Rightarrow d)))
$$

Problem 2

Circle formulas that are propositional/ predicate tautologies
$\mathcal{S}_{1}=\{(A \Rightarrow(A \cup B)), \quad(((a \Rightarrow b) \cap(a \Rightarrow c)) \Rightarrow(a \Rightarrow b)), \quad(A \cup \neg A), \quad(A \cup(A \Rightarrow B)), \quad(a \cup \neg b)\}$
$\mathcal{S}_{2}=\{(\forall x A(x) \Rightarrow \exists x A(x)), \quad(\forall x P(x, y) \Rightarrow \exists x P(x, y)), \quad((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x)))$
Solutions

$$
|\neq(a \cup \neg b), \quad| \equiv((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x(A(x) \cap B(x)))
$$

Problem 3

Given a formula $A=(\neg a \Rightarrow(\neg b \cup(b \Rightarrow \neg c)))$
and its restricted model $v_{A}:\{a, b, c\} \longrightarrow\{T, F\}, \quad v_{A}(a)=T, v_{A}(b)=T, v_{A}(c)=F$
Extend v_{A} to the set of all propositional variables VAR to obtain 2 different, non restricted models for A

Solution

Model w_{1} is a function
$w_{1}: V A R \longrightarrow\{T, F\}$ such that
$w_{1}(a)=v_{A}(a)=T, \quad w_{1}(b)=v_{A}(b)=T$,
$w_{1}(c)=v_{A}(c)=F$, and $w_{1}(x)=T$, for all $x \in V A R-\{a, b, c\}$
Model w_{2} is defined by a formula

$$
\begin{aligned}
& w_{2}(a)=v_{A}(a)=T, \quad w_{2}(b)=v_{A}(b)=T, \\
& w_{2}(c)=v_{A}(c)=F, \text { and } w_{2}(x)=F, \text { for all } x \in V A R-\{a, b, c\}
\end{aligned}
$$

Problem 4

1. Give an example of an infinite set of formulas of $\mathcal{L}_{\{\neg, \cup\}}$, different from the set \mathbf{T} of tautologies that consistent. JUSTIFY your answer.

Reminder: a set $\mathcal{G} \subseteq \mathcal{F}$ of formulas is called consistent if and only if \mathcal{G} has a model

Solution

There plenty of examples; here is the simplest one: $\mathcal{G}=\mathcal{V} \mathcal{A} \mathcal{R}$

$$
v: V A R \rightarrow\{T, F\}, \text { such that } v(x)=T \text { for all } x \in V A R \text { is obviously a model for each formula in } \mathcal{G} \text { and hence by }
$$ definition is a model for \mathcal{G}.

MORE examples in chapter 3 and corresponding Lectures.
2. Give an example of an infinite set of formulas of $\mathcal{L}_{\{\neg, \cup\}}$, different from the set \mathbf{C} of contradictions that in inconsistent

Reminder: a set $\mathcal{G} \subseteq \mathcal{F}$ is called inconsistent if and only if \mathcal{G} does not have a model

Solution

There plenty of examples; here is the simplest one:
Let c be any variable, i.e. $c \in V A R$, we take

$$
\mathcal{G}=V A R \cup\{c, \neg c\}
$$

Obviously, the finite set $\{c, \neg c\}$ does not have a model, and hence the infinite set $V A R \cup\{c, \neg c\}$ does not have a model and hence, by definition is inconsistent.
MORE examples in chapter 3 and corresponding Lectures.

Reminder: we define H semantics operations \cup and \cap as $x \cup y=\max \{x, y\}, \quad x \cap y=\min \{x, y\}$ the implication and negation are defined as

$$
\begin{gathered}
x \Rightarrow y=\left\{\begin{array}{cc}
T & \text { if } x \leq y \\
y & \text { otherwise }
\end{array}\right. \\
\neg x=x \Rightarrow F
\end{gathered}
$$

Problem 5

We know that $v: V A R \longrightarrow\{F, \perp, T\}$ is such that $v^{*}((a \cap b) \Rightarrow(a \Rightarrow c))=\perp$ under H semantics.
Evaluate $v^{*}(((b \Rightarrow a) \Rightarrow(a \Rightarrow \neg c)) \cup(a \Rightarrow b))$. You can use SHORTHAND notation.

Solution Look at Lecture 3b.

