CSE/MAT371 QUIZ 1 SOLUTIONS Fall 2017

Problem 1

Write the following natural language statement:

From the fact that each natural number is greater than zero we deduce that: it is not possible that Anne is a boy or, if it is possible that Anne is not a boy, then it is necessary that it is not true that each natural number is greater than zero

in the following two ways.

1. As a formula $A_1 \in \mathcal{F}_1$ of a language $\mathcal{L}_{\{\neg, \Box, \Diamond, \cap, \cup, \Rightarrow\}}$

Solution

Propositional Variables: a, b, where

a denotes statement: each natural number is greater than zero,

b denotes statement: Anne is a boy

Propositional Modal Connectives: □, ◊

♦ denotes statement: it is possible that, □ denotes statement: it is necessary that

Translation The formula A_1 is

$$(a \Rightarrow (\neg \diamond b \cup (\diamond \neg b \Rightarrow \Box \neg a)))$$

2. As a formula $A_2 \in \mathcal{F}_2$ of a language $\mathcal{L}_{\{\neg, \cap, \cup, \Rightarrow\}}$

Solution

Propositional Variables: a, b, c, d where

a denotes statement: each natural number is greater than zero,

b denotes statement: possible that Anne is a boy

c denotes statement: possible that Anne is not a boy

d denotes statement: necessary that it is not true that each natural number is greater than zero

Formula A_2 is

$$(a \Rightarrow (\neg b \cup (c \Rightarrow d)))$$

Problem 2

Circle formulas that are propositional/ predicate tautologies

$$\mathcal{S}_1 = \{ (A \Rightarrow (A \cup B)), \ (((a \Rightarrow b) \cap (a \Rightarrow c)) \Rightarrow (a \Rightarrow b)), \ (A \cup \neg A), \ (A \cup (A \Rightarrow B)), \ (a \cup \neg b) \}$$

 $\mathcal{S}_2 = \{ (\forall x \ A(x) \Rightarrow \exists x \ A(x)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)), \quad ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x \ (A(x) \cap B(x))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \Rightarrow \exists x \ A(x)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)), \quad ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x \ A(x) \cap B(x))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \Rightarrow \exists x \ A(x)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)), \quad ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x \ A(x) \cap B(x))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \Rightarrow \exists x \ A(x)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)), \quad ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x \ A(x) \cap B(x))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \Rightarrow \exists x \ A(x)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)), \quad ((\forall x \ P(x, y) \Rightarrow \exists x \ A(x) \cap B(x))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \Rightarrow \exists x \ A(x)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ A(x) \cap B(x))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \Rightarrow \exists x \ A(x)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)), \quad ((\forall x \ P(x, y) \Rightarrow \exists x \ A(x) \cap B(x))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \cap B(x)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)), \quad (\forall x \ P(x, y) \Rightarrow \exists x \ P(x, y)) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \cap B(x)), \quad (\forall x \ P(x, y) \Rightarrow B(x \ P(x, y))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \cap B(x)), \quad (\forall x \ P(x, y) \Rightarrow B(x \ P(x, y))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \cap B(x)), \quad (\forall x \ P(x, y) \Rightarrow B(x \ P(x, y))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \cap B(x)), \quad (\forall x \ P(x, y) \Rightarrow B(x \ P(x, y))) \} \in \mathcal{S}_2 = \{ (\forall x \ A(x) \cap B(x)), \quad (\forall x \ P(x, y) \Rightarrow B(x \ P(x, y))) \} \in \mathcal{S}_2 = \{ (\forall x \ P(x, y) \ P(x, y)) \}$

Solutions

$$\not\models (a \cup \neg b), \qquad \not\models ((\exists x A(x) \cap \exists x B(x)) \Rightarrow \exists x (A(x) \cap B(x)))$$

Problem 3

Given a formula $A = (\neg a \Rightarrow (\neg b \cup (b \Rightarrow \neg c)))$

and its **restricted model** $v_A : \{a, b, c\} \longrightarrow \{T, F\}, v_A(a) = T, v_A(b) = T, v_A(c) = F$

Extend v_A to the set of all propositional variables VAR to obtain 2 different, non restricted **models** for A

Solution

Model w_1 is a function

 $w_1: VAR \longrightarrow \{T, F\}$ such that

 $w_1(a) = v_A(a) = T, \ w_1(b) = v_A(b) = T,$

 $w_1(c) = v_A(c) = F$, and $w_1(x) = T$, for all $x \in VAR - \{a, b, c\}$

Model w_2 is defined by a formula

 $w_2(a) = v_A(a) = T, \ w_2(b) = v_A(b) = T,$

 $w_2(c) = v_A(c) = F$, and $w_2(x) = F$, for all $x \in VAR - \{a, b, c\}$

Problem 4

1. Give an example of an **infinite** set of formulas of $\mathcal{L}_{\{\neg, \cup\}}$, different from the set **T** of tautologies that **consistent**. JUSTIFY your answer.

Reminder: a set $\mathcal{G} \subseteq \mathcal{F}$ of formulas is called consistent if and only if \mathcal{G} has a model

Solution

There plenty of examples; here is the simplest one: $G = V \mathcal{A} \mathcal{R}$

 $v: VAR \rightarrow \{T, F\}$, such that v(x) = T for all $x \in VAR$ is obviously a **model** for each formula in \mathcal{G} and hence by definition is a **model** for \mathcal{G} .

MORE examples in chapter 3 and corresponding Lectures.

2. Give an example of an infinite set of formulas of $\mathcal{L}_{[\neg, \cup]}$, different from the set C of contradictions that is inconsistent

Reminder: a set $\mathcal{G} \subseteq \mathcal{F}$ is called **inconsistent** if and only if \mathcal{G} **does not have a model**

Solution

There plenty of examples; here is the simplest one:

Let c be any variable, i.e. $c \in VAR$, we take

$$\mathcal{G} = VAR \cup \{c, \neg c\}$$

Obviously, the finite set $\{c, \neg c\}$ does not have a model, and hence the **infinite set** $VAR \cup \{c, \neg c\}$ **does not have a model** and hence, by definition is **inconsistent**.

MORE examples in chapter 3 and corresponding Lectures.

Reminder: we define H semantics operations \cup and \cap as $x \cup y = max\{x, y\}, x \cap y = min\{x, y\}$

the implication and negation are defined as

$$x \Rightarrow y = \begin{cases} T & \text{if } x \le y \\ y & \text{otherwise} \end{cases}$$
$$\neg x = x \Rightarrow F$$

Problem 5

We know that $v : VAR \longrightarrow \{F, \bot, T\}$ is such that $v^*((a \cap b) \Rightarrow (a \Rightarrow c)) = \bot$ under H semantics.

Evaluate $v^*(((b \Rightarrow a) \Rightarrow (a \Rightarrow \neg c)) \cup (a \Rightarrow b))$. You can use SHORTHAND notation.

Solution Look at Lecture 3b.