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PART 1: Introduction



Two Proofs

There are many proof systems that describe classical
propositional logic, i.e. that are complete proof systems
with the respect to the classical semantics.

We present here a Hilbert proof system for the classical
propositional logic and discuss two ways of proving the
Completeness Theorem for it.

Any proof of the Completeness Theorem consists always of
two parts.



Two Proofs

First we have show that all formulas that have a proof are
tautologies.

This implication is also called a Soundness Theorem, or
Soundness Part of the Completeness Theorem

The second implication says: if a formula is a tautology then it
has a proof.

This alone is sometimes called a Completeness Theorem
(on assumption that the system is sound)

Traditionally it is called a completeness part of the
Completeness Theorem



Two Proofs

The proof of the soundness part is standard.

We concentrate here on the completeness part of the
Completeness Theorem and present two proofs of it

The first proof is straightforward. It shows how one can use
the assumption that a formula A is a tautology in order to
construct its formal proof

It is hence called a proof - construction method.



Two Proofs

The second proof shows how one can prove that a formula
A is not a tautology from the fact that it does not have a proof

It is hence called a counter-model construction method.

All these proofs and considerations are relative to proof
systems and their semantics

At this moment the semantics is classical and the proof
system is H2

Reminder: we write |= A to denote that A is a classical
tautology



Proof System H2

Reminder: H2 is the following proof system:

H2 = ( L{⇒,¬}, F , {A1,A2,A3}, MP )

The axioms A1 − A3 are defined as follows.

A1 (A ⇒ (B ⇒ A)),

A2 ((A ⇒ (B ⇒ C))⇒ ((A ⇒ B)⇒ (A ⇒ C))),

A3 ((¬B ⇒ ¬A)⇒ ((¬B ⇒ A)⇒ B)))

(MP)
A ; (A ⇒ B)

B



Proof System H2

Obviously, the selected axioms A1,A2,A3 are tautologies,
and the MP rule leads from tautologies to tautologies.

Hence our proof system H2 is sound and the following
theorem holds.

Soundness Theorem

For every formula A ∈ F ,

If `H2 A , then |= A



System H2 LEMMA

We have proved in Lecture 5 the following

Lemma

The following formulas a are provable in H2

1. (A ⇒ A)

2. (¬¬B ⇒ B)

3. (B ⇒ ¬¬B)

4. (¬A ⇒ (A ⇒ B))

5. ((¬B ⇒ ¬A)⇒ (A ⇒ B))

6. ((A ⇒ B)⇒ (¬B ⇒ ¬A))

7. (A ⇒ (¬B ⇒ (¬(A ⇒ B)))

8. ((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

9. ((¬A ⇒ A)⇒ A)



First Proof

The first proof of Completeness Theorem presented here is
very elegant and simple, but is applicable only to the
classical propositional logic

This proof is, as was the proof of Deduction Theorem, a fully
constructive

The technique it uses , because of its specifics can’t be used
even in a case of classical predicate logic, not to mention
variaty of non-classical logics



Second Proof

The second proof is much more complicated.

Its strength and importance lies in a fact that the methods it
uses can be applied in an extended version to the proof of
completeness for classical predicate logic and some
non-classical propositional and predicate logics

The way we define a counter-model for any non-provable A is
general and non- constructive

We call it a a counter-model existence method



PART 2: Proof of the MAIN LEMMA



Completeness Theorem

The proof of the Completeness Theorem presented here is
similar in its structure to the proof of the Deduction Theorem
and is due to Kalmar, 1935

It is a constructive proof

It shows how one can use the assumption that a formula A is
a tautology in order to construct its formal proof.

We hence call it a proof construction method. It relies
heavily on the Deduction Theorem

It is possible to prove the Completeness Theorem
independently from the Deduction Theorem and we will
present two of such a proofs in later chapters.



Introduction

We first present one definition and prove one lemma

We write ` A instead of `S A as the system S is fixed.

Let A be a formula and b1, b2, ..., bn be all propositional
variables that occur in A, i.e.

A = A(b1, b2, ..., bn)



MAIN LEMMA: Definition 1

Definition 1

Let v be a truth assignment v : VAR −→ {T ,F}

We define, for A , b1, b2, ..., bn and truth assignment v
corresponding formulas A ′, B1,B2, ...,Bn as follows:

A ′ =

{
A if v∗(A) = T
¬A if v∗(A) = F

Bi =

{
bi if v(bi) = T
¬bi if v(bi) = F

for i = 1, 2, ..., n



Example 1

Let A be a formula (a ⇒ ¬b)

Let v be such that v(a) = T , v(b) = F

In this case we have that b1 = a, b2 = b, and

v∗(A) = v∗(a ⇒ ¬b) = v(a)⇒ ¬v(b)= T ⇒ ¬F = T

The corresponding A ′,B1,B2 are:

