cse371/mat371 LOGIC

Professor Anita Wasilewska

Fall 2017

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

LECTURE 5a

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

Chapter 5 HILBERT PROOF SYSTEMS: Completeness of Classical Propositional Logic

Lecture 5a

PART 1: Introduction

PART 2: Proof of the Main Lemma

PART 3: Proof 1: Constructive Proof of Completeness Theorem

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

PART 1: Introduction

▲□▶▲□▶▲≡▶▲≡▶ ≡ のQ@

There are many proof systems that describe classical propositional logic, i.e. that are **complete proof systems** with the respect to the classical semantics.

We present here a Hilbert proof system for the classical propositional logic and discuss two ways of proving the **Completeness Theorem** for it.

Any **proof** of the Completeness Theorem consists always of **two parts**.

First we have show that all formulas that have a proof are tautologies.

This implication is also called a **Soundness Theorem**, or **Soundness Part** of the **Completeness Theorem**

The second implication says: if a formula is a tautology then it has a proof.

This alone is sometimes called a **Completeness Theorem** (on assumption that the system is sound)

Traditionally it is called a completeness part of the Completeness Theorem

The **proof** of the soundness part is standard.

We concentrate here on the completeness part of the **Completeness Theorem** and present **two proofs** of it

The **first proof** is straightforward. It shows how one can use the assumption that a formula *A* is a tautology in order to **construct** its formal proof

It is hence called a proof - construction method.

The **second proof** shows how one can **prove** that a formula *A* is not a tautology **from** the fact that it does not have a proof

It is hence called a **counter-model construction method**.

All these **proofs** and considerations are relative to proof systems and their semantics

At this moment the semantics is classical and the proof system is H_2

Reminder: we write $\models A$ to denote that A is a classical tautology

Proof System H₂

Reminder: H_2 is the following proof system:

$$H_2 = \left(\begin{array}{cc} \mathcal{L}_{\{ \Rightarrow, \neg \}}, & \mathcal{F}, & \{A1, A2, A3\}, & MP \end{array} \right)$$

В

The axioms A1 - A3 are defined as follows.

A1
$$(A \Rightarrow (B \Rightarrow A)),$$

A2 $((A \Rightarrow (B \Rightarrow C)) \Rightarrow ((A \Rightarrow B) \Rightarrow (A \Rightarrow C))),$
A3 $((\neg B \Rightarrow \neg A) \Rightarrow ((\neg B \Rightarrow A) \Rightarrow B)))$
 $(MP) \frac{A; (A \Rightarrow B)}{P}$

Proof System H₂

Obviously, the selected axioms A1, A2, A3 are **tautologies**, and the MP rule leads from tautologies to tautologies.

Hence our proof system H_2 is **sound** and the following theorem holds.

Soundness Theorem

For every formula $A \in \mathcal{F}$, If $\vdash_{H_2} A$, then $\models A$

System H₂ LEMMA

We have proved in Lecture 5 the following

Lemma

The following formulas a are provable in H_2

$$1. \quad (A \Rightarrow A)$$

- **2.** $(\neg \neg B \Rightarrow B)$
- **3.** $(B \Rightarrow \neg \neg B)$
- $4. \quad (\neg A \Rightarrow (A \Rightarrow B))$
- **5.** $((\neg B \Rightarrow \neg A) \Rightarrow (A \Rightarrow B))$
- **6.** $((A \Rightarrow B) \Rightarrow (\neg B \Rightarrow \neg A))$
- 7. $(A \Rightarrow (\neg B \Rightarrow (\neg (A \Rightarrow B))))$
- **8.** $((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$
- $9. \quad ((\neg A \Rightarrow A) \Rightarrow A)$

First Proof

The **first proof** of **Completeness Theorem** presented here is very elegant and simple, but is applicable only to the classical propositional logic

This proof is, as was the proof of Deduction Theorem, a fully constructive

The technique it uses , because of its specifics can't be used even in a case of classical predicate logic, not to mention variaty of non-classical logics

Second Proof

The **second proof** is much more complicated.

Its strength and importance lies in a fact that the methods it uses can be applied in an extended version to the **proof of completeness** for classical predicate logic and some non-classical propositional and predicate logics

The way **we define** a counter-model for any non-provable *A* is general and non- constructive

We call it a a counter-model existence method

PART 2: Proof of the MAIN LEMMA

Completeness Theorem

The proof of the **Completeness Theorem** presented here is similar in its structure to the proof of the **Deduction Theorem** and is due to Kalmar, 1935

It is a constructive proof

It shows how one can use the assumption that a formula A is a tautology in order to **construct** its formal proof.

