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Chapter 10
Part 3: Proof of Completeness Theorem for QRS



Proof of Completeness Theorem

The proof of completeness theorem presented here is due to
Rasiowa and Sikorski (1961), as is the proof system QRS.

We adopted their proof to propositional case in chapter 6

The completeness proofs, in the propositional case and in
predicate case, are based on a direct construction of a
counter model for any unprovable formula.

The construction of the counter model for the unprovable
formula A uses the decomposition tree TA

We call such constructed counter model a counter model
determined by the tree TA



Proof of Completeness Theorem

Given a first order language L with the set VAR of variables
and the set F of formulas

We define, after chapter 8 a notion of a model and a counter-
model of a formula A of L and then extend it to the the set
F ∗ establishing the semantics for QRS



Proof of Completeness Theorem

Model

A structureM = [M, I] is called a model of A ∈ F

if and only if
(M, v) |= A

for all assignments v : VAR −→ M

We denote it by
M |= A

M is called the universe of the model, I the interpretation



Proof of Completeness Theorem

Counter - Model

A structureM = [M, I] is called a counter- model of A ∈ F

if and only if there is v : VAR −→ M, such that

(M, v) 6|= A

We denote it by
M 6|= A



Proof of Completeness Theorem

Tautology

A formula A ∈ F is called a predicate tautology and denoted
by |= A if and only if

all structuresM = [M, I] are models of A , i.e.

|= A if and only if M |= A

for all structures M = [M, I] for L



Proof of Completeness Theorem

For any sequence Γ ∈ F ∗, by

δΓ

we understand any disjunction of all formulas of Γ

A structureM = [M, I] is called a model of a Γ ∈ F ∗ and
denoted by

M |= Γ

if and only if
M |= δΓ

The sequence Γ is a predicate tautology if and only if the
formula δΓ is a predicate tautology, i.e.

|= Γ if and only if |= δΓ



Proof of Completeness Theorem

Completeness Theorem

For any Γ ∈ F ∗,

`QRS Γ if and only if |= Γ

In particular, for any formula A ∈ F ,

`QRS A if and only if |= A

Proof We prove the completeness part. We need to prove
the formula A case only because the case of a sequence Γ
can be reduced to the formula case of δΓ. I.e. we prove the
implication:

if |= A , then `QRS A



Proof of Completeness Theorem

We do it, as in the propositional case, by proving the opposite
implication

if 0QRS A then 6|= A

This means that we want prove that for any formula A ,
unprovability of A in QRS allows us to define its counter-
model.

The counter- model is determined, as in the propositional
case, by the decomposition tree TA

We have proved the following

Tree Theorem

Each formula A , generates its unique decomposition tree TA

and A has a proof only if this tree is finite and all its end
sequences (leaves) are axioms.



Proof of Completeness Theorem

The Tree Theorem says says that we have two cases to
consider:

(C1) the tree TA is finite and contains a leaf which is not
axiom, or

(C2) the tree TA is infinite

We will show how to construct a counter- model for A in both
cases:

a counter- model determined by a non-axiom leaf of the
decomposition tree TA ,

or a counter- model determined by an infinite branch of TA



Proof of Completeness Theorem

Proof in case (C1)

The tree TA is finite and contains a non- axiom leaf

Before describing a general method of constructing the
counter-model determined by the decomposition tree TA we
describe it, as an example, for a case of a general formula

(∃xA(x)⇒ ∀xA(x)),

and its particular case

(∃x(P(x) ∩ R(x, y))⇒ ∀x(P(x) ∩ R(x, y))),

where P, R are one and two argument predicate symbols,
respectively.



Proof of Completeness Theorem

First we build its decomposition tree:
TA

(∃x(P(x) ∩ R(x, y))⇒ ∀x(P(x) ∩ R(x, y)))

| (⇒)

¬∃x(P(x) ∩ R(x, y)),∀x(P(x) ∩ R(x, y))

| (¬∃)

∀x¬(P(x) ∩ R(x, y)),∀x(P(x) ∩ R(x, y))

| (∀)

¬(P(x1) ∩ R(x1, y)),∀x(P(x) ∩ R(x, y))

where x1 is a first free variable in the sequence of term ST such that x1 does not

appear in ∀x¬(P(x) ∩ R(x, y)),∀x(P(x) ∩ R(x, y))

| (¬∩)

¬P(x1),¬R(x1, y),∀x(P(x) ∩ R(x, y))

| (∀)
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| (∀)

¬P(x1),¬R(x1, y), (P(x2) ∩ R(x2, y))

where x2 is a first free variable in the sequence of term ST such that x2 does not appear in

¬P(x1),¬R(x1, y),∀x(P(x) ∩ R(x, y)), the sequence ST is one-to- one, hence x1 , x2∧
(∩)

¬P(x1),¬R(x1, y),P(x2)

x1 , x2, Non-axiom
¬P(x1),¬R(x1, y),R(x2, y)

x1 , x2, Non-axiom



Proof of Completeness Theorem

There are two non-axiom leaves

In order to define a counter-model determined by the tree TA

we need to chose only one of them

Let’s choose the leaf

LA = ¬P(x1),¬R(x1, y),P(x2)

We use the non-axiom leaf LA to define a structure
M = [M, I] and an assignment v, such that

(M, v) 6|= A

Such definedM is called a counter - model determined by
the tree TA



Proof of Completeness Theorem

We take a the universe ofM the set T of all terms of our
language L, i.e. we put M = T.

We define the interpretation I as follows.

For any predicate symbol Q ∈ P,#Q = n we put that

QI(t1, . . . tn) is true (holds) for terms t1, . . . tn
if and only if

the negation ¬QI(t1, . . . tn) of the formula Q(t1, . . . tn) appears
on the leaf LA

and QI(t1, . . . tn) is false (does not hold) for terms t1, . . . tn,
otherwise

For any functional symbol f ∈ F,#f = n we put

fI(t1, . . . tn) = f(t1, . . . tn)



Proof of Completeness Theorem

It is easy to see that in particular case of our non-axiom leaf

LA = ¬P(x1), ¬R(x1, y), P(x2)

PI(x1) is true for x1, and not true for x2

RI(x1, y) is true (holds) holds fo2 rx1 and for any y ∈ VAR



Proof of Completeness Theorem

We define the assignment v : VAR −→ T as identity, i.e., we
put v(x) = x for any x ∈ VAR

Obviously, for such defined structure [M, I] and the
assignment v we have that

([T, I], v) |= P(x1), ([T, I], v) |= R(x1, y) and ([T, I], v) 6|= P(x2)

We hence obtain that

([T, I], v) 6|= ¬P(x1),¬R(x1, y),P(x2)

This proves that such defined structure [T, I] is a counter
model for a non-axiom leaf LA and that A is not tautology