A ′ = A as v∗(A) = T

B1 = a as v(a) = T

B2 = ¬b as v(b) = F



Example 2

Let A be a formula ((¬a ⇒ ¬b)⇒ c)

and let v be such that v(a)= T, v(b) =F, v(c)=F

Evaluate A ′, B1, ...Bn as defined by the definition 1

In this case n = 3 and b1 = a, b2 = b , b3 = c

and we evaluate

v∗(A) = v∗((¬a ⇒ ¬b)⇒ c) = ((¬v(a)⇒ ¬v(b))⇒
v(c)) = ((¬T ⇒ ¬F)⇒ F) = (T ⇒ F) = F

The corresponding A ′,B1,B2,B2 are:

A ′ = ¬A = ¬((¬a ⇒ ¬b)⇒ c) as v∗(A) = F

B1 = a as v(a) = T , B2 = ¬b as v(b) = F , and

B3 = ¬c as v(c) = F



MAIN LEMMA

The lemma stated below describes a method of transforming
a semantic notion of a tautology into a syntactic notion of
provability

It defines, for any formula A and a truth assignment v a
corresponding deducibility relation

Main Lemma
For any formula A = A(b1, b2, ..., bn) and any truth
assignment v
If A

′

, B1 , B2, ..., Bn are corresponding formulas defined by
definition 1, then

B1,B2, ...,Bn ` A ′



Examples

Example 3

Let A , v be as defined in the Example 1, i.e. A ′ = A ,
B1 = a, B2 = ¬b

Main Lemma asserts that

a,¬b ` (a ⇒ ¬b)

Example 4

Let A , v be defined as in Example 2, then the Main Lemma
asserts that

a,¬b ,¬c ` ¬((¬a ⇒ ¬b)⇒ c)



Proof of the Main Lemma

The proof is by induction on the degree of the formula A

Base Case n = 0

In this case A is atomic and so consists of a single
propositional variable, say a

If v∗(A) = T then we have by definition 1

A ′ = A = a, B1 = a

We obtain, by definition of provability from a set Γ of
hypothesis for Γ = {a} that

a ` a



Proof of the Main Lemma

If v∗(A) = F we have by Definition 1 that

A ′ = ¬A = ¬a and B1 = ¬a

We obtain, by definition of provability from a set Γ of
hypothesis for Γ = {¬a} that

¬a ` ¬a

This proves that Main Lemma holds for n=0



Proof of the Main Lemma

Inductive Step
Now assume that the Lemma holds for any formula with
j < n connectives
Need to prove: the Lemma holds for A with n connectives
There are several sub-cases to deal with
Case: A is ¬A1

By the inductive assumption we have the formulas

A
′

1, B1,B2, ...,Bn

corresponding to the A1 and the propositional variables
b1, b2, ..., bn in A1, such that

B1,B2, ...,Bn ` A
′

1

Observe that the formulas A and ¬A1 have the same
propositional variables
So the corresponding formulas B1 , B2, ..., Bn are the same
for both of them.



Proof of the Main Lemma

We are going to show that the inductive assumption allows us
to prove that

B1,B2, ...,Bn ` A
′

There are two cases to consider.

Case: v∗(A1) = T

If v∗(A1) = T then by definition 1 A
′

1 = A1 and by the
inductive assumption

B1,B2, ...,Bn ` A1

In this case: v∗(A) = v∗(¬A1) = ¬v∗(T) = F

So we have that A
′

= ¬A = ¬¬A1



Proof of the Main Lemma

By Lemma 5. we have that that

` (A1 ⇒ ¬¬A1)

we obtain by the monotonicity that also

B1,B2, ...,Bn ` (A1 ⇒ ¬¬A1)

By inductive assumption B1,B2, ...,Bn ` A1 and by MP
we have

B1,B2, ...,Bn ` ¬¬A1

and as A
′

= ¬A = ¬¬A1 we get

B1,B2, ...,Bn ` ¬A and so B1,B2, ...,Bn ` A
′



Proof of the Main Lemma

Case: v∗(A1) = F

If v∗(A1) = F then A
′

1 = ¬A1 and v∗(A) = T so A
′

= A

Therefore by the inductive assumption we have that

B1,B2, ...,Bn ` ¬A1

that is as A = ¬A1

B1,B2, ...,Bn ` A
′



Proof of the Main Lemma

Case: A is (A1 ⇒ A2)

If A is (A1 ⇒ A2) then A1 and A2 have less than n
connectives

A = A(b1, ... bn) so there are some subsequences
c1, ..., ck and d1, ...dm for k ,m ≤ n of the sequence
b1, ..., bn such that

A1 = A1(c1, ..., ck ) and A2 = A(d1, ...dm)



Proof of the Main Lemma

A1 and A2 have less than n connectives and so by the
inductive assumption we have appropriate formulas
C1, ...,Ck and D1, ...Dm such that