We hence call it a **proof construction method**. It relies heavily on the Deduction Theorem

It is possible to prove the **Completeness Theorem** independently from the Deduction Theorem and we will present two of such a proofs in later chapters.

Introduction

We first present **one definition** and prove **one lemma** We write $\vdash A$ instead of $\vdash_S A$ as the system **S** is fixed.

Let A be a formula and $b_1, b_2, ..., b_n$ be all propositional variables that occur in A, i.e.

 $A = A(b_1, b_2, ..., b_n)$

MAIN LEMMA: Definition 1

Definition 1

Let v be a truth assignment $v : VAR \longrightarrow \{T, F\}$ We define, for $A, b_1, b_2, ..., b_n$ and truth assignment v corresponding formulas A', $B_1, B_2, ..., B_n$ as follows:

$$A' = \begin{cases} A & \text{if } v^*(A) = T \\ \neg A & \text{if } v^*(A) = F \end{cases}$$

$$B_i = \begin{cases} b_i & \text{if } \mathbf{v}(b_i) = T \\ \neg b_i & \text{if } \mathbf{v}(b_i) = F \end{cases}$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

for *i* = 1, 2, ..., *n*

Let *A* be a formula $(a \Rightarrow \neg b)$ Let *v* be such that v(a) = T, v(b) = FIn this case we have that $b_1 = a$, $b_2 = b$, and $v^*(A) = v^*(a \Rightarrow \neg b) = v(a) \Rightarrow \neg v(b) = T \Rightarrow \neg F = T$ The corresponding A', B_1, B_2 are: A' = A as $v^*(A) = T$ $B_1 = a$ as v(a) = T $B_2 = \neg b$ as v(b) = F

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Let *A* be a formula $((\neg a \Rightarrow \neg b) \Rightarrow c)$ and let *v* be such that v(a)=T, v(b)=F, v(c)=FEvaluate *A'*, *B*₁,...*B*_n as defined by the **definition 1** In this case n = 3 and $b_1 = a$, $b_2 = b$, $b_3 = c$ and we evaluate

$$\frac{\mathbf{v}^*(\mathbf{A}) = \mathbf{v}^*((\neg a \Rightarrow \neg b) \Rightarrow c) = ((\neg v(a) \Rightarrow \neg v(b)) \Rightarrow}{\mathbf{v}(c)) = ((\neg T \Rightarrow \neg F) \Rightarrow F) = (T \Rightarrow F) = F}$$

The corresponding A', B_1, B_2, B_2 are:

 $A' = \neg A = \neg((\neg a \Rightarrow \neg b) \Rightarrow c)$ as $v^*(A) = F$ $B_1 = a$ as v(a) = T, $B_2 = \neg b$ as v(b) = F, and $B_3 = \neg c$ as v(c) = F

MAIN LEMMA

The lemma stated below describes a method of transforming a semantic notion of a tautology into a syntactic notion of provability

It **defines**, for any formula A and a truth assignment v a corresponding **deducibility relation**

Main Lemma

For any formula $A = A(b_1, b_2, ..., b_n)$ and any truth assignment v

If A', B_1 , B_2 , ..., B_n are corresponding formulas defined by **definition 1**, then

 $B_1, B_2, \dots, B_n \vdash A'$

Example 3

Let A, v be as defined in the **Example 1**, i.e. A' = A, $B_1 = a, B_2 = \neg b$

Main Lemma asserts that

$$a, \neg b \vdash (a \Rightarrow \neg b)$$

Example 4

Let A, v be defined as in **Example 2**, then the **Main Lemma** asserts that

$$a, \neg b, \neg c \vdash \neg((\neg a \Rightarrow \neg b) \Rightarrow c)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The proof is by induction on the degree of the formula *A* Base Case n = 0

In this case *A* is atomic and so consists of a single propositional variable, say *a*

If $v^*(A) = T$ then we have by **definition 1**

A' = A = a, $B_1 = a$

We obtain, by **definition of provability** from a set Γ of hypothesis for $\Gamma = \{a\}$ that

a ⊦ a

If $v^*(A) = F$ we have by **Definition 1** that

 $A' = \neg A = \neg a$ and $B_1 = \neg a$

We obtain, by **definition of provability** from a set Γ of hypothesis for $\Gamma = \{\neg a\}$ that

¬a ⊦ ¬a

▲□▶▲□▶▲□▶▲□▶ □ のQ@

This proves that Main Lemma holds for n=0

Inductive Step

Now assume that the Lemma holds for any formula with

j < n connectives

Need to prove: the **Lemma** holds for A with *n* connectives There are several sub-cases to deal with

Case: A is $\neg A_1$

By the inductive assumption we have the formulas

 $A_1', B_1, B_2, ..., B_n$

corresponding to the A_1 and the propositional variables $b_1, b_2, ..., b_n$ in A_1 , such that

 $B_1, B_2, ..., B_n \vdash A_1'$

Observe that the formulas A and $\neg A_1$ have the same propositional variables So the corresponding formulas B_1 , B_2 , ..., B_n are the same for both of them.

