cse371/mat371 LOGIC

Professor Anita Wasilewska

Fall 2017

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

LECTURE 10a

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Chapter 10 Predicate Automated Proof Systems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Part 1: Predicate Languages
- Part 2: Proof System QRS
- Part 3: Proof of Completeness Theorem for QRS

Chapter 10 Part 3: Proof of Completeness Theorem for **QRS**

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The proof of completeness theorem presented here is due to Rasiowa and Sikorski (1961), as is the proof system **QRS**. We adopted their proof to propositional case in chapter 6 The completeness proofs, in the propositional case and in predicate case, are based on a **direct construction** of a counter model for any unprovable formula.

The construction of the counter model for the unprovable formula A uses the decomposition tree T_A

We call such constructed counter model a **counter model** determined by the tree T_A

Given a first order language \mathcal{L} with the set $V\!AR$ of variables and the set \mathcal{F} of formulas

We define, after chapter 8 a notion of a **model** and a **countermodel** of a formula A of \mathcal{L} and then **extend** it to the the set \mathcal{F}^* establishing the **semantics** for **QRS**

Model

A structure $\mathcal{M} = [M, I]$ is called a **model** of $A \in \mathcal{F}$ if and only if

 $(\mathcal{M}, \mathbf{v}) \models \mathbf{A}$

for all assignments $v : VAR \longrightarrow M$ We denote it by

 $\mathcal{M} \models \mathcal{A}$

M is called the **universe** of the model, *I* the interpretation

Counter - Model

A structure $\mathcal{M} = [M, I]$ is called a **counter-model** of $A \in \mathcal{F}$ if and only if **there is** $v : VAR \longrightarrow M$, such that

 $(\mathcal{M}, \mathbf{v}) \not\models \mathbf{A}$

We denote it by

 $\mathcal{M} \not\models \mathcal{A}$

Tautology

A formula $A \in \mathcal{F}$ is called a **predicate tautology** and denoted by $\models A$ if and only if

all structures $\mathcal{M} = [M, I]$ are models of A, i.e.

 $\models A$ if and only if $\mathcal{M} \models A$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for all structures $\mathcal{M} = [M, I]$ for \mathcal{L}

```
For any sequence \Gamma \in \mathcal{F}^*, by
```

δ_{Γ}

we understand any **disjunction** of all formulas of Γ

A structure $\mathcal{M} = [M, I]$ is called a **model** of a $\Gamma \in \mathcal{F}^*$ and denoted by

 $\mathcal{M} \models \Gamma$

if and only if

 $\mathcal{M} \models \delta_{\Gamma}$

The sequence Γ is a **predicate tautology** if and only if the formula δ_{Γ} is a predicate tautology, i.e.

 $\models \Gamma$ if and only if $\models \delta_{\Gamma}$

Completeness Theorem

```
For any \Gamma \in \mathcal{F}^*,
```

```
\vdash_{QRS} \Gamma if and only if \models \Gamma
```

```
In particular, for any formula A \in \mathcal{F},
```

```
\vdash_{QRS} A if and only if \models A
```

Proof We prove the completeness part. We need to prove the formula *A* case only because the case of a sequence Γ can be reduced to the formula case of δ_{Γ} . I.e. we prove the implication:

if $\models A$, then $\vdash_{QRS} A$

We do it, as in the propositional case, by proving the opposite implication

```
if \nvdash_{QRS} A then \not\models A
```

This means that we want prove that for any formula *A*, **unprovability** of *A* in **QRS** allows us to define its **countermodel**.

The counter- model is determined, as in the propositional case, by the decomposition tree T_A

We have proved the following

Tree Theorem

Each formula *A*, generates its unique decomposition tree \mathcal{T}_A and *A* has a proof only if this tree is finite and all its end sequences (leaves) are axioms.

The **Tree Theorem** says says that we have two cases to consider:

(C1) the tree T_A is finite and contains a leaf which is not axiom, or

(C2) the tree T_A is infinite

We will show how to construct a counter- model for A in both cases:

a counter- model determined by a non-axiom leaf of the decomposition tree T_A ,

or a counter- model determined by an infinite branch of T_A

Proof in case (C1)

The tree T_A is **finite** and contains a non-axiom leaf Before describing a general method of constructing the counter-model determined by the decomposition tree T_A we describe it, as an example, for a case of a general formula

 $(\exists x A(x) \Rightarrow \forall x A(x)),$

and its particular case

 $(\exists x(P(x) \cap R(x,y)) \Rightarrow \forall x(P(x) \cap R(x,y))),$

where *P*, *R* are one and two argument predicate symbols, respectively.