C1,C2, . . . ,Ck ` A1
′

and D1,D2, . . . ,Dm ` A2
′

and C1,C2, ...,Ck , D1,D2, ...,Dm are subsequences of
formulas B1,B2, ...,Bn corresponding to the propositional
variables in A

By monotonicity we have the also

B1,B2, ...,Bn ` A1
′

and B1,B2, ...,Bn ` A2
′

Now we have the following sub-cases to consider



Proof of the Main Lemma

Case: v∗(A1) = v∗(A2) = T
If v∗(A1) = T then A1

′

= A1 and
if v∗(A2) = T then A2

′

= A2

We also have v∗(A1 ⇒ A2) = T and so A
′

= (A1 ⇒ A2)

By the above and the inductive assumption

B1,B2, ...,Bn ` A2

and since we have assumed 1. about S and by
monotonicity we have

B1,B2, ...,Bn ` (A2 ⇒ (A1 ⇒ A2))

By above and MP we have B1,B2, ...,Bn ` (A1 ⇒ A2)
that is

B1,B2, ...,Bn ` A
′



Proof of the Main Lemma

Case: v∗(A1) = T , v∗(A2) = F
If v∗(A1) = T then A1

′

= A1 and
if v∗(A2) = F then A2

′

= ¬A2

Also we have in this case v∗(A1 ⇒ A2) = F and so
A
′

= ¬(A1 ⇒ A2)

By the above, the inductive assumption and monotonicity
B1,B2, ...,Bn ` ¬A2

By Lemma 7. and by monotonicity we have

B1,B2, ...,Bn ` (A1 ⇒ (¬A2 ⇒ ¬(A1 ⇒ A2)))

By above and MP twice we have
B1,B2, ...,Bn ` ¬(A1 ⇒ A2) that is

B1,B2, ...,Bn ` A
′



Proof of the Main Lemma

Case: v∗(A1) = F

Observe that if v∗(A1) = F then A1
′

is ¬A1 and,
whatever value v gives A2, we have

v∗(A1 ⇒ A2) = T

So A
′

is (A1 ⇒ A2)

Therefore
B1,B2, . . . ,Bn ` ¬A1

From Lemma 6. and by monotonicity we have

B1, B2, ..., Bn ` (¬A1 ⇒ (A1 ⇒ A2))



Proof of the Main Lemma

By Modus Ponens we get that

B1,B2, ...,Bn ` (A1 ⇒ A2)

that is
B1,B2, ...,Bn ` A

′

We have covered all cases and, by mathematical induction
on the degree of the formula A we got

B1,B2, ...,Bn ` A
′

The proof of the Main Lemma is complete



PART3
Proof 1: Constructive Proof of Completeness Theorem



Proof of Completeness Theorem

Now we use the Main Lemma to prove the Completeness
Theorem i.e. to prove the following implication

For any formula A ∈ F

if |= A then ` A

Proof
Assume that |= A
Let b1, b2, ..., bn be all propositional variables that occur in
the formula A , i.e.

A = A(b1, b2, ..., bn)

By the Main Lemma we know that, for any truth assignment
v, the corresponding formulas A

′

, B1 , B2, ..., Bn can be
found such that

B1,B2, ...,Bn ` A
′



Proof

Note that in this case A
′

= A for any v since |= A
We have two cases.
1. If v is such that v(bn) = T , then Bn = bn and

B1,B2, ..., bn ` A

2. If v is such that v(bn) = F , then Bn = ¬bn and by the
Main Lemma

B1,B2, ...,¬bn ` A

So, by the Deduction Theorem we have

B1,B2, ...,Bn−1 ` (bn ⇒ A)

and
B1,B2, ...,Bn−1 ` (¬bn ⇒ A)



Proof of Completeness Theorem

By formula 8.

`((A ⇒ B)⇒ ((¬A ⇒ B)⇒ B))

for A = bn, B = A
and by monotonicity we have that

B1,B2, ...,Bn−1 ` ((bn ⇒ A)⇒ ((¬bn ⇒ A)⇒ A))

Applying Modus Ponens twice we get that

B1,B2, ...,Bn−1 ` A

Similarly, v∗(Bn−1) may be T or F
Applying the Main Lemma , the Deduction Theorem,
monotonicity, formula 8. and Modus Ponens twice we can
eliminate Bn−1 just as we have eliminated Bn

After n steps, we finally obtain proof of A in S, i.e. we have
that

` A



Constructiveness of the Proof

Observe that our proof of the Completeness Theorem is a
constructive one.

Moreover, we have used in it only Main Lemma and
Deduction Theorem which both have a constructive proofs

We can hence reconstruct proofs in each case when we
apply these theorems back to the original axioms of H2

The same applies to the proofs in H2 of all formulas 1. - 9.