We are going to show that the inductive assumption allows us to prove that

 $B_1, B_2, ..., B_n \vdash A'$

There are two cases to consider.

Case: $v^*(A_1) = T$ If $v^*(A_1) = T$ then by **definition 1** $A'_1 = A_1$ and by the inductive assumption

$$B_1, B_2, \dots, B_n \vdash A_1$$

In this case: $v^*(A) = v^*(\neg A_1) = \neg v^*(T) = F$ So we have that $A' = \neg A = \neg \neg A_1$

By Lemma 5. we have that that

 $\vdash (A_1 \Rightarrow \neg \neg A_1)$

we obtain by the monotonicity that also

$$B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow \neg \neg A_1)$$

By **inductive assumption** $B_1, B_2, ..., B_n \vdash A_1$ and by MP we have

 $B_1, B_2, ..., B_n \vdash \neg \neg A_1$

and as $A' = \neg A = \neg \neg A_1$ we get

 $B_1, B_2, \dots, B_n \vdash \neg A$ and so $B_1, B_2, \dots, B_n \vdash A'$

Case: $v^*(A_1) = F$ If $v^*(A_1) = F$ then $A'_1 = \neg A_1$ and $v^*(A) = T$ so A' = A

Therefore by the inductive assumption we have that

 $B_1, B_2, \dots, B_n \vdash \neg A_1$

that is as $A = \neg A_1$

 $B_1, B_2, ..., B_n \vdash A'$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Case: A is $(A_1 \Rightarrow A_2)$

If $A ext{ is } (A_1 \Rightarrow A_2)$ then $A_1 ext{ and } A_2$ have less than n connectives

 $A = A(b_1, ..., b_n)$ so there are some **subsequences** $c_1, ..., c_k$ and $d_1, ..., d_m$ for $k, m \le n$ of the sequence $b_1, ..., b_n$ such that

 $A_1 = A_1(c_1, ..., c_k)$ and $A_2 = A(d_1, ...d_m)$

 A_1 and A_2 have less than *n* connectives and so by the **inductive assumption** we have appropriate formulas $C_1, ..., C_k$ and $D_1, ..., D_m$ such that

 $C_1, C_2, \ldots, C_k \vdash A_1'$ and $D_1, D_2, \ldots, D_m \vdash A_2'$

and $C_1, C_2, ..., C_k, D_1, D_2, ..., D_m$ are **subsequences** of formulas $B_1, B_2, ..., B_n$ corresponding to the propositional variables in A

By monotonicity we have the also

 $B_1, B_2, ..., B_n \vdash A_1'$ and $B_1, B_2, ..., B_n \vdash A_2'$

Now we have the following sub-cases to consider

Case: $v^*(A_1) = v^*(A_2) = T$ If $v^*(A_1) = T$ then $A_1' = A_1$ and if $v^*(A_2) = T$ then $A_2' = A_2$ We also have $v^*(A_1 \Rightarrow A_2) = T$ and so $A' = (A_1 \Rightarrow A_2)$ By the above and the **inductive assumption**

 $B_1, B_2, \dots, B_n \vdash A_2$

and since we have assumed **1.** about **S** and by **monotonicity** we have

$$B_1, B_2, ..., B_n \vdash (A_2 \Rightarrow (A_1 \Rightarrow A_2))$$

By above and MP we have $B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow A_2)$ that is

$$B_1, B_2, ..., B_n \vdash A'$$

Case: $v^*(A_1) = T$, $v^*(A_2) = F$ If $v^*(A_1) = T$ then $A_1' = A_1$ and if $v^*(A_2) = F$ then $A_2' = \neg A_2$ Also we have in this case $v^*(A_1 \Rightarrow A_2) = F$ and so $A' = \neg (A_1 \Rightarrow A_2)$ By the **above**, the **inductive assumption** and **monotonicity** $B_1, B_2, ..., B_n \vdash \neg A_2$ By Lemma **7.** and by **monotonicity** we have

 $B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow (\neg A_2 \Rightarrow \neg (A_1 \Rightarrow A_2)))$

By above and MP twice we have $B_1, B_2, ..., B_n \vdash \neg(A_1 \Rightarrow A_2)$ that is