First we build its decomposition tree: T₄ $(\exists x(P(x) \cap R(x, y)) \Rightarrow \forall x(P(x) \cap R(x, y)))$ $|(\Rightarrow)$ $\neg \exists x (P(x) \cap R(x, y)), \forall x (P(x) \cap R(x, y))$ $\forall x \neg (P(x) \cap R(x, y)), \forall x (P(x) \cap R(x, y))$ |(A)| $\neg (P(x_1) \cap R(x_1, y)), \forall x (P(x) \cap R(x, y))$

where x_1 is a first free variable in the sequence of term ST such that x_1 does not appear in $\forall x \neg (P(x) \cap R(x, y)), \forall x (P(x) \cap R(x, y))$

> $|(\neg \cap)$ $\neg P(x_1), \neg R(x_1, y), \forall x(P(x) \cap R(x, y))$ $|(\forall)$

|(A)|

$$\neg P(x_1), \neg R(x_1, y), (P(x_2) \cap R(x_2, y))$$

where x_2 is a first free variable in the sequence of term ST such that x_2 does not appear in $\neg P(x_1), \neg R(x_1, y), \forall x(P(x) \cap R(x, y))$, the sequence ST is one-to- one, hence $x_1 \neq x_2$

(∩)

 $\neg P(x_1), \neg R(x_1, y), P(x_2)$

 $x_1 \neq x_2$, Non-axiom

 $\neg P(x_1), \neg R(x_1, y), R(x_2, y)$

 $x_1 \neq x_2$, Non-axiom

▲□▶▲□▶▲□▶▲□▶ □ のQ@

There are two non-axiom leaves

In order to define a counter-model determined by the tree T_A we need to chose only one of them

Let's choose the leaf

 $L_A = \neg P(x_1), \neg R(x_1, y), P(x_2)$

We use the **non-axiom leaf** L_A to define a structure $\mathcal{M} = [M, I]$ and an assignment v, such that

 $(\mathcal{M}, \mathbf{v}) \not\models \mathbf{A}$

Such defined \mathcal{M} is called a **counter - model** determined by the tree T_A

We take a the **universe** of \mathcal{M} the set **T** of all terms of our language \mathcal{L} , i.e. we put $M = \mathbf{T}$.

We define the interpretation I as follows.

For any **predicate symbol** $Q \in \mathbf{P}, \#Q = n$ we put that $Q_l(t_1, \ldots, t_n)$ is **true** (holds) for terms t_1, \ldots, t_n if and only if the negation $\neg Q_l(t_1, \ldots, t_n)$ of the formula $Q(t_1, \ldots, t_n)$ **appears**

on the leaf LA

and $Q_l(t_1, \ldots, t_n)$ is **false** (does not hold) for terms t_1, \ldots, t_n , otherwise

For any **functional symbol** $f \in \mathbf{F}, \#f = n$ we put

$$f_l(t_1,\ldots,t_n)=f(t_1,\ldots,t_n)$$

It is easy to see that in particular case of our non-axiom leaf

 $L_A = \neg P(x_1), \ \neg R(x_1, y), \ P(x_2)$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $P_l(x_1)$ is true for x_1 , and not true for x_2 $R_l(x_1, y)$ is true (holds) holds fo2 rx_1 and for any $y \in VAR$

We define the assignment $v : VAR \longrightarrow T$ as **identity**, i.e., we put v(x) = x for any $x \in VAR$ Obviously, for such defined structure [M, I] and the assignment v we have that

 $([\mathbf{T}, I], v) \models P(x_1), ([\mathbf{T}, I], v) \models R(x_1, y) \text{ and } ([\mathbf{T}, I], v) \not\models P(x_2)$

We hence obtain that

$$([\mathbf{T}, I], v) \not\models \neg P(x_1), \neg R(x_1, y), P(x_2)$$

This proves that such defined structure $[\mathbf{T}, I]$ is a counter model for a non-axiom leaf L_A and that A is not tautology