It means that for any A , such that |= A , the set VA of all v
restricted to A provides us a method of a construction of
the formal proof of A in H2.



Example

Example

The proof of Completeness Theorem defines a method of
efficiently combining v ∈ VA while constructing the proof of
A

Let’s consider the following tautology A = A(a, b , c)

((¬a ⇒ b)⇒ (¬(¬a ⇒ b)⇒ c)

We present on the next slides all steps of the Proof 1 as
applied to A



Example

Given

A(a, b , c) = ((¬a ⇒ b)⇒ (¬(¬a ⇒ b)⇒ c)

By the Main Lemma and the assumption that

|= A(a, b , c)

any v ∈ VA defines formulas Ba , Bb , Bc such that

Ba ,Bb ,Bc ` A

The proof is based on a method of using all v ∈ VA (there
is 8 of them) to define a process of elimination of all
hypothesis Ba ,Bb ,Bc to construct the proof of A , ı.e. to
prove that

` A



Example

Step 1: elimination of Bc

Observe that by definition, Bc is c or ¬c depending on
the choice of v ∈ VA

We choose two truth assignments v1 , v2 ∈ VA such that

v1 | {a, b} = v2 | {a, b} and v1(c) = T , v2(c) = F

Case 1: v1(c) = T
By by definition Bc = c
By our choice, the assumption that |= A and the Main
Lemma applied to v1

Ba ,Bb , c ` A

By Deduction Theorem we have that

Ba ,Bb ` (c ⇒ A)



Example

Case 2: v2(c) = F

By definition Bc = ¬c

By our choice, assumption that |= A , and the Main Lemma
applied to v2

Ba ,Bb ,¬c ` A

By the Deduction Theorem we have that

Ba ,Bb ` (¬c ⇒ A)



Example

By Lemma 8. for A = c, B = A we have that

` ((c ⇒ A)⇒ ((¬c ⇒ A)⇒ A))

By monotonicity we have that

Ba ,Bb ` ((c ⇒ A)⇒ ((¬c ⇒ A)⇒ A))

Applying Modus Ponens twice to the above property and
properties on the previous slide we get that

Ba ,Bb ` A

We have eliminated Bc



Example

Step 2: elimination of Bb from Ba ,Bb ` A
We repeat the Step 1
As before we have 2 cases to consider: Bb = b or Bb = ¬b
We choose two truth assignments w1 , w2 ∈ VA such
that

w1| {a} = w2 | {a} = v1 | {a} = v2 | {a} and w1(b) = T , w2(b) = F

Case 1: w1(b) = T and by definition Bb = b
By our choice, assumption that |= A and the Main Lemma
applied to w1

Ba , b ` A

By Deduction Theorem we have that

Ba ` (b ⇒ A)



Example

Case 2: w2(b) = F and by definition Bb = ¬b

By choice, assumption that |= A and the Main Lemma
applied to
w2

Ba ,¬b ` A

By the Deduction Theorem we have that

Ba ` (¬b ⇒ A)



Example

By Lemma 8. for A = b , B = A we have that

` ((b ⇒ A)⇒ ((¬b ⇒ A)⇒ A))

By monotonicity

Ba ` ((b ⇒ A)⇒ ((¬b ⇒ A)⇒ A))

Applying Modus Ponens twice to the above property and
properties from the previous slide we get that

Ba ` A

We have eliminated Bb



Example

Step 3: elimination] of Ba from Ba ` A

We repeat the Step 2

As before we have 2 cases to consider: Ba = a or Ba = ¬a

We choose two truth assignments g1 , g2 ∈ VA such that

g1(a) = T and g2(a) = F

Case 1: g1(a) = T , and by definition Ba = a

By the choice, assumption that |= A , and the Main Lemma
applied to g1

a ` A

By Deduction Theorem we have that

` (a ⇒ A)



Example

Case 2: g2(a) = F and by definition Ba = ¬a

By the choice, assumption that |= A , and the Main Lemma
applied to g2

¬a ` A

By the Deduction Theorem we have that

` (¬a ⇒ A)



Example

By Lemma 8. for A = a, B = A we have that

` ((a ⇒ A)⇒ ((¬a ⇒ A)⇒ A))

Applying Modus Ponens twice to the above property and
properties from previous slides we get that

` A

We have eliminated Ba , Bb , Bc and constructed the proof
of A in S



EXERCISES

Exercise 1

The Lemma listed formulas 1. - 9. that we said are needed
for both proofs of the Completeness Theorem.

List formulas from the Lemma that are are needed for the
Proof 1 .

Exercise 2

The Proof 1 was carried for the language L{⇒,¬}.

Extend the Proof 1 to the language L{⇒,∪,¬} by adding all
new CASES concerning the new connective ∪ . LIST all new
formulas needed to be added to the formulas used in the
original Proof 1.