 $B_1, B_2, ..., B_n \vdash A'$

Case: $v^*(A_1) = F$

Observe that if $v^*(A_1) = F$ then A_1' is $\neg A_1$ and, whatever value v gives A_2 , we have

 $v^*(A_1 \Rightarrow A_2) = T$

So A' is $(A_1 \Rightarrow A_2)$

Therefore

 $B_1, B_2, \ldots, B_n \vdash \neg A_1$

From Lemma 6. and by monotonicity we have

 $B_1, B_2, ..., B_n \vdash (\neg A_1 \Rightarrow (A_1 \Rightarrow A_2))$

By Modus Ponens we get that

$$B_1, B_2, ..., B_n \vdash (A_1 \Rightarrow A_2)$$

that is

 $B_1, B_2, ..., B_n \vdash A'$

We have covered **all cases** and, by **mathematical induction** on the degree of the formula A we got

 $B_1, B_2, ..., B_n \vdash A'$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

The proof of the Main Lemma is complete

PART3 Proof 1: Constructive Proof of Completeness Theorem

Proof of Completeness Theorem

Now we use the **Main Lemma** to prove the **Completeness Theorem** i.e. to prove the following implication

For any formula $A \in \mathcal{F}$

if $\models A$ then $\vdash A$

Proof

Assume that $\models A$ Let $b_1, b_2, ..., b_n$ be all propositional variables that occur in the formula A, i.e.

$$A = A(b_1, b_2, ..., b_n)$$

By the **Main Lemma** we know that, for any truth assignment v, the corresponding formulas A', B_1 , B_2 , ..., B_n can be found such that

 $B_1, B_2, \dots, B_n \vdash A'$

Proof

Note that in this case A' = A for any v since $\models A$ We have two cases.

1. If v is such that $v(b_n) = T$, then $B_n = b_n$ and

 $B_1, B_2, \dots, b_n \vdash A$

2. If v is such that $v(b_n) = F$, then $B_n = \neg b_n$ and by the Main Lemma

 $B_1, B_2, \dots, \neg b_n \vdash A$

So, by the Deduction Theorem we have

 $B_1, B_2, ..., B_{n-1} \vdash (b_n \Rightarrow A)$

and

$$B_1, B_2, ..., B_{n-1} \vdash (\neg b_n \Rightarrow A)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Proof of Completeness Theorem

By formula 8.

 $\vdash ((A \Rightarrow B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow B))$

for $A = b_n$, B = A

and by monotonicity we have that

 $B_1, B_2, ..., B_{n-1} \vdash ((b_n \Rightarrow A) \Rightarrow ((\neg b_n \Rightarrow A) \Rightarrow A))$

Applying Modus Ponens twice we get that

 $B_1, B_2, ..., B_{n-1} \vdash A$

Similarly, $v^*(B_{n-1})$ may be T or F Applying the **Main Lemma**, the **Deduction Theorem**, monotonicity, formula **8.** and Modus Ponens twice we can eliminate B_{n-1} just as we have eliminated B_n After n steps, we finally obtain proof of A in S, i.e. we have that

Constructiveness of the Proof

Observe that our proof of the Completeness Theorem is a constructive one.

Moreover, we have used in it only Main Lemma and Deduction Theorem which both have a **constructive proofs**

We **can** hence reconstruct proofs in each case when we apply these theorems back to the original axioms of H_2

The same applies to the **proofs** in H_2 of all formulas **1.** - **9.** It means that for any *A*, such that $\models A$, the set V_A of all *v* restricted to *A* **provides** us a method of a **construction** of the **formal proof** of *A* in H_2 .

Example

The proof of **Completeness Theorem** defines a **method** of efficiently combining $v \in V_A$ while **constructing** the proof of *A*

Let's consider the following **tautology** A = A(a, b, c)

$$((\neg a \Rightarrow b) \Rightarrow (\neg (\neg a \Rightarrow b) \Rightarrow c)$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We present on the next slides all steps of the **Proof 1** as applied to A

Given

$$A(a,b,c) = ((\neg a \Rightarrow b) \Rightarrow (\neg (\neg a \Rightarrow b) \Rightarrow c)$$

By the Main Lemma and the assumption that

 $\models A(a, b, c)$

any $v \in V_A$ defines formulas B_a , B_b , B_c such that

 $B_a, B_b, B_c \vdash A$

The proof is based on a method of using all $v \in V_A$ (there is 8 of them) to **define** a process of elimination of all hypothesis B_a, B_b, B_c to **construct** the proof of A, i.e. to prove that

⊢ **A**

Step 1: elimination of B_c **Observe** that by definition, B_c is *c* or $\neg c$ depending on the **choice** of $v \in V_A$ We **choose** two truth assignments $v_1 \neq v_2 \in V_A$ such that

 $v_1 | \{a, b\} = v_2 | \{a, b\}$ and $v_1(c) = T$, $v_2(c) = F$ **Case 1:** $v_1(c) = T$ By by definition $B_c = c$ By our choice, the assumption that $\models A$ and the **Main Lemma** applied to v_1

 $B_a, B_b, c \vdash A$

By Deduction Theorem we have that

 $B_a, B_b \vdash (c \Rightarrow A)$

Case 2: $v_2(c) = F$ By definition $B_c = \neg c$ By our **choice**, assumption that $\models A$, and the **Main Lemma** applied to v_2

 $B_a, B_b, \neg c \vdash A$

By the **Deduction Theorem** we have that

 $B_a, B_b \vdash (\neg c \Rightarrow A)$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

By Lemma 8. for A = c, B = A we have that

 $\vdash ((c \Rightarrow A) \Rightarrow ((\neg c \Rightarrow A) \Rightarrow A))$

By monotonicity we have that

$$B_a, B_b \vdash ((c \Rightarrow A) \Rightarrow ((\neg c \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice to the above property and properties on the previous slide we get that

 $B_a, B_b \vdash A$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We have eliminated B_c

Step 2: elimination of B_b from $B_a, B_b \vdash A$ We repeat the **Step 1** As before we have 2 cases to consider: $B_b = b$ or $B_b = \neg b$ We **choose** two truth assignments $w_1 \neq w_2 \in V_A$ such that

 $w_1|\{a\} = w_2|\{a\} = v_1|\{a\} = v_2|\{a\}$ and $w_1(b) = T$, $w_2(b) = F$

Case 1: $w_1(b) = T$ and by definition $B_b = b$ By our choice, assumption that $\models A$ and the **Main Lemma** applied to w_1

 $B_a, b \vdash A$

By Deduction Theorem we have that

 $B_a \vdash (b \Rightarrow A)$

Case 2: $w_2(b) = F$ and by definition $B_b = \neg b$ By choice, assumption that $\models A$ and the **Main Lemma** applied to w_2

$$B_a, \neg b \vdash A$$

By the Deduction Theorem we have that

 $B_a \vdash (\neg b \Rightarrow A)$

By Lemma 8. for A = b, B = A we have that

$$\vdash ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$$

By monotonicity

$$B_a \vdash ((b \Rightarrow A) \Rightarrow ((\neg b \Rightarrow A) \Rightarrow A))$$

Applying Modus Ponens twice to the above property and properties from the previous slide we get that

 $B_a \vdash A$

We have eliminated B_b

Step 3: elimination] of B_a from $B_a \vdash A$ We repeat the **Step 2** As before we have 2 cases to consider: $B_a = a$ or $B_a = \neg a$ We choose two truth assignments $g_1 \neq g_2 \in V_A$ such that

 $g_1(a) = T$ and $g_2(a) = F$

Case 1: $g_1(a) = T$, and by definition $B_a = a$ By the choice, assumption that $\models A$, and the **Main Lemma** applied to g_1

a ⊦ A

By Deduction Theorem we have that

 \vdash ($a \Rightarrow A$)

Case 2: $g_2(a) = F$ and by definition $B_a = \neg a$ By the choice, assumption that $\models A$, and the **Main Lemma** applied to g_2

$\neg a \vdash A$

By the Deduction Theorem we have that

 $\vdash (\neg a \Rightarrow A)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

By Lemma 8. for A = a, B = A we have that

 $\vdash ((a \Rightarrow A) \Rightarrow ((\neg a \Rightarrow A) \Rightarrow A))$

Applying Modus Ponens twice to the above property and properties from previous slides we get that

⊢ A

We have **eliminated** B_a , B_b , B_c and constructed the **proof** of A in S

▲□▶▲□▶▲□▶▲□▶ □ のQ@

EXERCISES

Exercise 1

The **Lemma** listed formulas **1.** - **9.** that we said are needed for both proofs of the **Completeness Theorem**.

List formulas from the Lemma that are are needed for the Proof 1 .

Exercise 2

The **Proof 1** was carried for the language $\mathcal{L}_{\{\Rightarrow,\neg\}}$.

Extend the **Proof 1** to the language $\mathcal{L}_{\{\Rightarrow,\cup,\neg\}}$ by **adding** all new CASES concerning the new connective \cup . LIST all new formulas needed to be added to the formulas used in the original Proof 1.